|
[1] D. A. Long, "Introductory Raman Spectroscopy. John R. Ferraro, Kazuo Nakamoto and Chris W. Brown. Academic Press, Amsterdam, Second Edition, 2003. xiii + 434," Journal of Raman Spectroscopy, vol. 36, pp. 1012-1012, 2005. [2] Zrimsek, AB et al. "Single-Molecule Chemistry with Surface- and Tip-Enhanced Raman Spectroscopy, " Chemical Reviews, vol. 117, pp. 7583-7613,2017 [3] M. Fleischmann, P. J. Hendra, and A. J. McQuillan, "Raman spectra of pyridine adsorbed at a silver electrode," Chemical Physics Letters, vol. 26, pp. 163-166,1974. [4] W. E. Doering and S. Nie, "Single-Molecule and Single-Nanoparticle SERS: Examining the Roles of Surface Active Sites and Chemical Enhancement," The Journal of Physical Chemistry B, vol. 106, pp. 311-317, 2001. [5] N. Félidj, J. Aubard, G. Lévi, J. R. Krenn, A. Hohenau, G. Schider, et al., "Optimized surface-enhanced Raman scattering on gold nanoparticle arrays," Applied Physics Letters, vol. 82, pp. 3095-3097, 2003. [6] S. Nie and S. R. Emory, "Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering," Science, vol. 275, pp. 1102-1106, 1997. [7] K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, et al., "Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS)," Physical Review Letters, vol. 78, pp. 1667-1670, 1997. [8] A. Campion and P. Kambhampati, "Surface-enhanced Raman scattering," Chemical Society Reviews, vol. 27, pp. 241-250, 1998. [9] D. L. Jeanmaire and R. P. Van Duyne, "Surface raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode," Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol. 84, pp. 1-20, 1977. [10] M. G. Albrecht and J. A. Creighton, "Anomalously intense Raman spectra of pyridine at a silver electrode," Journal of the American Chemical Society, vol. 99, pp. 5215-5217,1977. [11] E. C. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, "Surface Enhanced Raman Scattering Enhancement Factors: A Comprehensive Study," The Journal of Physical Chemistry C, vol. 111, pp. 13794-13803, 2007. [12] A. J. Haes and R. P. Van Duyne, "A unified view of propagating and localized surface plasmon resonance biosensors," Analytical and Bioanalytical Chemistry, vol. 379, pp. 920-930, 2004. [13] K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, "The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment," The Journal of Physical Chemistry B, vol. 107, pp. 668-677, 2002. [14] E. C. Le Ru and P. G. Etchegoin, "Chapter 3 - Introduction to plasmons and plasmonics," in Principles of Surface-Enhanced Raman Spectroscopy, E. C. L. Ru and P. G. Etchegoin, Eds., ed Amsterdam: Elsevier, pp. 121-183, 2009. [15] H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, "Spectroscopy of Single Hemoglobin Molecules by Surface Enhanced Raman Scattering," Physical Review Letters, vol. 83, pp. 4357-4360, 1999. [16] E. Hao and G. C. Schatz, "Electromagnetic fields around silver nanoparticles and dimers," The Journal of Chemical Physics, vol. 120, pp. 357-366, 2004. [17] T. R. Jensen, G. C. Schatz, and R. P. Van Duyne, "Nanosphere Lithography: Surface Plasmon Resonance Spectrum of a Periodic Array of Silver Nanoparticles by Ultraviolet−Visible Extinction Spectroscopy and Electrodynamic Modeling," The Journal of Physical Chemistry B, vol. 103, pp. 2394-2401, 1999. [18] G. L. Liu and L. P. Lee, "Nanowell surface enhanced Raman scattering arrays fabricated by soft-lithography for label-free biomolecular detections in integrated microfluidics," Applied Physics Letters, vol. 87, 2005. [19] H. H. Wang, C. Y. Liu, S. B. Wu, N. W. Liu, C. Y. Peng, T. H. Chan, et al., "Highly Raman-enhancing substrates based on silver nanoparticle arrays with tunable sub-10 nm gaps," Advanced Materials, vol. 18, pp. 491-495, 2006. [20] P. Kao, N. A. Malvadkar, M. Cetinkaya, H. Wang, D. L. Allara, and M. C. Demirel, "Surface-Enhanced Raman Detection on Metalized Nanostructured Poly(p-xylylene) Films," Advanced Materials, vol. 20, pp. 3562-3565, 2008. [21] D. A. Handley, "Colloidal Gold : Principles,Methods, and Applications," Academic Press, vol. 1, 1989. [22] M. Faraday, "The Bakerian Lecture: Experimental Relations of Gold (and Other Metals) to Light," Philosophical Transactions of the Royal Society of London, vol. 147, pp. 145-181, 1857. [23] K. Kneipp, A. S. Haka, H. Kneipp, K. Badizadegan, N. Yoshizawa, C. Boone, et