跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.41) 您好!臺灣時間:2026/01/14 05:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:詹子儀
研究生(外文):Tzu-Yi Chan
論文名稱:金-石墨烯奈米片及Ag-AAO奈米粒子陣列三明治夾層之拉曼增強生醫檢測平台
論文名稱(外文):Sandwich Raman-Enhanced Bio-Detecting Platform by Au-Graphene Nanosheets and Ag-AAO Nanoparticle Arrays
指導教授:楊銘乾
指導教授(外文):Ming-Chien Yang
口試委員:劉定宇鄭詠馨
口試委員(外文):Ting-Yu LiuYung-Hsin Cheng
口試日期:2019-07-17
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:材料科學與工程系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:78
中文關鍵詞:金奈米粒子石墨烯表面增強拉曼光譜陽極氧化鋁
外文關鍵詞:gold nanoparticlesgraphenesurface-enhanced Raman scatteringAnodic aluminum oxide
相關次數:
  • 被引用被引用:0
  • 點閱點閱:189
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本實驗成功製備奈米粒子(Ag或Au奈米顆粒)陣列於表面增強拉曼散射(SERS)基板,並增強待測物分子之表面電漿共振與拉曼信號。在本文中,三明治SERS平台由金/石墨烯奈米片與鋁基板生成多孔陽極氧化鋁(AAO)模板並加入銀奈米粒子(Ag)形成奈米陣列基板所製備。此三明治SERS平台結合Ag / AAO奈米顆粒陣列之SERS效應與金/石墨烯奈米片捕獲生物分子之能力,達到“雙重“SERS增強效應。將檢測的生物分子加入至Ag / AAO奈米顆粒陣列和Au /石墨烯奈米片之間,藉此雙重拉曼增強效應達到快速與穩定放大待測物的拉曼訊號。並藉由穿透式電子顯微鏡、界達電位、X射線繞射儀和X射線光電子能譜儀來分析三明治SERS平台。新型三明治SERS平台具有優異的表面增強拉曼光譜來進行無標記生物檢測,如小生物分子(腺嘌呤(A),胸腺嘧啶(T),胞嘧啶(C),鳥嘌呤(G)的DNA,和β-胡蘿蔔素)和水污染物(孔雀石綠)。
Typical surface-enhanced Raman scattering (SERS) substrates consist of nanoparticles (Ag or Au nanoparticles) arrays, which would supply surface plasmon resonance to enhance the Raman signals of biomolecules close to the “hot spots” of the substrate. In this paper, the sandwich SERS platform has been first created by well-designed nanoarrays of silver nanoparticles (Ag), grown on porous anodic aluminum oxide (AAO) templates (Ag/AAO) and Au/graphene oxide nanosheets. The sandwich SERS platform displays reproducible SERS effect on the well-designed Ag/AAO nanoparticle arrays, and would be flexible to capture the biomolecules on the Au/ graphene nanosheets. The detected biomolecules would be inserted between Ag/AAO nanoparticle arrays and Au/graphene nanosheets to achieve the “reduplicate” Raman-enhanced effect. The characterizations of the sandwich SERS platform would be evaluated by transmission electron microscopy, zeta potential, X-ray diffractometer, and X-ray photoelectron spectroscopy. The novel sandwich SERS platform has excellent Raman enhanced capability to offer great potential for practical applications in the rapid and label-free bio-detection, such as small biomolecules (adenine (A), thymine (T), cytosine (C), guanine (G) from DNA, beta-carotene), water pollutants (malachite green), and biotoxicity of the compound (Aflatoxin B1).
