跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.88) 您好!臺灣時間:2026/02/16 01:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃耀陞
研究生(外文):HUANG, YAO-SHENG
論文名稱:使用熱燈絲化學氣相沉積製備碳化矽薄膜表面披覆於氮化鋁基板並探討其微波特性
論文名稱(外文):Study of Surface Passivation on Aluminum Nitride Substrate Prepared by Hot-Wire Chemical Vapor Deposition and Discuss on Microwave Properties
指導教授:吳宏偉
指導教授(外文):WU, HUNG-WEI
口試委員:蘇炎坤洪政源
口試委員(外文):SU, YAN-KUINHUNG, CHENG-YUAN
口試日期:2017-07-10
學位類別:碩士
校院名稱:崑山科技大學
系所名稱:電腦與通訊研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:74
中文關鍵詞:熱燈絲化學氣相沉積共面波導傳輸線平均乘載功率介電常數衰減常數
外文關鍵詞:Hot wire chemical vapor depositionCoplanar waveguideAverage power handling capabilityDielectric constanAttenuation constant
相關次數:
  • 被引用被引用:0
  • 點閱點閱:181
  • 評分評分:
  • 下載下載:9
  • 收藏至我的研究室書目清單書目收藏:3
本論文主要研究為使用熱燈絲化學氣相沉積製備碳化矽薄膜表面批覆於氮化鋁基板探討其微波特性,目前陶瓷基板已成為和互連技術的基礎材料,常見的陶瓷材料有氮化鋁、氧化鋁、碳化矽和氧化鈹,由於氮化鋁晶格常數 (a = 3.186 Å, c = 5.186 Å) 與碳化矽晶格常數(4.3596Å) 晶格匹配度為18%,相當匹配,所以選用碳化矽薄膜表面披覆於氮化鋁基板並探討其微波特性。
本論文首先以熱燈絲化學氣相沉積,調整甲烷流量及基板溫度下製備碳化矽薄膜,研究首先探討基板溫度與甲烷流量對於碳化矽形成之影響,使用場發式電子顯微鏡與原子力顯微鏡觀察薄膜沉積效果,並利用拉曼光譜儀分析其晶體結構,最後X光繞射儀分析其平均晶粒尺寸和晶向結構,發現隨著甲烷流量以及基板溫度增加,平均晶粒尺寸上升。
接著論文中探討以共面波導傳輸線(Coplanar waveguide transmission line,CPWTL)進行微波參數分析,利用S參數轉換平均乘載功率(Average power handling capability,APHC)、衰減損失(Attenuation loss)、和介電常數(Dielectric constant) ,在10 GHz時,基板溫度350 °C,甲烷流量2 sccm時,會造成最大的衰減常數(0.2 dB/mm); 以及基板溫度50°C,甲烷流量2 sccm時,可以得到最大的介電常數(9.9),最後透過平均乘載功率的分析,發現透過這樣簡單的製程,可以改變基板本身介電常數及衰減常數,又可以讓平均乘載能力未造成極大的損失。

In this study, main surface passivation on aluminum nitride substrate prepared by hot-wire chemical vapor deposition and microwave properties with discussed in this thesis. At present, the ceramic substrate has become the material of high power components. Commonly used ceramic substrates are aluminum nitride, alumina, silicon carbide and beryllium oxide. The lattice matching degree of aluminum nitride lattice constant (a = 3.186 Å, c = 5.186 Å) and silicon carbide lattice constant (4.3596Å) was 18%. So the use of silicon carbide film passivation of aluminum nitride substrate and explore its microwave properties.
This study is using HWCVD to deposit SiC film. First, we discuss on the effect of CH4 rate and substrate temperature on the deposition result by Field Emission Scanning Electron Microscopy (FESEM) and Atomic Force Microscopy (AFM). Next, analysis, crystal structure, crystal phase, and average grain size by Raman spectrometer and X-ray diffraction. That as the methane flow rate and the substrate temperature increase, the average grain size increases.
