|
[1] J. Xue, Y. Shen, and T. He, "Double-perovskites YBaCo2−xFexO5+δ cathodes for intermediate-temperature solid oxide fuel cells," Journal of Power Sources, vol. 196, pp. 3729-3735, 2011. [2] W. R. Grove, "On voltaic series and the combination of gases by platinum," Philosophical Magazine Series, vol. 14, pp. 127-130, 1839. [3] B. C. H. Steele and A. Heinzel, "Materals for fuel-cell technologies," Nature, vol. 414, pp. 345-352, 2001. [4] H. S.M, "Fuel cell materials and components, Acta Mater," Acta Mater, vol. 51, pp. 5981-6000, 2003. [5] R. J. Gorte and J. M. Vohs, "Novel SOFC anodes for the direct electrochemical oxidation of hydrocarbons," Journal of Catalysis, vol. 216, pp. 477–486, 2003. [6] N. M. Sammes, R. J. Boersma, and G. A. Tompsett, "Micro-SOFC system using butane fuel," Solid State Ionics, vol. 135, pp. 487-491, 2000. [7] Z. Wang, X. Huang, Z. Lv, Y. Zhang, B. Wei, X. Zhu, et al., "Preparation and performance of solid oxide fuel cells with YSZ/SDC bilayer electrolyte," Ceramics International, vol. 41, pp. 4410-4415, 2015. [8] G. G. Z. X.H. Fang, C.G. Xia, X.Q. Liu and G.Y. Meng, "Synthesis and properties of Ni–SDC cermets for IT–SOFC anode by co-precipitation," Solid State Ionics, vol. 168, pp. 31-36,, 2004. [9] Isamu Yasuda, K. Ogasawaraa, M. Hishinuma, T. Kawada, and M. Dokiyab. (1996, Oxygen tracer diffusion coefficient of (La, Sr)MnO3 ± δ.pdf. Solid State Ionics 86-88 (pp), 1197-1201. [10] K. T. Lee, D. W. Jung, H. S. Yoon, A. A. Lidie, M. A. Camaratta, and E. D. Wachsman, "Interfacial modification of La0.80Sr0.20MnO3−δ–Er0.4Bi0.6O3 cathodes for high performance lower temperature solid oxide fuel cells," Journal of Power Sources, vol. 220, pp. 324-330, 2012. [11] Q. Zhou, W. W. C. J, Y. Guo, and D. Jia, "LaSrMnCoO5+δ as cathode for intermediate-temperature solid oxide fuel cells," Electrochemistry Communications, vol. 19, pp. 36-38, 2012. [12] Y. Cao, B. Lin, Y. Sun, H. Yang, and X. Zhang, "Structure, morphology and electrochemical properties of LaSr1−xCo0.1Mn0.9O3−δ perovskite nanofibers prepared by electrospinning method," Journal of Alloys and Compounds, vol. 624, pp. 31-39, 2015. [13] Z. Bin, X. Changrong, L. Xiaoguang, and N. Gunnar, "Transparent two-phase composite oxide thin films with high conductivity" Thin Solid Films, vol. 385, pp. 209-214, 2001. [14] J. H. Hirschenhofer, D. B. Stauffer, R. R. Engleman, and M. G. K. (Eds.), "Fuel Cell Handbook," US Department of Energy, 1998. [15] S. P. Jiang, J. P. Zhang, and X. G. Zhen, "A comparative investigation of chromium deposition at air electrodes of solid oxide fuel cells," Journal of the European Ceramic Society, vol. 22, pp. 361-373, 2002. [16] C. Sun, R. Hui, and J. Roller, "Cathode materials for solid oxide fuel cells: a review," Journal of Solid State Electrochemistry, vol. 14, pp. 1125-1144, 2010. [17] H. H. Möbius, "On the history of solid electrolyte fuel cells," Journal of Solid State Electrochemistry, vol. 1, pp. 2-16, 1997. [18] D. D. Button and D. Archer, "Development of La1-xSrxCoO3 air electrodes for solid electrolyte fuel cells.," American Ceramic Society Meeting, 1966. [19] S. P. Jiang, "Development of lanthanum strontium manganite