中文摘要 I
Abstract II
目錄 III
圖目錄 VI
表目錄 IX
第一章 緒論 (Introduction) 1
1.1 研究背景 1
1.2 研究目的 2
第二章 文獻回顧 (Literature) 3
2.1 拉曼光譜 3
2.1.1 拉曼光譜的歷史 3
2.1.2 拉曼光譜的原理 4
2.2 表面增強拉曼光譜 6
2.2.1 表面增強拉曼光譜簡介 6
2.2.2 表面增強拉曼效應機制 7
2.3 金奈米粒子 12
2.3.1 金奈米粒子性質與結構 12
2.3.2 金奈米粒子合成方法 14
2.4 石墨烯 16
2.4.1 石墨烯的結構與性質 16
2.4.2 石墨烯的製備方法 18
2.5 聚二甲基二烯丙基氯化銨 23
第三章 實驗 (Experiment) 25
3.1 實驗材料 25
3.2 實驗設備 26
3.3 實驗流程 28
3.4 實驗原理及方法 29
3.4.1 金奈米粒子合成 29
3.4.2 氧化石墨烯合成 30
3.4.3 石墨烯合成 32
3.4.4 Graphene-PDDA合成 32
3.4.5 Au/Graphene-PDDA 34
3.4.6 Ag/AAO奈米粒子陣列合成方法 35
3.4.7 三明治結構金屬奈米粒陣列SERS平台 35
3.4.8 表面增強拉曼光譜實驗 36
3.4.9 儀器分析 38
第四章 結果與討論 (Results and Discussion) 40
4.1 SERS複合材料合成 40
4.1.1 金奈米粒子 40
4.1.2 氧化石墨烯 41
4.1.3 Graphene-PDDA 42
4.1.4 Au/Graphene-PDDA 44
4.1.5 Ag/AAO奈米粒子陣列 50

4.2 SERS效應與應用探討 52
4.2.1 SERS複合材料 52
4.2.2 SERS效應之應用 54
4.2.3 三明治結構金屬奈米陣列SERS平台 59
第五章 結論 (Conclusion) 60
參考文獻 (References) 61

圖目錄
Figure 2 1 雷射(488 nm)激發CCl4之拉曼光譜 4
Figure 2 2 雷利與拉曼散射能階示意圖 5
Figure 2 3 金屬奈米粒子LSPR示意圖 8
Figure 2 4 金屬粒子於特定吸收波段之LSPR效應圖 9
Figure 2 5 粒子間距2 nm之二聚體型態銀奈米粒子電磁場效應 10
Figure 2 6 製造銀奈米粒子/多孔性陽極氧化鋁基板流程示意圖 11
Figure 2 7 陽極氧化鋁基板成長銀奈米粒子(a)前(b)後SEM圖(c)銀奈米粒子/陽極氧化鋁基板TEM截面圖 11
Figure 2 8 金奈米粒子結構示意圖 13
Figure 2 9 以檸檬酸鈉熱還原法合成金奈米粒子機制圖 15
Figure 2 10 (a)單層石墨烯示意圖(b)石墨烯之TEM圖 16
Figure 2 11 機械剝離法示意圖 19
Figure 2 12 化學氣相沉積法成長石墨烯示意圖 20
Figure 2 13 氧化石墨烯模型圖 21
Figure 2 14 氧化石墨烯還原後之分子模型 22
Figure 2 15 PDDA之化學結構 23
Figure 2 16 奈米碳管(左)與石墨烯(右) 24
Figure 3 1 實驗總流程圖 28
Figure 3 2 氧化石墨烯合成示意圖 30
Figure 3 3 Graphene-PDDA合成示意圖 32
Figure 3 4 Au/Graphene-PDDA及Ag-AAO奈米粒子陣列三明治夾層示意圖 36
Figure 4 1 金奈米粒子之吸收光譜 40
Figure 4 2 石墨、氧化石墨烯和石墨烯之繞射圖譜 41
Figure 4 3 Graphene oxide及Graphene-PDDA之C(1s)電子能譜圖 43
Figure 4 4 電子能譜分峰圖 (a) Graphene oxide (b) Graphene-PDDA 43
Figure 4 5 Au/Graphene-PDDA奈米複合物流程示意圖 44
Figure 4 6 不同比例Au/Graphene-PDDA TEM圖像 (a) Au 1/G 2 (b) Au 2/G 1 (c) Au 4/G 1 (d) Au 8/G 1 (e) Au 16/G 1 45
Figure 4 7 金奈米粒子粒徑分布圖 46
Figure 4 8 Au/Graphene-PDDA TEM-EDX分析圖 46
Figure 4 9 Au/Graphene-PDDA繞射圖譜 47
Figure 4 10 Graphene oxide、Graphene-PDDA以及金奈米粒子之Zeta potential 49
Figure 4 11 Au/Graphene-PDDA和金奈米粒子之Au4f的電子能譜圖 49
Figure 4 12 不同倍率下的Ag/AAO奈米粒子陣列之SEM圖:(a) AAO (100K), (b) AAO (200K), (c) Ag/AAO (100K), (d) Ag/AAO (200K) 50