al., "Surface-enhanced Raman Spectroscopy in single living cells using gold nanoparticles," Applied Spectroscopy, vol. 56, pp. 150-154, 2002. [24] C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, et al., "Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates," Nano Letters, vol. 5, pp. 1569-1574, 2005. [25] C. J. Orendorff, A. Gole, T. K. Sau, and C. J. Murphy, "Surface-Enhanced Raman Spectroscopy of Self-Assembled Monolayers: Sandwich Architecture and Nanoparticle Shape Dependence," Analytical Chemistry, vol. 77, pp. 3261-3266, 2005. [26] T. A. Taton, C. A. Mirkin, and R. L. Letsinger, "Scanometric DNA Array Detection with Nanoparticle Probes," Science, vol. 289, pp. 1757-1760, 2000. [27] A. G. Tkachenko, H. Xie, D. Coleman, W. Glomm, J. Ryan, M. F. Anderson, S. Franzen, and D. L. Feldheim, "Multifunctional Gold Nanoparticle−Peptide Complexes for Nuclear Targeting," Journal of the American Chemical Society, vol. 125, pp. 4700-4701, 2003. [28] L. N. Lewis, "Chemical catalysis by colloids and clusters," Chemical Reviews, vol. 93, pp. 2693-2730, 1993. [29] Y. Xiong, B. J. Wiley, and Y. Xia, "Nanocrystals with Unconventional Shapes—A Class of Promising Catalysts," Angewandte Chemie International Edition, vol. 46, pp. 7157-7159, 2007. [30] J. Kimling, M. Maier, B. Okenve, V. Kotaidis, H. Ballot, and A. Plech, "Turkevich Method for Gold Nanoparticle Synthesis Revisited," The Journal of Physical Chemistry B, vol. 110, pp. 15700-15707, 2006. [31] J. Turkevich, P. C. Stevenson, and J. Hillier, "A study of the nucleation and growth processes in the synthesis of colloidal gold," Discussions of the Faraday Society, vol. 11, pp. 55-75, 1951. [32] H. B. Weiser, "Inorganic Colloid Chemistry," Wiley, New York, NY, vol. 1, pp. 21-57, 1933. [33] V. Amendola and M. Meneghetti, "Laser ablation synthesis in solution and size manipulation of noble metal nanoparticles," Physical Chemistry Chemical Physics, vol. 11, pp. 3805-3821, 2009. [34] G. Glaspell, V. Abdelsayed, K. M. Saoud, and M. S. El-Shall, "Vapor-phase synthesis of metallic and intermetallic nanoparticles and nanowires: Magnetic and catalytic properties," pure and applied chemistry, vol. 78, pp. 1667-1689, 2006. [35] S. Kumar, K. S. Gandhi, and R. Kumar, "Modeling of Formation of Gold Nanoparticles by Citrate Method†," Industrial & Engineering Chemistry Research, vol. 46, pp. 3128-3136, 2006. [36] A. K. G. a. P. Kim, "Graphene, a newly isolated form of carbon, provides a rich lode of novel fundamental physics and practical applications," Scientific American, vol. 298, pp. 90-97, 2008. [37] G. Eda, G. Fanchini, and M. Chhowalla, "Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material," Nat Nano, vol. 3, pp. 270-274, 2008. [38] A. K. Geim and K. S. Novoselov, "The rise of graphene," Nat Mater, vol. 6, pp. 183-191, 2007. [39] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, et al., "Electric Field Effect in Atomically Thin Carbon Films," Science, vol. 306, pp. 666-669, 2004. [40] J. Meyer, A. Chuvilin, and U. Kaiser, "Electron Microscopic Studies with Graphene," Microscopy and Microanalysis, vol. 15, pp. 126-127, 2009. [41] C. Andrey, C. M. Jannik, A.-S. Gerardo, and K. Ute, "From graphene constrictions to single carbon chains," New Journal of Physics, vol. 11, p. 083019, 2009. [42] C. Lee, X. Wei, J. W. Kysar, and J. Hone, "Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene," Science, vol. 321, pp. 385-388, July 18, 2008. [43] A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, et al., "Superior Thermal Conductivity of Single-Layer Graphene," Nano Letters, vol. 8, pp. 902-907, 2008. [44] K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, et al., "Ultrahigh electron mobility in suspended graphene," Solid State Communications, vol. 146, pp. 351-355, 2008. [45] J. Rafiee, X. Mi, H. Gullapalli, A. V. Thomas, F. Yavari, Y. Shi, et al., "Wetting transparency of graphene," Nat Mater, vol. 11, pp. 217-222, 2012. [46] S. Chen, Q. Wu, C. Mishra, J. Kang, H. Zhang, K. Cho, et al., "Thermal conductivity of isotopically modified graphene," Nat Mater, vol. 11, pp. 203-207, 03//print 2012. [47] A. H. C. Neto and K. Novoselov, "New directions in science and technology: two-dimensional crystals," Reports on