Next, the microwave parameter analysis by using Coplanar waveguide transmission line (CPWTL) and convert S-parameter to average power handling capability, attenuation loss, and dielectric constant. Discussed on microwave characteristics of different process parameters. At 10 GHz, the substrate temperature of 350 °C and the methane flow rate of 2 sccm results in the maximum attenuation constant (0.2 dB / mm), and the substrate temperature 50 °C, the methane flow rate of 2 sccm, you can get the maximum dielectric constant (9.9). Finally, through the analysis of the average power handling capability, found through such a simple process. We can change the dielectric constant and attenuation constant of the substrate itself, and the average load capacity does not cause significant loss.

中文摘要 i
Abstract iii
Acknowledgements v
List of Publications vii
Contents viii
Table Contents xi
Figure Contents xii
Chapter 1 Introduction 1
1.1 Research Background 1
1.1.1 Introduction of ceramic substrate 1
1.1.2 Introduction of aluminum nitride 2
1.1.3 Introduction of coplanar waveguide 3
1.1.4 Introduction to skin effect 4
1.2 Theoretical Basis of Silicon Carbide 5
1.2.1 Crystal structure 5
1.2.2 Physical properties of SiC 7
1.2.3 Occurrence and stability of SiC polytypes 8
1.2.4 Introduction to 3C-SiC 9
Chapter 2 Theoretical Basis and Literature Review 10
2.1 Review of Chemical Vapor Deposition 10
2.1.1 Chemical vapor deposition reaction principle 10
2.1.2 Reaction gas system 11
2.1.3 Introduction to hot-wire chemical vapor deposition 12
2.2 Experimental process and analytical equipment 13
2.2.1 Hot-wire chemical vapor deposition 13
2.2.2 Direct current Sputtering 14
2.2.3 On wafer RFIC Measurement 15
2.2.4 Field Emission Scanning Electron Microscope 16
2.2.5 Raman Spectrometer 17
2.2.6 X-ray diffraction 18
2.2.7 Atomic Force Microscopy 21
Chapter 3 Experimental Materials and Process Steps 23
3.1 Experimental Materials 23
3.1.1 Metallic catalyst material 23
3.1.2 Process gas 24
3.2 Experiment process 26
3.2.1 Experimental parameters 26
3.2.2 Design of thickness of CPW transmission line 27
Chapter 4 Experimental results and discussion 30
4.1 Experiment process 30
4.1.1 Adjustment of CH4 flow and substrate temperature for FE-SEM analysis. 30
4.1.2 Adjustment of CH4 flow and substrate temperature for AFM analysis. 39
4.1.3 Adjustment of CH4 flow and substrate temperature for Raman analysis 43
4.1.4 Adjustment of CH4 flow and substrate temperature for XRD analysis 48
4.2 Measurement Attenuation Loss, Dielectric constant, and APHC with varying CH4 flow rate and substrate temperature. 53
4.2.1 Calculated attenuation loss 53
4.2.2 Calculated dielectric constant 58
4.2.3 Calculated average power handling capability 63
Chapter 5 Conclusions 69
Reference 70


[1] J. H. Edgar and W. J. Meng, ”Properties of group III nitrides,” EMIS Datareviews Series., 1994.
[2] B. Gil, “Group III nitride semiconductor compounds:physics and application,” Clarendon Press., pp. 21, 1998.
[3] C. P. Wen, “Coplanar waveguide: A surface strip transmission line suitable for nonreciprocal gyromagnetic device applications,” IEEE Trans. Microw. Theory Techn., vol. 17, pp. 1087-1090, Dec. 1969.
[4] P. J. Nahin, “Oliver heaviside: Sage in solitude: The life, work, and times of an electrical genius of the victorian age,” IEEE., 1998.
[5] A. Matsuda, “Growth mechanism of microcrystalline silicon obtained from reactive plasmas,” Thin Solid Films., vol. 337, pp. 1-6, Jan. 1999.