Figure 4 13 Ag/AAO奈米粒子陣列之AFM圖(a) AAO (height mode), (b) AAO (3D image), (c) Ag/AAO (height mode), (d) Ag/AAO (3D image) 51
Figure 4 14 in-situ方法合成之Au/Graphene-PDDA TEM圖 53
Figure 4 15 Au/Graphene-PDDA TEM圖 53
Figure 4 16 Au/Graphene-PDDA貼附於生物分子示意圖 54
Figure 4 17 Au/Graphene-PDDA檢測 Adenine稀薄溶液之SERS光譜 54
Figure 4 18 Au/Graphene-PDDA複合物放大所得到β-carotene(20 ppm、10 ppm、5 ppm)之SERS光譜 55
Figure 4 19 不同濃度(10-4~103ppm)之Adenine SERS光譜圖 56
Figure 4 20 不同濃度(0.625-10 ppm) 之孔雀石綠SERS光譜圖 57
Figure 4 21 三明治結構之DNA鹼基對(adenine、thymine、cytosine、guanine) SERS光譜 58
Figure 4 22 孔雀石綠之SERS光譜比較 59

表目錄
Table 3 1 Au/Graphene-PDDA配製比例 34
Table 4 1 石墨、氧化石墨烯、還原氧化石墨烯角度與層間距關係圖 42
Table 4 2 JCPDS資料庫所得之標準Au繞射峰 ( JCPDS Files No. 65-2870) 47
[1] D. A. Long, "Introductory Raman Spectroscopy. John R. Ferraro, Kazuo Nakamoto and Chris W. Brown. Academic Press, Amsterdam, Second Edition, 2003. xiii + 434," Journal of Raman Spectroscopy, vol. 36, pp. 1012-1012, 2005.
[2] Zrimsek, AB et al. "Single-Molecule Chemistry with Surface- and Tip-Enhanced Raman Spectroscopy, " Chemical Reviews, vol. 117, pp. 7583-7613,2017
[3] M. Fleischmann, P. J. Hendra, and A. J. McQuillan, "Raman spectra of pyridine adsorbed at a silver electrode," Chemical Physics Letters, vol. 26, pp. 163-166,1974.
[4] W. E. Doering and S. Nie, "Single-Molecule and Single-Nanoparticle SERS:  Examining the Roles of Surface Active Sites and Chemical Enhancement," The Journal of Physical Chemistry B, vol. 106, pp. 311-317, 2001.
[5] N. Félidj, J. Aubard, G. Lévi, J. R. Krenn, A. Hohenau, G. Schider, et al., "Optimized surface-enhanced Raman scattering on gold nanoparticle arrays," Applied Physics Letters, vol. 82, pp. 3095-3097, 2003.
[6] S. Nie and S. R. Emory, "Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering," Science, vol. 275, pp. 1102-1106, 1997.
[7] K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, et al., "Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS)," Physical Review Letters, vol. 78, pp. 1667-1670, 1997.
[8] A. Campion and P. Kambhampati, "Surface-enhanced Raman scattering," Chemical Society Reviews, vol. 27, pp. 241-250, 1998.
