跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.213) 您好!臺灣時間:2025/11/11 08:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林美琪
研究生(外文):Mei-Chi Lin
論文名稱:壹、辣木根皮與莖皮之成分研究貳、芝麻種子成分及其抗氧化活性研究參、中草藥萃取物抑制白菜炭疽菌活性成分研究
論文名稱(外文):1.Constituents from the Root Bark and Stem Bark ofMoringa oleifera2.Constituents from the Seeds of Sesamum indicumand their Antioxidant Activity3.Bioactive Constituents from the Chinese Medicine Extracts and their Inhibiting Activity Against Colletot
指導教授:郭賓崇
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:生物科技研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:205
中文關鍵詞:辣木芝麻白菜炭疽菌
外文關鍵詞:Moringa oleiferaSesamum indicumColletotrichum higginsianum
相關次數:
  • 被引用被引用:0
  • 點閱點閱:624
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
辣木(Moringa oleifera Lam)根皮甲醇粗萃物氯仿層對具有艾黴素(doxorubicin)抗藥性的人類乳腺癌細胞(MCF-7/ADR)及老鼠肺纖維化細胞(MLF)具有明顯的細胞毒殺活性,因此本研究選定辣木進行成分研究,希望藉此了解其化學組成。將辣木根皮與莖皮分別利用甲醇熱迴流萃取,分配萃取後進行分離純化後,從辣木根皮與莖皮甲醇粗萃物分別鑑定出27與11個化合物,其中2個為天然界首次發現的新化合物,純化所得化合物將進一步送測藥理活性,希望藉此開發新的天然抗癌藥物。

芝麻(Sesamum indicum)種子甲醇粗萃物,經由分配萃取與各種層析方法進行分離純化,共鑑定出30個化合物,其中包括2個天然界首次發現的化合物與利用半合成反應所得的木酚素類化合物進行DPPH自由基捕捉、超氧陰離子抑制、亞鐵離子螯合能力及還原力實驗評估其抗氧化活性。結果顯示,除了sesamin及sesamolin等含量較多的木酚素之外,其他芝麻木酚素化合物如 (+)-pinoresinol、(-)-piperitol及(+)-(7S,8''R,8R)-acuminatolide都具有顯著的抗氧化活性,顯示其具有開發成為保健食品的潛力。

在有機蔬菜栽培田易發生由白菜炭疽菌(Colletotrichum higginsianum)引起的白菜炭疽病,因此本研究選用了五倍子、丁香、肉桂、大黃及虎杖等五種中藥材,利用高效能液相層析定量分析其粗萃物及分畫層中指標成分的含量,並進一步測試其粗萃物、分畫層與指標成分對白菜炭疽菌的抑菌活性,希望能藉此發現有效防治病害的成分,進而開發新的植物保護製劑。


In the preliminary cytotoxic bioassay, the chloroform layer of methanol extracts of M. oleifera demonstrated the significant cytotoxicity toward the doxorubicin resistant human breast adenocarcinoma cell lines (MCF-7/ADR) and rat pulmonary fibrosis cells (MLF). Therefore, the present research is aimed to purify and identify the constituents of M. oleifera. The methanol extracts of root barks and stem barks of M. oleifera were fractionated and further purified to afford 27 and 11 compounds, respectively. Among the isolates two compounds was reported from the natural sources for the first time. These isolates would be subjected into the biological activity examinations to explore new natural anticancer drugs.

The methanol extract of sesame (Sesamum indicum) seeds was fractionated and purified to afford 30 compounds. Among these isolates two were isolated from the natural sources for the first time. To evaluate their in vitro antioxidant potentials, the purified lignans and their derivative prepared by semi-synthesis were examined for the scavenging activities of DPPH free radicals and superoxide anions. Moreover, the capability of chelating ferrous ions and reducing power of these sesame lignans were also tested. The results suggest that, besides the well-known sesamolin and sesamin, the minor sesame lignans (+)-pinoresinol, (–)-piperitol and (+)-(7S,8''R,8R)-acuminatolide are also adequate active ingredients and may be potential sources for the development of healthy foods.

