跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.88) 您好!臺灣時間:2026/02/15 22:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃元廷
研究生(外文):Yuan-Ting Huang
論文名稱:中溫型固態氧化物燃料電池(1-x)Bi0.5Sr0.1La0.4MnO3-δ- xBi0.67Ca0.15Zr0.18O1.5-δ (x=0.1~0.4)複合式陰極材料製備及其性質研究
論文名稱(外文):Effect of (1-x)Bi0.5Sr0.1La0.4MnO3-δ- xBi0.67Ca0.15Zr0.18O1.5-δ (x=0.1~0.4)composite cathode for intermediate-temperature solid oxide fuel cells
指導教授:洪逸明
指導教授(外文):I-Ming Hung
口試委員:楊永欽張仍奎
口試委員(外文):Yung-Chin YangJeng-Kuei Chang
口試日期:2017-01-11
學位類別:碩士
校院名稱:元智大學
系所名稱:化學工程與材料科學學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:77
中文關鍵詞:中溫型固態氧化物燃料電池複合式陰極三相點極化阻抗
外文關鍵詞:IT-SOFCscomposite cathodepolarization resistance
相關次數:
  • 被引用被引用:0
  • 點閱點閱:302
  • 評分評分:
  • 下載下載:30
  • 收藏至我的研究室書目清單書目收藏:0
本論文研究目的為混合具有高離子導性之電解質材料Bi0.67Ca0.15Zr1.8O1.5-δ (BCZ)以及高電子導性之陰極材料Bi0.5Sr0.1La0.4MnO3 δ (BSLM),製備複合式陰極材料之粉末,並探討其結構及電化學性質。
在目前中溫型固態氧化物燃料電池中,普遍觀察到陰極的高極化阻抗,導致整體性能降低,故本研究之目的為研究同時具有高離子和高電子導性之陰極材料,希望能有效的增加三相點的數量,降低其極化阻抗,改善電池整體轉換效率。首先透過阿基米德法量測在不同燒結溫度下之複合式電極開放孔隙率,發現在750oC燒結4小時可得到最符合商用陰極之孔隙率30%之要求,並決定測試Bi0.5Sr0.1La0.4MnO3 (BSLM)以及Bi0.67Ca0.15Zr1.8O1.5-δ (BCZ)依不同比例混合,且在750oC燒結後之電化學特性,利用四點式量測其電子導電性,利用熱膨脹分析儀量測其熱膨脹係數,利用交流阻抗分析並做出等效電路圖模擬此材料之各部阻抗,掃描式電子顯微鏡的表面微結構觀察。
由XRD圖得知,陰極材料BSLM經950oC煆燒後可得單一相,然而經過750oC燒結4小時後,原本單一相會有部分分解為Bi2Mn4O10以及LaMn0.8O3,且與電解質材料BCZ混合後,亦會產生部份雜相La2ZrO7。
由熱膨脹分析可得知,其熱膨脹係數介於9~13 x 10-6 K-1相當匹配商用電解質材料(Y2O3)8 (ZrO2)92 (YSZ)以及Sm0.2Ce0.8O2-
SDC(9~11 x 10-6 K-1)[1]。
由導電率圖得知,0.6Bi0.5Sr0.1La0.4MnO3-- 0.4Bi0.67Ca0.15Zr0.18O1.5-δ具有最高電子導性10 S/cm,且導電率隨溫度上升而上升,屬於p型半導體。
由交流阻抗分析中得知,氧離子傳輸阻抗R2於各成分在工作溫度為750oC時消失,且從模擬結果中可得知R2隨著混入BCZ之含量增加而減少,其原因為混入BCZ電解質材料有效的增加了三相點數量,達到降低其氧離子傳輸所造成的極化阻抗現象。
綜合以上測試,其x=0.4之樣品在750oC具有最佳之性能,雖然孔隙率偏低,但是由交流阻抗分析中可知道代表氧氣擴散的R4於750oC時,具有最低值0.011,而透過導電率量測亦可得知x=0.4之樣品具有最高電子導電率10 S/cm,在未來工作中,量測全電池性能預期x=0.4之樣品可得最高電流密度。
In this study, Bi0.67Ca0.15Zr1.8O1.5-δ (BCZ) electrolyte powder which was synthesized by solid state reaction method was mixed with the cathode material of Bi0.5Sr0.1La0.4MnO3 (BSLM) powder which was roduced by EDTA-citric acid method. The mixed powder were characterized by X-Ray Diffraction (XRD), four poles conductivity measurement, Scanning slectron microscopy (SEM), Electrochemical impedance spectroscopy (EIS) and Thermal mechanical analyzer (TMA).