[9] D. L. Jeanmaire and R. P. Van Duyne, "Surface raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode," Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol. 84, pp. 1-20, 1977.
[10] M. G. Albrecht and J. A. Creighton, "Anomalously intense Raman spectra of pyridine at a silver electrode," Journal of the American Chemical Society, vol. 99, pp. 5215-5217,1977.
[11] E. C. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, "Surface Enhanced Raman Scattering Enhancement Factors:  A Comprehensive Study," The Journal of Physical Chemistry C, vol. 111, pp. 13794-13803, 2007.
[12] A. J. Haes and R. P. Van Duyne, "A unified view of propagating and localized surface plasmon resonance biosensors," Analytical and Bioanalytical Chemistry, vol. 379, pp. 920-930, 2004.
[13] K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, "The Optical Properties of Metal Nanoparticles:  The Influence of Size, Shape, and Dielectric Environment," The Journal of Physical Chemistry B, vol. 107, pp. 668-677, 2002.
[14] E. C. Le Ru and P. G. Etchegoin, "Chapter 3 - Introduction to plasmons and plasmonics," in Principles of Surface-Enhanced Raman Spectroscopy, E. C. L. Ru and P. G. Etchegoin, Eds., ed Amsterdam: Elsevier, pp. 121-183, 2009.
[15] H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, "Spectroscopy of Single Hemoglobin Molecules by Surface Enhanced Raman Scattering," Physical Review Letters, vol. 83, pp. 4357-4360, 1999.
[16] E. Hao and G. C. Schatz, "Electromagnetic fields around silver nanoparticles and dimers," The Journal of Chemical Physics, vol. 120, pp. 357-366, 2004.
[17] T. R. Jensen, G. C. Schatz, and R. P. Van Duyne, "Nanosphere Lithography:  Surface Plasmon Resonance Spectrum of a Periodic Array of Silver Nanoparticles by Ultraviolet−Visible Extinction Spectroscopy and Electrodynamic Modeling," The Journal of Physical Chemistry B, vol. 103, pp. 2394-2401, 1999.
[18] G. L. Liu and L. P. Lee, "Nanowell surface enhanced Raman scattering arrays fabricated by soft-lithography for label-free biomolecular detections in integrated microfluidics," Applied Physics Letters, vol. 87, 2005.
[19] H. H. Wang, C. Y. Liu, S. B. Wu, N. W. Liu, C. Y. Peng, T. H. Chan, et al., "Highly Raman-enhancing substrates based on silver nanoparticle arrays with tunable sub-10 nm gaps," Advanced Materials, vol. 18, pp. 491-495, 2006.
[20] P. Kao, N. A. Malvadkar, M. Cetinkaya, H. Wang, D. L. Allara, and M. C. Demirel, "Surface-Enhanced Raman Detection on Metalized Nanostructured Poly(p-xylylene) Films," Advanced Materials, vol. 20, pp. 3562-3565, 2008.
[21] D. A. Handley, "Colloidal Gold : Principles,Methods, and Applications," Academic Press, vol. 1, 1989.
[22] M. Faraday, "The Bakerian Lecture: Experimental Relations of Gold (and Other Metals) to Light," Philosophical Transactions of the Royal Society of London, vol. 147, pp. 145-181, 1857.
[23] K. Kneipp, A. S. Haka, H. Kneipp, K. Badizadegan, N. Yoshizawa, C. Boone, et al., "Surface-enhanced Raman Spectroscopy in single living cells using gold nanoparticles," Applied Spectroscopy, vol. 56, pp. 150-154, 2002.
[24] C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, et al., "Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates," Nano Letters, vol. 5, pp. 1569-1574, 2005.
[25] C. J. Orendorff, A. Gole, T. K. Sau, and C. J. Murphy, "Surface-Enhanced Raman Spectroscopy of Self-Assembled Monolayers:  Sandwich Architecture and Nanoparticle Shape Dependence," Analytical Chemistry, vol. 77, pp. 3261-3266, 2005.