In the organic vegetables cultivation fields, the cabbage anthracnose caused by Colletotrichum higginsianum was a serious problem. Thus in the present study, five different traditional Chinese medicines, including Galla rhois, Eugenia caryophyllata Thunb., Cinnamomum cassia, Polygonum cuspidatum Sieb. et Zucc., and Rheum officinale Baillon were extracted and purified. The contents of indicator compounds in the crude extracts and fractions were analyzed with the aid of high-performance liquid chromatography. Furthermore, the antifungal activities of the crude extracts, fractions, and indicator compounds were examined to explore the active principles against C. higginsianum. From our research results, it is hopeful to discover new botanical pesticides derived from the plant sources.


摘要 ……………………………………...……………………………………… i

Abstract ………………………………...………………………………………… ii

誌謝 ……………………………………………................................................... iii
目錄 ……………………………………...……………………………………… iv

表目錄 …………………………………...…………………………………….... ix
圖目錄 …………………………………...…………………………………….... x

第壹篇 辣木根皮與莖皮之成分研究
第一章 緒論……………………………………………………...……………… 1
第二章 辣木屬植物研究回顧…………………………………..…………….... 3
第一節 辣木之植物形態……………………………………..…………...... 3
第二節 辣木屬植物之學名………………………………….……………… 5
第三節 辣木屬植物之藥理研究回顧………………………...…………….. 6
第四節 辣木屬植物之成分研究回顧………………………….…………… 17
第三章 辣木成分之抽取與分離…………………………………...………….... 26
第一節 辣木根皮成分之抽取與分離…………………………….………… 26
第二節 辣木莖皮成分之抽取與分離…………………………………….… 28
第四章 辣木成分之化學構造研究…………………………………….….......... 34
第一節 N-benzylcarbamic acid(80)之構造研究............................................ 34
第二節 4-(α-L-rhamnopyranosyloxy)benzaldehyde(88)之構造研究............ 36
第三節 benzyl β-D-arabinopyranosyl-(1→6)-β-D-glucopyranoside(91)之構造研究............................................................................................. 40
第四節 其他化合物之構造研究..................................................................... 44
第五章 結論……………………………………………...……………………… 45
第六章 實驗部份…………………...…………………………………………… 46
第一節 實驗所使用之儀器與藥品………………...……………………….. 46
第二節 辣木成分萃取與分離…………………...……..…………………… 47
第七章 光譜數據…………………………………………...…………………… 51
第貳篇 芝麻種子成分及其抗氧化活性研究
第一章 緒論………………………………………………...…………………… 60
第二章 胡麻屬植物研究回顧……………………………...………………….... 61
第一節 芝麻之植物形態………………………………...………………...... 61
第二節 胡麻屬植物之學名……………………………...………..………… 62
第三節 芝麻之藥理研究回顧…………………………..………………….. 63
第四節 胡麻屬植物之成分研究回顧…………………..…………..……… 64
第三章 芝麻種子成分之抽取與分離……………………………………….... 73
第四章 芝麻種子成分之化學構造研究……………………...………………… 79
第一節 samin (152) 之構造研究…………………..…...…………………... 79
第二節 disaminyl ether (153) 之構造研究....…………………….………… 84
第三節 其他化合物之構造研究...……......………....……………………… 86
第五章 芝麻木酚素類化合物之合成研究…………………..……………....... 87
第一節Sesamin (85) 利用重鉻酸鉀(K2Cr2O7)進行氧化反應…….............. 87
第二節Sesamin (85) 利用高錳酸鉀(KMnO4)進行氧化反應……............... 87
第三節Sesamolin (90) 利用高錳酸鉀(KMnO4)進行氧化反應.................... 88
第六章 芝麻木酚素類化合物之抗氧化活性研究………................................... 89
第一節 DPPH自由基捕捉活性(DPPH free radical scavenging).................. 90
第二節 超氧陰離子抑制活性(superoxide anion inhibition)......................... 92
第三節 亞鐵離子螯合能力(chelation of ferrous ions).................................. 94
第四節 還原力(reducing power).................................................................... 96
第七章 結論........................................................................................................... 98
第八章 實驗部份................................................................................................... 99
第一節 實驗所使用之儀器與藥品................................................................. 99
第二節 芝麻成分萃取與分離........................................................................ 100
第三節 木酚素類衍生物之合成實驗............................................................. 104
3.1 (-)-aptosimon (156) 的製備.............................................................. 104
3.2 (-)-asarinin (165) 的製備.................................................................. 104
3.3 sesamol (166) 的製備....................................................................... 104
第四節 抗氧化生理活性實驗......................................................................... 104
4.1 DPPH自由基捕捉實驗................................................................... 104
4.2 超氧陰離子抑制實驗...................................................................... 105
4.3 亞鐵離子螯合能力實驗.................................................................. 105
4.4 還原力試驗...................................................................................... 105
第九章 光譜數據................................................................................................... 107