XRD pattern shows that BSLM is single phase after calcined at 950oC. However, BSLM will decompose into two impure phases, BMO and LMO at 750oC. The composite cathode also results in the appearance of second phase of LZO, which due to the reaction between BCZ and BSLM.
The Coefficient of thermal expansion (CTE) varied from 9 x 10-6 K-1 to 13 x 10-6 K-1 in temperature range from 300 to 600 oC. It is match to electrolyte SDC (9~11 x 10-6 K-1).
The highest value of conductivity is 10 S/cm for 0.6Bi0.5Sr0.1La0.4MnO3--0.4Bi0.67Ca0.15Zr0.18O1.5-δ, which increases with temperature increasing.

The typical impedance spectra for (1-x)Bi0.5Sr0.1La0.4MnO3-δ- xBi0.67Ca0.15Zr0.18O1.5-δ samples show that all resistances decreased when the temperature increased. The polarization resistance, Rp , had a lowest value of 0.306 Ω•cm2 at 750 oC for x= 0.4.
總目錄

摘要 I
Abstract III
總目錄 V
圖目錄 VIII
表目錄 X
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 2
第二章 文獻回顧 4
2.1 燃料電池簡介 4
2.2 固態氧化物燃料電池 5
2.2.1 固態氧化物燃料電池之優缺點 6
2.2.2 固態氧化物燃料電池之工作原理 6
2.2.3 固態氧化物燃料電池之結構 9
2.2.4 固態氧化物燃料電池之極化現象 11
2.3 陰極材料 15
2.3.1陰極材料的結構 16
2.3.2陰極材料之導電性 21
2.3.3陰極材料工作原理與特性 21
第三章 實驗方法 23
3.1 實驗藥品 23
3.2 複合式陰極材料粉末之製備方法 24
3.2.1以Citric acid-EDTA法製備BSLM粉末 24
3.2.2以固相反應法製備BCZ粉末 26
3.2.3 複合式陰極粉末製備 28
3.2.4 半電池製備 28
3.3 材料分析與性質量測 29
3.3.1 孔隙率量測 29
3.3.2 X光繞射分析(X-ray diffraction, XRD) 29
3.3.3 場發掃描式電子顯微鏡 (FE-SEM) 30
3.3.4 導電度量測 30
3.3.5 熱膨脹分析 (Thermal mechanical analyzer, TMA) 31
3.3.6 交流阻抗分析 (AC impedance) 32
第四章 結果與討論 33
4.1 Bi0.5Sr0.1La0.4MnO3-δ - Bi0.67Ca0.15Zr0.18O1.5-δ複合式陰極材料結構性質與電化學特性之影響 33
4.1.1孔隙率分析 34
4.1.2 X射線繞射分析 36
4.1.3 熱膨脹係數分析 39
4.1.4 SEM 晶粒表面型態分析 42
4.1.5 導電率量測 47
4.1.6 陰極材料之交流阻抗分析 52
第五章 結論 69
第六章 未來工作 72
參考文獻 73
[1] J. Xue, Y. Shen, and T. He, "Double-perovskites YBaCo2−xFexO5+δ cathodes for intermediate-temperature solid oxide fuel cells," Journal of Power Sources, vol. 196, pp. 3729-3735, 2011.
[2] W. R. Grove, "On voltaic series and the combination of gases by platinum," Philosophical Magazine Series, vol. 14, pp. 127-130, 1839.
[3] B. C. H. Steele and A. Heinzel, "Materals for fuel-cell technologies," Nature, vol. 414, pp. 345-352, 2001.