perovskite cathode materials of solid oxide fuel cells: a review," Journal of Materials Science, vol. 21, pp. 6799-6833, 2008. [20] C. R. Xia and M. L. Liu, "Low-temperature SOFCs based on Gd0.1Ce0.9O1.95 fabricated by dry pressing, Solid State Ionics," Solid State Ionics, vol. 144, pp. 249-255, 2001. [21] J. Richter, P. Holtappels, T. Graule, T. Nakamura, and L. J. Gauckler, "Materials design for perovskite SOFC cathodes," Monatshefte für Chemie - Chemical Monthly, vol. 140, pp. 985-999, 2009. [22] R. Li, L. Ge, H. Chen, and L. Guo, "Preparation and performance of triple-layer graded LaBaCo2O5+δ–Ce0.8Sm0.2O1.9 composite cathode for intermediate-temperature solid oxide fuel cells," Electrochimica Acta, vol. 85, pp. 273-277, 2012. [23] Y. T. Chiou and I. M. Hung, "The Preparation and Chemical Characteristic of Bi0.85-xCa0.15ZrxO1.5-δ Solid Oxide Fuel Cell Electrolyte," 2014. [24] Y. F. Liu and I. M. Hung, "Characteristic Analyze of Bi0.5Sr0.5-xLaxMnO3-δ Cathode Material and Reaction at Interface with Interconnect in Intermediate-Temperature Solid Oxide Fuel Cell," 2013. [25] Y. Guo, H. Shi, R. Ran, and Z. Shao, "Performance of SrSc0.2Co0.8O3−δ+Sm0.5Sr0.5CoO3−δ mixed-conducting composite electrodes for oxygen reduction at intermediate temperatures," International Journal of Hydrogen Energy, vol. 34, pp. 9496-9504, 2009. [26] J. D. Kim, W. H. Lee, G. D. Kim, K. Kobayashi, J. W. Moon, M. Nagai, et al., "Characterization of LSM–YSZ composite electrode by ac impedance," Solid State Ionics, vol. 143, pp. 379–389, 2001. [27] J. Nielsen and J. Hjelm, "Impedance of SOFC electrodes: A review and a comprehensive case study on the impedance of LSM:YSZ cathodes," Electrochimica Acta, vol. 115, pp. 31-45, 2014. [28] Q. A. Huang, R. Hui, B. Wang, and J. Zhang, "A review of AC impedance modeling and validation in SOFC diagnosis," Electrochimica Acta, vol. 52, pp. 8144-8164, 2007. [29] Q. A. Huang, "A higher conductivity Bi2O3-based electrolyte," Solid State Ionics, vol. 150, pp. 347–353, 2002. [30] P. E. Yu, B. N. M, K. A. A, O. D. A, and B. D. I, "Electrical and Electrochemical Properties of La2NiO4+δ-Based Cathodes in Contact with Ce0.8Sm0.2O2-δ Electrolyte," Procedia Engineering, vol. 98, pp. 105-110, 2014. [31] Z. Gao, Z. Mao, J. Huang, R. Gao, C. Wang, and Z. Liu, "Composite cathode La0.15Bi0.85O1.5-Ag for intermediate-temperature solid oxide fuel cells," Materials Chemistry and Physics, vol. 108, pp. 290-295, 2008. [32] S. Huang, G. Zhou, and Y. Xie, "Electrochemical performances of Ag–(Bi2O3)0.75(Y2O3)0.25 composite cathodes," Journal of Alloys and Compounds, vol. 464, pp. 322-326, 2008. [33] Z. Jiang, Z. Lei, B. Ding, C. Xia, F. Zhao, and F. Chen, "Electrochemical characteristics of solid oxide fuel cell cathodes prepared by infiltrating (La,Sr)MnO3 nanoparticles into yttria-stabilized bismuth oxide backbones," International Journal of Hydrogen Energy, vol. 35, pp. 8322-8330, 2010. [34] A. Jun, J. Kim, J. Shin, and G. Kim, "Optimization of Sr content in layered SmBa1–xSrxCo2O5+δ perovskite cathodes for intermediate-temperature solid oxide fuel cells," International Journal of Hydrogen Energy, vol. 37, pp. 18381-18388, 