第参篇 中草藥萃取物抑制白菜炭疽菌活性成分研究
第一章 緒論…………………………………………………...………………… 113
第二章 藥材介紹……………………………………………….……………….. 115
第一節 五倍子………………………...…………………………………...... 115
第二節 丁香…………………………….…………………………..……...... 116
第三節 肉桂………………………………………………………………..... 117
第四節 虎杖……………………………….………………………...……..... 119
第五節 大黃……………………………….………………………...……..... 120
第三章 藥材指標成分定量分析……………….……………………………….. 123
第一節 五倍子……………………………...……………………………...... 123
1.1 分析條件之選擇與最佳化……….……………………….……… 123
1.2 檢量線之製作…………………..……………..……….…………. 124
1.3確效試驗…………………………..……………………….……… 126
1.4定量分析結果……………………..……………………………… 127
第二節 丁香………….……………………………………………..……...... 129
2.1 分析條件之選擇與最佳化……………………………….……… 129
2.2 檢量線之製作………………………………………….…………. 130
2.3確效試驗………………………………………………….……… 131
2.4 定量分析結果……………………………..……………………… 132
第三節 肉桂………………………………………..……………………..... 134
3.1 分析條件之選擇與最佳化……………………………….……… 134
3.2 檢量線之製作………………………………………….…………. 135
3.3確效試驗…………………...……………………………….…… 136
3.4定量分析結果…………………………………………………… 137
第四章 白菜炭疽菌抑菌活性測試…………………..…..……........................... 140
第一節 五倍子甲醇粗萃物、乙酸乙酯分畫層及水分畫層之抑菌試驗….. 140
第二節 丁香甲醇粗萃物、乙酸乙酯分畫層及水分畫層之抑菌試驗…….. 142
第三節 肉桂甲醇粗萃物、乙酸乙酯分畫層及水分畫層之抑菌試驗…….. 144
第四節 虎杖甲醇粗萃物、氯仿分畫層及水分畫層之抑菌試驗…..……… 146
第五節 大黃甲醇粗萃物、氯仿分畫層及水分畫層之抑菌試驗.................. 148
第六節 各藥材之指標成分抑菌試驗............................................................. 150
第五章 實驗部份……………………………………...………………………… 153
第一節 實驗所使用之儀器與藥品………...…………………………..…… 153
第二節 藥材之成分抽取與分離……………………………………....……. 154
2.1 五倍子…………………………………………………………... 154
2.2 丁香……………………………………...………………………... 154
2.3 肉桂…………………………………...…………………………... 155
2.4 虎杖……………………………………………………………... 155
2.5 大黃………………………………...……………………………... 156
第三節 藥材指標成分之定量分析……………………...………………….. 156
3.1 儲存標準液(standard stock solution)之配製………………...….. 156
3.2 標準品溶液之配製……………………………………...………... 157
3.3 檢液之配製………………………………………...……………... 158
3.4 鑑別試驗及含量測定……………………………..……………… 159
第四節 分析方法之評估…………………………….……………………… 159
第五節 抑菌活性實驗……………………………………...………….. 160
5.1 供試菌株……………………………………………………...…... 160
5.2 孢子懸浮液的製備……………………………………………...... 161
5.3 藥材粗萃物與各畫分對C. higginsianum PA-19孢子發芽的抑制 161
5.4 標準品對C. higginsianum PA-19孢子發芽的抑制……………… 161
參考文獻…………………………………………………………………………. 162
已發表期刊論文…………………………………………………………………. 180
研討會論文………………………………………………………………………. 187