[26] T. A. Taton, C. A. Mirkin, and R. L. Letsinger, "Scanometric DNA Array Detection with Nanoparticle Probes," Science, vol. 289, pp. 1757-1760, 2000.
[27] A. G. Tkachenko, H. Xie, D. Coleman, W. Glomm, J. Ryan, M. F. Anderson, S. Franzen, and D. L. Feldheim, "Multifunctional Gold Nanoparticle−Peptide Complexes for Nuclear Targeting," Journal of the American Chemical Society, vol. 125, pp. 4700-4701, 2003.
[28] L. N. Lewis, "Chemical catalysis by colloids and clusters," Chemical Reviews, vol. 93, pp. 2693-2730, 1993.
[29] Y. Xiong, B. J. Wiley, and Y. Xia, "Nanocrystals with Unconventional Shapes—A Class of Promising Catalysts," Angewandte Chemie International Edition, vol. 46, pp. 7157-7159, 2007.
[30] J. Kimling, M. Maier, B. Okenve, V. Kotaidis, H. Ballot, and A. Plech, "Turkevich Method for Gold Nanoparticle Synthesis Revisited," The Journal of Physical Chemistry B, vol. 110, pp. 15700-15707, 2006.
[31] J. Turkevich, P. C. Stevenson, and J. Hillier, "A study of the nucleation and growth processes in the synthesis of colloidal gold," Discussions of the Faraday Society, vol. 11, pp. 55-75, 1951.
[32] H. B. Weiser, "Inorganic Colloid Chemistry," Wiley, New York, NY, vol. 1, pp. 21-57, 1933.
[33] V. Amendola and M. Meneghetti, "Laser ablation synthesis in solution and size manipulation of noble metal nanoparticles," Physical Chemistry Chemical Physics, vol. 11, pp. 3805-3821, 2009.
[34] G. Glaspell, V. Abdelsayed, K. M. Saoud, and M. S. El-Shall, "Vapor-phase synthesis of metallic and intermetallic nanoparticles and nanowires: Magnetic and catalytic properties," pure and applied chemistry, vol. 78, pp. 1667-1689, 2006.
[35] S. Kumar, K. S. Gandhi, and R. Kumar, "Modeling of Formation of Gold Nanoparticles by Citrate Method†," Industrial & Engineering Chemistry Research, vol. 46, pp. 3128-3136, 2006.
[36] A. K. G. a. P. Kim, "Graphene, a newly isolated form of carbon, provides a rich lode of novel fundamental physics and practical applications," Scientific American, vol. 298, pp. 90-97, 2008.
[37] G. Eda, G. Fanchini, and M. Chhowalla, "Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material," Nat Nano, vol. 3, pp. 270-274, 2008.
[38] A. K. Geim and K. S. Novoselov, "The rise of graphene," Nat Mater, vol. 6, pp. 183-191, 2007.
[39] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, et al., "Electric Field Effect in Atomically Thin Carbon Films," Science, vol. 306, pp. 666-669, 2004.
[40] J. Meyer, A. Chuvilin, and U. Kaiser, "Electron Microscopic Studies with Graphene," Microscopy and Microanalysis, vol. 15, pp. 126-127, 2009.
[41] C. Andrey, C. M. Jannik, A.-S. Gerardo, and K. Ute, "From graphene constrictions to single carbon chains," New Journal of Physics, vol. 11, p. 083019, 2009.
[42] C. Lee, X. Wei, J. W. Kysar, and J. Hone, "Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene," Science, vol. 321, pp. 385-388, July 18, 2008.
[43] A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, et al., "Superior Thermal Conductivity of Single-Layer Graphene," Nano Letters, vol. 8, pp. 902-907, 2008.
[44] K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, et al., "Ultrahigh electron mobility in suspended graphene," Solid State Communications, vol. 146, pp. 351-355, 2008.