[4] H. S.M, "Fuel cell materials and components, Acta Mater," Acta Mater, vol. 51, pp. 5981-6000, 2003.
[5] R. J. Gorte and J. M. Vohs, "Novel SOFC anodes for the direct electrochemical oxidation of hydrocarbons," Journal of Catalysis, vol. 216, pp. 477–486, 2003.
[6] N. M. Sammes, R. J. Boersma, and G. A. Tompsett, "Micro-SOFC system using butane fuel," Solid State Ionics, vol. 135, pp. 487-491, 2000.
[7] Z. Wang, X. Huang, Z. Lv, Y. Zhang, B. Wei, X. Zhu, et al., "Preparation and performance of solid oxide fuel cells with YSZ/SDC bilayer electrolyte," Ceramics International, vol. 41, pp. 4410-4415, 2015.
[8] G. G. Z. X.H. Fang, C.G. Xia, X.Q. Liu and G.Y. Meng, "Synthesis and properties of Ni–SDC cermets for IT–SOFC anode by co-precipitation," Solid State Ionics, vol. 168, pp. 31-36,, 2004.
[9] Isamu Yasuda, K. Ogasawaraa, M. Hishinuma, T. Kawada, and M. Dokiyab. (1996, Oxygen tracer diffusion coefficient of (La, Sr)MnO3 ± δ.pdf. Solid State Ionics 86-88 (pp), 1197-1201.
[10] K. T. Lee, D. W. Jung, H. S. Yoon, A. A. Lidie, M. A. Camaratta, and E. D. Wachsman, "Interfacial modification of La0.80Sr0.20MnO3−δ–Er0.4Bi0.6O3 cathodes for high performance lower temperature solid oxide fuel cells," Journal of Power Sources, vol. 220, pp. 324-330, 2012.
[11] Q. Zhou, W. W. C. J, Y. Guo, and D. Jia, "LaSrMnCoO5+δ as cathode for intermediate-temperature solid oxide fuel cells," Electrochemistry Communications, vol. 19, pp. 36-38, 2012.
[12] Y. Cao, B. Lin, Y. Sun, H. Yang, and X. Zhang, "Structure, morphology and electrochemical properties of LaSr1−xCo0.1Mn0.9O3−δ perovskite nanofibers prepared by electrospinning method," Journal of Alloys and Compounds, vol. 624, pp. 31-39, 2015.
[13] Z. Bin, X. Changrong, L. Xiaoguang, and N. Gunnar, "Transparent two-phase composite oxide thin films with high conductivity" Thin Solid Films, vol. 385, pp. 209-214, 2001.
[14] J. H. Hirschenhofer, D. B. Stauffer, R. R. Engleman, and M. G. K. (Eds.), "Fuel Cell Handbook," US Department of Energy, 1998.
[15] S. P. Jiang, J. P. Zhang, and X. G. Zhen, "A comparative investigation of chromium deposition at air electrodes of solid oxide fuel cells," Journal of the European Ceramic Society, vol. 22, pp. 361-373, 2002.
[16] C. Sun, R. Hui, and J. Roller, "Cathode materials for solid oxide fuel cells: a review," Journal of Solid State Electrochemistry, vol. 14, pp. 1125-1144, 2010.
[17] H. H. Möbius, "On the history of solid electrolyte fuel cells," Journal of Solid State Electrochemistry, vol. 1, pp. 2-16, 1997.
[18] D. D. Button and D. Archer, "Development of La1-xSrxCoO3 air electrodes for solid electrolyte fuel cells.," American Ceramic Society Meeting, 1966.
[19] S. P. Jiang, "Development of lanthanum strontium manganite perovskite cathode materials of solid oxide fuel cells: a review," Journal of Materials Science, vol. 21, pp. 6799-6833, 2008.
[20] C. R. Xia and M. L. Liu, "Low-temperature SOFCs based on Gd0.1Ce0.9O1.95 fabricated by dry pressing, Solid State Ionics," Solid State Ionics, vol. 144, pp. 249-255, 2001.