[6] A. R. Verma, and P. Krishna, “Polymorphism and Polytypism in Crystals,” John Wiley&Sons In., May. 1966.
[7] H. Matsunami, and T. Kimoto, “Step-controlled epitaxial growth of SiC: High quality homoepitaxy,” Materials Science and Engineering: R: Reports., vol. 20, pp. 125-166, 1997.
[8] W. J. Choyke, D. R. Hamilton, and L. Patrick, “Optical properties of cubic SiC: Luminescence of nitrogen-exciton complexes, and interband absorption.” Physical Review., vol. 133, pp. A1163-A1166, Feb. 1964.
[9] A. Qteish, V. Heine, and R. J. Needs, “Polarization, band lineups, and stability of SEC polytypes,” Physical Review B., vol. 45, pp. 6534-6542, Oct. 1992.
[10] W. V. Muench, and I. Pfaffeneder, “Breakdown field in vaporgrown silicon carbide p-n junctions,” Journal of Applied Physics., vol. 48 pp. 4831-4833 Jul. 1977.
[11] D. W. Feldman, J. H. Parker Jr., W. J. Choyke, and L. Patrick, “Phonon dispersion curves by Raman scattering in SiC, polytypes 3C, 4H, 6H, 15R, and 21R,” Physical Review., vol. 173, pp. 787-793, Apr. 1968.
[12] G. A. Slack, “Thermal Conductivity of Pure and Impure Silicon, Silicon Carbide, and Diamond,” Journal of Applied Physics., vol. 35, pp. 3460-3466, Feb. 1964.
[13] W. von Muench, and I. Pfaffeneder, “Saturated electron drift velocity in 6H silicon carbide,” Journal of Applied Physics., vol. 48, pp. 4823-4825, Jun. 1977.
[14] V. E. Chelnokov, and A. L. Syrkin, “High temperature electronics using SiC: actual situation and unsolved problems,” Materials Science and Engineering B., vol. 46, pp. 248-253, Apr. 1997.
[15] A. A. Lebedev, and V. E. Chelnokov, “Wide-gap semiconductors for high-power electronics,” Semiconductors., vol. 33, pp. 999-1001, Mar. 1999.
[16] F. Roccaforte, F. Giannazzo, F. Iucolano, J. Eriksson, M. H. Weng, and V. Raineri, “Surface and interface issues in wide band gap semiconductor electronics,” Applied Surface Science., vol. 256, pp. 5727-5735, Jul. 2010.
[17] H. Morkoç, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov, and M. Burns, “Large‐band‐gap SiC, III‐V nitride, and II‐VI ZnSe‐based semiconductor device technologies,” Journal of Applied Physics., vol. 76, pp. 1363-1398, Mar. 1994.
[18] A. Elasser, and T. P. Chow, “Silicon carbide benefits and advantages for power electronics circuits and systems,” Proceedings of the IEEE., vol. 90, pp. 969-986, Jun. 2002.
[19] W. F. Knippenberg, “Growth phenomena in silicon carbide,” Philips Research Reports., vol.18, pp161-274, 1963.
[20] Y. Inomata, A. Inona, M. Mitomo, and H. Sudzuki, and Y. K. Shi, “Relation between growth temperature and the structure of SiC crystals grown by the sublimation method,” Journal of the Ceramic Association, Japan., vol. 76, pp. 313-319, Nov. 1968.
[21] M. Mehregany, and C. A. Zorman, “Silicon carbide MEMS for harsh environments,” Proceedings of the IEEE., vol. 86, no. 8, pp. 1594, Aug. 1998.
[22] W. N. Sharpe, O. Jadaan, G. M. Beheim, G. D. Quinn, and N.N. Nemeth, “Fracture Strength of Silicon Carbide Microspecimens,” Journal of microelectromechanical systems., vol. 14, no. 5, pp. 903–913, Oct. 2005.