表目錄

表1、辣木各分畫層對MCF-7/ADR細胞毒殺活性………………..…………... 2
表2、由辣木根皮純化所得之化合物相對含量………………….…………….. 32
表3、由辣木莖皮純化所得之化合物相對含量………………………………... 33
表4、由芝麻種子純化所得之化合物相對含量……………….……………….. 78
表5、芝麻木酚素類DPPH自由基捕捉活性試驗………..…………………….. 91
表6、芝麻木酚素類於濃度32.3 ~ 500.0 μM下超氧陰離子抑制活性……..…. 93
表7、芝麻木酚素類亞鐵離子螯合能力活性試驗………….………………….. 95
表8、芝麻木酚素類還原力活性試驗………………………….……………….. 97
表9、五倍子甲醇粗抽物與各分畫層之HPLC梯度沖提程式………………… 123
表10、沒食子酸及沒食子酸甲酯同日內及異日間分析之精密度…….........… 126
表11、回收率實驗結果……………………………………………………….… 127
表12、五倍子各分畫層中所含指標成分之含量 (%, g/g ) …………………… 129
表13、丁香酚同日內及異日間分析之精密度……………………………….… 132
表14、回收率實驗結果……………………………………………………….… 132
表15、丁香各分畫層中所含指標成分之含量 (%, g/g ) ……………………… 134
表16、肉桂醛同日內及異日間分析之精密度…….…………………………… 137
表17、回收率實驗結果…………………………………………………………. 137
表18、肉桂各分畫層中所含指標成分之含量 (%, g/g ) ……………………… 139
表19、五倍子之白菜炭疽菌抑菌結果…………………………………………. 141
表20、丁香之白菜炭疽菌抑菌結果……………………………………………. 143
表21、肉桂之白菜炭疽菌抑菌結果……………………………………………. 145
表22、虎杖之白菜炭疽菌抑菌結果……………………………………………. 147
表23、大黃之白菜炭疽菌抑菌結果……………………………………………. 149
表24、標準品及對照組之IC50濃度比較……………………………………….. 151