Progress in Physics, vol. 74, p. 082501, 2011. [48] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, et al., "Two-dimensional gas of massless Dirac fermions in graphene," Nature, vol. 438, pp. 197-200, 2005. [49] K. S. Novoselov and A. H. C. Neto, "Two-dimensional crystals-based heterostructures: materials with tailored properties," Physica Scripta, vol. 2012, p. 014006, 2012. [50] Y. Iyechika, "Application of graphene to high-speed transistors: expectations and challenges," Science and Technology Trends - Quarterly Review, vol. 37, pp. 76-92, 2010. [51] A. Reina, X. T. Jia, J. Ho, D. Nezich, H. B. Son, V. Bulovic, et al., "Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition," Nano Letters, vol. 9, pp. 30-35, 2009. [52] A. N. Obraztsov, E. A. Obraztsova, A. V. Tyurnina, and A. A. Zolotukhin, "Chemical vapor deposition of thin graphite films of nanometer thickness," Carbon, vol. 45, pp. 2017-2021, 2007. [53] I. Vlassiouk, M. Regmi, P. Fulvio, S. Dai, P. Datskos, G. Eres, et al., "Role of Hydrogen in Chemical Vapor Deposition Growth of Large Single-Crystal Graphene," ACS Nano, vol. 5, pp. 6069-6076, 2011. [54] K. C. Yung, W. M. Wu, M. P. Pierpoint, and F. V. Kusmartsev, "Introduction to graphene electronics – a new era of digital transistors and devices," Contemporary Physics, vol. 54, pp. 233-251, 2013. [55] J. Hass, W. A. DeHeer, and E. H. Conrad, “The growth and morphology of epitaxial multilayer graphene,” J. Phys. Condens. Matter, vol. 20, no. 32, 2008. [56] H. He, J. Klinowski, M. Forster, and A. Lerf, "A new structural model for graphite oxide," Chemical Physics Letters, vol. 287, pp. 53-56, 1998. [57] A. Lerf, H. Y. He, M. Forster, and J. Klinowski, "Structure of graphite oxide revisited," Journal of Physical Chemistry B, vol. 102, pp. 4477-4482, 1998. [58] M. Hirata, T. Gotou, S. Horiuchi, M. Fujiwara, and M. Ohba, "Thin-film particles of graphite oxide 1: High-yield synthesis and flexibility of the particles," Carbon, vol. 42, pp. 2929-2937, 2004. [59] T. Szabo, A. Szeri, and I. Dekany, "Composite graphitic nanolayers prepared by self-assembly between finely dispersed graphite oxide and a cationic polymer," Carbon, vol. 43, pp. 87-94, 2005. [60] B. C. Brodie, "Sur le poids atomique du graphite," Ann. Chim. Phys., vol. 59, pp. 466-472, 1860. [61] L. Staudenmaier, "Verfahren zur Darstellung der Graphitsäure," Berichte der deutschen chemischen Gesellschaft, vol. 31, pp. 1481-1487, 1898. [62] W. S. Hummers and R. E. Offeman, "Preparation of Graphitic Oxide," Journal of the American Chemical Society, vol. 80, pp. 1339-1339, 1958. [63] A. Bagri, C. Mattevi, M. Acik, Y. J. Chabal, M. Chhowalla, and V. B. Shenoy, "Structural evolution during the reduction of chemically derived graphene oxide," Nat Chem, vol. 2, pp. 581-587, 07//print 2010. [64] G. B. Butler and R. J. Angelo, "Preparation and Polymerization of Unsaturated Quaternary Ammonium Compounds. VIII. A Proposed Alternating Intramolecular-Intermolecular Chain Propagation1," Journal of the American Chemical Society, vol. 79, pp. 3128-3131, 1957. [65] J. Lu, X. D. Wang, and C. B. Xiao, "Preparation and characterization of konjac glucomannan/poly(diallydimethylammonium chloride) antibacterial blend films," Carbohydrate Polymers, vol. 73, pp. 427-437, 2008. [66] C. Wandrey, J. Hernández-Barajas, and D. Hunkeler, "Diallyldimethylammonium Chloride and its Polymers," in Radical Polymerisation Polyelectrolytes. vol. 145, I. Capek, J. Hernfández-Barajas, D. Hunkeler, J. L. Reddinger, J. R. Reynolds, and C. Wandrey, Eds., ed: Springer Berlin Heidelberg, vol. 145,pp. 123-183, 1999 [67] B. P. Tripathi, N. C. Dubey, and M. Stamm, "Functional polyelectrolyte multilayer membranes for water purification applications," Journal of Hazardous Materials, vol. 252, pp. 401-412, 2013. [68] D. Q. Yang, J. F. Rochette, and E. Sacher, "Spectroscopic evidence for pi-pi interaction between poly(diallyl dimethylammonium) chloride and multiwalled carbon nanotubes," The Journal of Physical Chemistry B, vol. 109, pp. 4481-4484, 2005. [69] S. Link and M. A. El-Sayed, "Spectral Properties and Relaxation Dynamics of Surface Plasmon Electronic Oscillations in Gold and Silver Nanodots and Nanorods," The Journal of Physical Chemistry B, vol. 103, pp. 8410-8426, 1999.
|