[23] A. C. Jonse, and P. O. Brien, “CVD of compound semiconductors: precursor synthesis, developmeny and applications,” VCH Verlagsgesellschaft mbH., Oct. 1997.
[24] C. E. Morosanu, “Thin film by Chemical Vapor Deposition, chapter 5,“ Elsevier., 1990 .
[25] R. E. I. Schropp, “ Frontiers in HWCVD,” Thin Solid Films., vol. 517, pp. 3415-3419, Apr. 2009.
[26] J. Doyle, R. Robertson, G. H. Lin, M. Z. He, and A. Gallagher, “ Production of high‐quality amorphous silicon films by evaporative silane surface decomposition,” Journal of Applied Physics., vol. 64, pp. 3215-3223, May. 1988.
[27] M. Yazdanfar, H. Pedersen et al., “On the use of methane as a carbon precursor in chemical vapor deposition of silicon carbide,” Journal of Crystal Growth., vol. 390, pp. 24-29, Mar. 2014.
[28] M. Fantona, D. Snydera et al., “Growth of nitrogen-doped SiC boules by halide chemical vapor deposition,” Journal of Crystal Growth., vol. 287, pp. 359-362, Jan. 2006.
[29] T. Urakawa, R. Torigoe et al., “H2/N2 plasma etching rate of carbon films deposited by H-Assisted plasma chemical vapor deposition,” Japanese Journal of Applied Physics, vol. 52, Jan. 2013.
[30] Q. Cheng, S. Xu et al., “Influence of hydrogen dilution on the growth of nanocrystalline silicon carbide films by low-frequency inductively coupled plasma chemical vapor deposition,” Thin Solid Films., vol. 516, pp. 5991-5995, Jul. 2008.
[31] R. A. Roy, and R. Messier, “Preparation–physical structure relations in SiC sputtered films,” Journal of Vacuum Science & Technology A., vol. 2, pp. 312-315, Dec. 1984.
[32] J. Chin, P. K. Gantzel, and R. G. Hudson,” The structure of chemical vapor deposited silicon carbide” Thin Solid Films., vol. 40, pp. 57-72, Jul. 1976.
[33] S. Nakashima, H. Harima, “Raman Investigation of SiC Polytypes,” physica status solidi (a)., vol. 162, pp. 39-64, Jul. 1997.
[34] S. Nakashima, and H. Harima, “Raman Investigation of SiC polytypes,” Phys. Status Solidi., vol. 162, pp. 39-64, Jul. 1997.
[35] T. Minami, H. Sato, K. Ohashi, T. Tomofuji, and S. Takata, “Conduction mechanism of highly conductive and transparent zinc oxide thin films prepared by magnetron sputtering,” Journal of Crystal Growth., vol. 117, pp. 370-374, Feb. 1992.
[36] R. E. Collin,” Foundations for Microwave Engineering,” Mcgraw-Hill College., Jul. 1992.
[37] A. Dasgupta, Y. Huang , L. Houben , S. Klein , F. Finger , R. Carius, and M. Luysberg, “Effect of filament and substrate temperatures on the structural and electrical properties of SiC thin films grown by the HWCVD technique,” Thin Solid Films., vol. 516, pp. 622-625, Jan. 2008.
[38] H.S. Gamble, B.M. Armstrong, S.J.N. Mitchell, Y. Wu, V.F. Fusco, and J.A.C. Stewart, “Low-loss CPW lines on surface stabilized high-resistivity silicon,” IEEE Microwave and Guided Wave Letters, vol. 9, no. 10, pp. 395-397, Oct. 1999.
[39] Bibhu P. Swain, and Rajiv O. Dusane, “Microscopic properties of H2 diluted HWCVD deposited a-SiC:H film.,” Microelectronic Engineering., vol. 83, pp. 55-57, Jan. 2006.
[40] I. J. Bahl, “Average power handling capability of multiplayer microstrip lines,” Int. J. RF Microw. CAE, vol. 11, pp. 385–395, Oct. 2001.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top