[45] J. Rafiee, X. Mi, H. Gullapalli, A. V. Thomas, F. Yavari, Y. Shi, et al., "Wetting transparency of graphene," Nat Mater, vol. 11, pp. 217-222, 2012.
[46] S. Chen, Q. Wu, C. Mishra, J. Kang, H. Zhang, K. Cho, et al., "Thermal conductivity of isotopically modified graphene," Nat Mater, vol. 11, pp. 203-207, 03//print 2012.
[47] A. H. C. Neto and K. Novoselov, "New directions in science and technology: two-dimensional crystals," Reports on Progress in Physics, vol. 74, p. 082501, 2011.
[48] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, et al., "Two-dimensional gas of massless Dirac fermions in graphene," Nature, vol. 438, pp. 197-200, 2005.
[49] K. S. Novoselov and A. H. C. Neto, "Two-dimensional crystals-based heterostructures: materials with tailored properties," Physica Scripta, vol. 2012, p. 014006, 2012.
[50] Y. Iyechika, "Application of graphene to high-speed transistors: expectations and challenges," Science and Technology Trends - Quarterly Review, vol. 37, pp. 76-92, 2010.
[51] A. Reina, X. T. Jia, J. Ho, D. Nezich, H. B. Son, V. Bulovic, et al., "Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition," Nano Letters, vol. 9, pp. 30-35, 2009.
[52] A. N. Obraztsov, E. A. Obraztsova, A. V. Tyurnina, and A. A. Zolotukhin, "Chemical vapor deposition of thin graphite films of nanometer thickness," Carbon, vol. 45, pp. 2017-2021, 2007.
[53] I. Vlassiouk, M. Regmi, P. Fulvio, S. Dai, P. Datskos, G. Eres, et al., "Role of Hydrogen in Chemical Vapor Deposition Growth of Large Single-Crystal Graphene," ACS Nano, vol. 5, pp. 6069-6076, 2011.
[54] K. C. Yung, W. M. Wu, M. P. Pierpoint, and F. V. Kusmartsev, "Introduction to graphene electronics – a new era of digital transistors and devices," Contemporary Physics, vol. 54, pp. 233-251, 2013.
[55] J. Hass, W. A. DeHeer, and E. H. Conrad, “The growth and morphology of epitaxial multilayer graphene,” J. Phys. Condens. Matter, vol. 20, no. 32, 2008.
[56] H. He, J. Klinowski, M. Forster, and A. Lerf, "A new structural model for graphite oxide," Chemical Physics Letters, vol. 287, pp. 53-56, 1998.
[57] A. Lerf, H. Y. He, M. Forster, and J. Klinowski, "Structure of graphite oxide revisited," Journal of Physical Chemistry B, vol. 102, pp. 4477-4482, 1998.
[58] M. Hirata, T. Gotou, S. Horiuchi, M. Fujiwara, and M. Ohba, "Thin-film particles of graphite oxide 1: High-yield synthesis and flexibility of the particles," Carbon, vol. 42, pp. 2929-2937, 2004.
[59] T. Szabo, A. Szeri, and I. Dekany, "Composite graphitic nanolayers prepared by self-assembly between finely dispersed graphite oxide and a cationic polymer," Carbon, vol. 43, pp. 87-94, 2005.
[60] B. C. Brodie, "Sur le poids atomique du graphite," Ann. Chim. Phys., vol. 59, pp. 466-472, 1860.
[61] L. Staudenmaier, "Verfahren zur Darstellung der Graphitsäure," Berichte der deutschen chemischen Gesellschaft, vol. 31, pp. 1481-1487, 1898.
[62] W. S. Hummers and R. E. Offeman, "Preparation of Graphitic Oxide," Journal of the American Chemical Society, vol. 80, pp. 1339-1339, 1958.