[21] J. Richter, P. Holtappels, T. Graule, T. Nakamura, and L. J. Gauckler, "Materials design for perovskite SOFC cathodes," Monatshefte für Chemie - Chemical Monthly, vol. 140, pp. 985-999, 2009.
[22] R. Li, L. Ge, H. Chen, and L. Guo, "Preparation and performance of triple-layer graded LaBaCo2O5+δ–Ce0.8Sm0.2O1.9 composite cathode for intermediate-temperature solid oxide fuel cells," Electrochimica Acta, vol. 85, pp. 273-277, 2012.
[23] Y. T. Chiou and I. M. Hung, "The Preparation and Chemical Characteristic of Bi0.85-xCa0.15ZrxO1.5-δ Solid Oxide Fuel Cell Electrolyte," 2014.
[24] Y. F. Liu and I. M. Hung, "Characteristic Analyze of Bi0.5Sr0.5-xLaxMnO3-δ Cathode Material and Reaction at Interface with Interconnect in Intermediate-Temperature Solid Oxide Fuel Cell," 2013.
[25] Y. Guo, H. Shi, R. Ran, and Z. Shao, "Performance of SrSc0.2Co0.8O3−δ+Sm0.5Sr0.5CoO3−δ mixed-conducting composite electrodes for oxygen reduction at intermediate temperatures," International Journal of Hydrogen Energy, vol. 34, pp. 9496-9504, 2009.
[26] J. D. Kim, W. H. Lee, G. D. Kim, K. Kobayashi, J. W. Moon, M. Nagai, et al., "Characterization of LSM–YSZ composite electrode by ac impedance," Solid State Ionics, vol. 143, pp. 379–389, 2001.
[27] J. Nielsen and J. Hjelm, "Impedance of SOFC electrodes: A review and a comprehensive case study on the impedance of LSM:YSZ cathodes," Electrochimica Acta, vol. 115, pp. 31-45, 2014.
[28] Q. A. Huang, R. Hui, B. Wang, and J. Zhang, "A review of AC impedance modeling and validation in SOFC diagnosis," Electrochimica Acta, vol. 52, pp. 8144-8164, 2007.
[29] Q. A. Huang, "A higher conductivity Bi2O3-based electrolyte," Solid State Ionics, vol. 150, pp. 347–353, 2002.
[30] P. E. Yu, B. N. M, K. A. A, O. D. A, and B. D. I, "Electrical and Electrochemical Properties of La2NiO4+δ-Based Cathodes in Contact with Ce0.8Sm0.2O2-δ Electrolyte," Procedia Engineering, vol. 98, pp. 105-110, 2014.
[31] Z. Gao, Z. Mao, J. Huang, R. Gao, C. Wang, and Z. Liu, "Composite cathode La0.15Bi0.85O1.5-Ag for intermediate-temperature solid oxide fuel cells," Materials Chemistry and Physics, vol. 108, pp. 290-295, 2008.
[32] S. Huang, G. Zhou, and Y. Xie, "Electrochemical performances of Ag–(Bi2O3)0.75(Y2O3)0.25 composite cathodes," Journal of Alloys and Compounds, vol. 464, pp. 322-326, 2008.
[33] Z. Jiang, Z. Lei, B. Ding, C. Xia, F. Zhao, and F. Chen, "Electrochemical characteristics of solid oxide fuel cell cathodes prepared by infiltrating (La,Sr)MnO3 nanoparticles into yttria-stabilized bismuth oxide backbones," International Journal of Hydrogen Energy, vol. 35, pp. 8322-8330, 2010.
[34] A. Jun, J. Kim, J. Shin, and G. Kim, "Optimization of Sr content in layered SmBa1–xSrxCo2O5+δ perovskite cathodes for intermediate-temperature solid oxide fuel cells," International Journal of Hydrogen Energy, vol. 37, pp. 18381-18388, 2012.
[35] B. H. Kim, J. S. Kim, T. H. Park, D. S. Lee, and Y. W. Park, "High temperature charge ordering in Bi1−xSrxMnO3," Physics Letters A, vol. 351, pp. 368-372, 2006.