2012. [35] B. H. Kim, J. S. Kim, T. H. Park, D. S. Lee, and Y. W. Park, "High temperature charge ordering in Bi1−xSrxMnO3," Physics Letters A, vol. 351, pp. 368-372, 2006. [36] X. Kong and X. Ding, "Novel layered perovskite SmBaCu2O5+δ as a potential cathode for intermediate temperature solid oxide fuel cells," International Journal of Hydrogen Energy, vol. 36, pp. 15715-15721, 2011. [37] J. Li, S. Wang, R. Liu, Z. Wang, and J. Q. Qian, "Electrochemical performance of (Bi2O3)1−x(Er2O3)x–Ag composite material for intermediate temperature solid oxide fuel cell cathode," Solid State Ionics, vol. 179, pp. 1597-1601, 2008. [38] J. Li, S. Wang, X. Sun, R. Liu, X. Ye, and Z. Wen, "Improvement of (La0.74Bi0.10Sr0.16)MnO3–Bi1.4Er0.6O3 composite cathodes for intermediate-temperature solid oxide fuel cells," Journal of Power Sources, vol. 185, pp. 649-655, 2008. [39] J. Li, S. Wang, Z. Wang, R. Liu, T. Wen, and Z. Wen, "(La0.74Bi0.10Sr0.16)MnO3−δ–(Bi2O3)0.7(Er2O3)0.3 composite cathodes for intermediate temperature solid oxide fuel cells," Journal of Power Sources, vol. 179, pp. 474-480, 2008. [40] J. Li, S. Wang, Z. Wang, R. Liu, X. Ye, X. Sun, et al., "(La0.74Bi0.10Sr0.16)MnO3−δ–Ce0.8Gd0.2O2−δ cathodes fabricated by ion-impregnating method for intermediate-temperature solid oxide fuel cells," Journal of Power Sources, vol. 188, pp. 453-457, 2009. [41] R. Li, L. Ge, S. He, H. Chen, and L. Guo, "Effect of B2O3–Bi2O3–PbO frit on the performance of LaBaCo2O5+δ cathode for intermediate-temperature solid oxide fuel cells," International Journal of Hydrogen Energy, vol. 37, pp. 16117-16122, 2012. [42] B. Liu, Z. Jiang, B. Ding, F. Chen, and C. Xia, "Bi0.5Sr0.5MnO3 as cathode material for intermediate-temperature solid oxide fuel cells," Journal of Power Sources, vol. 196, pp. 999-1005, 2011. [43] N. Mahato, A. Banerjee, A. Gupta, S. Omar, and K. Balani, "Progress in material selection for solid oxide fuel cell technology: A review," Progress in Materials Science, vol. 72, pp. 141-337, 2015. [44] S. V. Moharil, B. S. Nagrare, and S. P. S. Shaikh, "Nanostructured MIEC Ba0.5Sr0.5Co0.6Fe0.4O3−δ (BSCF5564) cathode for IT-SOFC by nitric acid aided EDTA–citric acid complexing process (NECC)," International Journal of Hydrogen Energy, vol. 37, pp. 5208-5215, 2012. [45] B. C. H. Steele and A. Heinzel, "Materials for fuel-cell technologies," Nature, vol. 414, pp. 345-352, 11/15/print 2001. [46] V. Vibhu, A. Rougier, C. Nicollet, A. Flura, J.-C. Grenier, and J.-M. Bassat, "La2−xPrxNiO4+δ as suitable cathodes for metal supported SOFCs," Solid State Ionics, vol. 278, pp. 32-37, 2015. [47] E. D. Wachsman and K. T. Lee, "Lowering the temperature of solid oxide fuel cells," Science, vol. 334, pp. 935-9, Nov 18 2011. [48] L. Yang, S. Wang, K. Blinn, M. Liu, Z. Liu, Z. Cheng, et al., "Enhanced sulfur and coking tolerance of a mixed ion conductor for SOFCs: BaZr0.1Ce0.7Y0.2−xYbxO3−δ," Science, vol. 326, pp. 126-129, 2009. [49] S. Yoo, S. Choi, J. Kim, J. Shin, and G. Kim, "Investigation of layered perovskite type NdBa1−xSrxCo2O5+δ (x=0, 0.25, 0.5, 0.75, and 1.0) cathodes for intermediate-temperature solid oxide fuel cells," Electrochimica Acta, vol. 100, pp. 44-50, 2013.
|