[63] A. Bagri, C. Mattevi, M. Acik, Y. J. Chabal, M. Chhowalla, and V. B. Shenoy, "Structural evolution during the reduction of chemically derived graphene oxide," Nat Chem, vol. 2, pp. 581-587, 07//print 2010.
[64] G. B. Butler and R. J. Angelo, "Preparation and Polymerization of Unsaturated Quaternary Ammonium Compounds. VIII. A Proposed Alternating Intramolecular-Intermolecular Chain Propagation1," Journal of the American Chemical Society, vol. 79, pp. 3128-3131, 1957.
[65] J. Lu, X. D. Wang, and C. B. Xiao, "Preparation and characterization of konjac glucomannan/poly(diallydimethylammonium chloride) antibacterial blend films," Carbohydrate Polymers, vol. 73, pp. 427-437, 2008.
[66] C. Wandrey, J. Hernández-Barajas, and D. Hunkeler, "Diallyldimethylammonium Chloride and its Polymers," in Radical Polymerisation Polyelectrolytes. vol. 145, I. Capek, J. Hernfández-Barajas, D. Hunkeler, J. L. Reddinger, J. R. Reynolds, and C. Wandrey, Eds., ed: Springer Berlin Heidelberg, vol. 145,pp. 123-183, 1999
[67] B. P. Tripathi, N. C. Dubey, and M. Stamm, "Functional polyelectrolyte multilayer membranes for water purification applications," Journal of Hazardous Materials, vol. 252, pp. 401-412, 2013.
[68] D. Q. Yang, J. F. Rochette, and E. Sacher, "Spectroscopic evidence for pi-pi interaction between poly(diallyl dimethylammonium) chloride and multiwalled carbon nanotubes," The Journal of Physical Chemistry B, vol. 109, pp. 4481-4484, 2005.
[69] S. Link and M. A. El-Sayed, "Spectral Properties and Relaxation Dynamics of Surface Plasmon Electronic Oscillations in Gold and Silver Nanodots and Nanorods," The Journal of Physical Chemistry B, vol. 103, pp. 8410-8426, 1999.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 雙重增顯拉曼光譜技術開發及於角膜潰瘍感染之微生物檢測評估
2. 在石墨烯複合基板上調控金奈米粒子結構及其拉曼光譜之應用
3. (1) 以層狀雙氫氧化物實現高分子點之固化及提升發光團穩定性;(2) 以晶種還原法在石墨烯-半導體複合基板上調控金奈米粒子之3D結構與拉曼光譜應用
4. 表面增強拉曼散射活性基材製備的創新策略
5. 奈米材料修飾電紡聚乙烯醇/葡萄糖氧化酵素複合奈米纖維薄膜應用於葡糖糖生物感測器之硏究
6. 以金奈米粒子 /二維奈米黏土奈米複合材料製 備表面增強拉曼光譜之生物感測元件應用
7. 負載金之中孔洞二氧化矽奈米材料的合成與催化應用
8. 金奈米粒子/聚苯乙烯複合奈米材料受限於陽極氧化鋁模板內奈米孔洞之不穩定現象
9. 金奈米粒子於有序二氧化鋯孔洞以強化SERS效應並應用於農藥殘留檢測
10. 金奈米棒-石墨烯奈米複合物於表面增強拉曼光譜偵測以及光熱效應之應用
11. 利用奈米銀修飾/嵌入陽極氧化鋁表面增強拉曼散射結構偵測牛奶中的硫氰酸鈉
12. 氧化鐵-奈米金核殼@石墨烯奈米複合物於表面增強拉曼光譜偵測以及電磁場熱療之應用
13. 金奈米粒子/氧化矽/鐵鉑奈米複合物於表面增強拉曼光譜偵測之應用
14. 利用濺鍍法沉積奈米金顆粒於三維發泡石墨烯表面並探討其在室溫下氨氣濃度感測之應用
15. 金奈米粒子/石墨烯奈米複合物於表面增強拉曼光譜偵測之應用
 
無相關期刊