[36] X. Kong and X. Ding, "Novel layered perovskite SmBaCu2O5+δ as a potential cathode for intermediate temperature solid oxide fuel cells," International Journal of Hydrogen Energy, vol. 36, pp. 15715-15721, 2011.
[37] J. Li, S. Wang, R. Liu, Z. Wang, and J. Q. Qian, "Electrochemical performance of (Bi2O3)1−x(Er2O3)x–Ag composite material for intermediate temperature solid oxide fuel cell cathode," Solid State Ionics, vol. 179, pp. 1597-1601, 2008.
[38] J. Li, S. Wang, X. Sun, R. Liu, X. Ye, and Z. Wen, "Improvement of (La0.74Bi0.10Sr0.16)MnO3–Bi1.4Er0.6O3 composite cathodes for intermediate-temperature solid oxide fuel cells," Journal of Power Sources, vol. 185, pp. 649-655, 2008.
[39] J. Li, S. Wang, Z. Wang, R. Liu, T. Wen, and Z. Wen, "(La0.74Bi0.10Sr0.16)MnO3−δ–(Bi2O3)0.7(Er2O3)0.3 composite cathodes for intermediate temperature solid oxide fuel cells," Journal of Power Sources, vol. 179, pp. 474-480, 2008.
[40] J. Li, S. Wang, Z. Wang, R. Liu, X. Ye, X. Sun, et al., "(La0.74Bi0.10Sr0.16)MnO3−δ–Ce0.8Gd0.2O2−δ cathodes fabricated by ion-impregnating method for intermediate-temperature solid oxide fuel cells," Journal of Power Sources, vol. 188, pp. 453-457, 2009.
[41] R. Li, L. Ge, S. He, H. Chen, and L. Guo, "Effect of B2O3–Bi2O3–PbO frit on the performance of LaBaCo2O5+δ cathode for intermediate-temperature solid oxide fuel cells," International Journal of Hydrogen Energy, vol. 37, pp. 16117-16122, 2012.
[42] B. Liu, Z. Jiang, B. Ding, F. Chen, and C. Xia, "Bi0.5Sr0.5MnO3 as cathode material for intermediate-temperature solid oxide fuel cells," Journal of Power Sources, vol. 196, pp. 999-1005, 2011.
[43] N. Mahato, A. Banerjee, A. Gupta, S. Omar, and K. Balani, "Progress in material selection for solid oxide fuel cell technology: A review," Progress in Materials Science, vol. 72, pp. 141-337, 2015.
[44] S. V. Moharil, B. S. Nagrare, and S. P. S. Shaikh, "Nanostructured MIEC Ba0.5Sr0.5Co0.6Fe0.4O3−δ (BSCF5564) cathode for IT-SOFC by nitric acid aided EDTA–citric acid complexing process (NECC)," International Journal of Hydrogen Energy, vol. 37, pp. 5208-5215, 2012.
[45] B. C. H. Steele and A. Heinzel, "Materials for fuel-cell technologies," Nature, vol. 414, pp. 345-352, 11/15/print 2001.
[46] V. Vibhu, A. Rougier, C. Nicollet, A. Flura, J.-C. Grenier, and J.-M. Bassat, "La2−xPrxNiO4+δ as suitable cathodes for metal supported SOFCs," Solid State Ionics, vol. 278, pp. 32-37, 2015.
[47] E. D. Wachsman and K. T. Lee, "Lowering the temperature of solid oxide fuel cells," Science, vol. 334, pp. 935-9, Nov 18 2011.
[48] L. Yang, S. Wang, K. Blinn, M. Liu, Z. Liu, Z. Cheng, et al., "Enhanced sulfur and coking tolerance of a mixed ion conductor for SOFCs: BaZr0.1Ce0.7Y0.2−xYbxO3−δ," Science, vol. 326, pp. 126-129, 2009.
[49] S. Yoo, S. Choi, J. Kim, J. Shin, and G. Kim, "Investigation of layered perovskite type NdBa1−xSrxCo2O5+δ (x=0, 0.25, 0.5, 0.75, and 1.0) cathodes for intermediate-temperature solid oxide fuel cells," Electrochimica Acta, vol. 100, pp. 44-50, 2013.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