圖目錄

圖1、辣木之外觀圖............................................................................................... 3
圖2、辣木之小葉圖............................................................................................... 4
圖3、辣木之圓錐形花序圖................................................................................... 4
圖4、辣木之果莢圖............................................................................................... 4
圖5、辣木之種子圖............................................................................................... 4
圖6、辣木根皮之萃取分離流程........................................................................... 26
圖7、辣木根皮氯仿分畫層之分離流程............................................................... 27
圖8、辣木根皮水層分畫層之分離流程............................................................... 27
圖9、辣木莖皮之萃取分離流程........................................................................... 28
圖10、辣木莖皮氯仿分畫層之分離流程............................................................. 29
圖11、化合物(80)之H1-NMR 光譜………………………………..………….. 35
圖12、化合物(80)之C13-NMR及DEPT 光譜……………………..………….. 35
圖13、化合物(88)之H1-NMR 光譜…………………………………………… 37
圖14、化合物(88)之C13-NMR及DEPT 光譜………………………..……….. 37
圖15、化合物(88)之COSY光譜......................................................................... 38
圖16、化合物(88)之NOESY光譜……………………………………..………. 38
圖17、化合物(88)之HMQC光譜……………………………………………… 39
圖18、化合物(88)之HMBC光譜……………………………………..……….. 39
圖19、化合物(91)之H1-NMR 光譜…………………………………..……….. 41
圖20、化合物(91)之C13-NMR及DEPT 光譜………………………………… 41
圖21、化合物(91)之COSY光譜………………………………………….…… 42
圖22、化合物(91)之NOESY光譜………………………………………..……. 42
圖23、化合物(91)之HMQC光譜……………………………………..……….. 43
圖24、化合物(91)之HMBC光譜……………………………………………… 43
圖25、芝麻之花朵圖……………………………………………………….…… 61
圖26、芝麻之種子圖……………………………………………………….…… 61
圖27、芝麻之外觀繪圖…………………………………………………….…… 62
圖28、芝麻種子之萃取分離流程………………………….…………………… 74
圖29、芝麻種子己烷分畫層之分離流程……………………….……………… 74
圖30、芝麻種子乙酸乙酯分畫層之分離流程…………………….…………… 75
圖31、芝麻種子水分畫層之分離流程…………………………….…………… 75
圖32、化合物(152)之H1-NMR 光譜……………………………..…………… 81
圖33、化合物(152)之C13-NMR及DEPT 光譜…………………..…………… 81
圖34、化合物(152)之COSY光譜……………………………….…………...... 82
圖35、化合物(152)之NOESY光譜……………………………..……………... 82
圖36、化合物(152)之HMQC光譜………………………………..…………… 83
圖37、化合物(152)之HMBC光譜……………………………….……………. 83
圖38、化合物(153)之H1-NMR 光譜…………………………..……………… 85
圖39、芝麻木酚素類DPPH自由基捕捉活性試驗……………………..……… 91
圖40、芝麻木酚素類於濃度500.0 μM下超氧陰離子抑制活性試驗…..…….. 93
圖41、芝麻木酚素類於濃度32.3 μM下超氧陰離子抑制活性試驗.…………. 93
圖42、芝麻木酚素類亞鐵離子螯合能力活性試驗………………………….… 95
圖43、芝麻木酚素類還原力活性試驗…………………………………….…… 97
圖44、C. higginsianum繪圖.................................................................................. 114
圖45、左為葉片上的病徵;右為葉柄上的病徵................................................... 114
圖46、五倍子外觀圖............................................................................................. 115
圖47、丁香植物外觀圖......................................................................................... 116
圖48、丁香藥材外觀圖......................................................................................... 117
圖49、肉桂植物外觀圖......................................................................................... 118
圖50、肉桂藥材外觀圖......................................................................................... 118
圖51、虎杖植物外觀圖......................................................................................... 119
圖52、虎杖藥材外觀圖......................................................................................... 120
圖53、大黃植物外觀圖......................................................................................... 121
圖54、大黃藥材外觀圖......................................................................................... 121
圖55、沒食子酸標準品之HPLC層析圖.............................................................. 124
圖56、沒食子酸甲酯標準品之HPLC層析圖...................................................... 124
圖57、沒食子酸標準品檢量線............................................................................. 125
圖58、沒食子酸甲酯標準品檢量線..................................................................... 125
圖59、五倍子甲醇粗萃物之HPLC層析圖.......................................................... 128
圖60、五倍子乙酸乙酯層抽出物之HPLC層析圖.............................................. 128
圖61、五倍子水層抽出物之HPLC層析圖.......................................................... 129
圖62、丁香酚標準品之HPLC層析圖.................................................................. 130
圖63、丁香酚標準品檢量線................................................................................. 131
圖64、丁香甲醇粗萃物之HPLC層析圖.............................................................. 133
圖65、丁香乙酸乙酯層抽出物之HPLC層析圖.................................................. 133
圖66、丁香水層抽出物之HPLC層析圖.............................................................. 134
圖67、肉桂醛標準品之HPLC層析圖.................................................................. 135
圖68、肉桂醛標準品檢量線................................................................................. 136
圖69、肉桂甲醇粗萃物之HPLC層析圖.............................................................. 138
圖70、肉桂乙酸乙酯層抽出物之HPLC層析圖.................................................. 138
圖71、肉桂水層抽出物之HPLC層析圖.............................................................. 139
圖72、五倍子之白菜炭疽菌抑菌結果................................................................. 141
圖73、丁香之白菜炭疽菌抑菌結果..................................................................... 143
圖74、肉桂之白菜炭疽菌抑菌結果..................................................................... 145
圖75、虎杖之白菜炭疽菌抑菌結果..................................................................... 147
圖76、大黃之白菜炭疽菌抑菌結果..................................................................... 149
圖77、標準品及對照組之IC50比較...................................................................... 150
圖78、標準品及對照組之白菜炭疽菌抑菌結果................................................. 152



1.陳惠民,周佳瑩,植物中的鑽石-高經濟價值的辣木,商周出版社,台北市 (2005)。
2.Anwar, F., and Bhanger, M. I., Analytical characterization of Moringa oleifera seed oil grown in temperate regions of Pakistan. J. Agric. Food Chem., 51(22), 6558- 6563 (2003).
3.周佳瑩,莊秉憲,陳惠民,奇蹟之樹-辣木,科學發展,371,40-45 (2003)。
4.陳澤琪,奇蹟之樹-辣木,旗林文化出版社,台北市 (2004)。
5.甘偉松,藥用植物學 第六版,國立中藥醫學研究所,台北市,287 (1981)。
6.孫櫻芳,辣木 (Moringa oleifera)-其利用及栽培,科學農業,52(7、8),194-197 (2004)。
7.彭文煌,21世紀的生技明星-辣木,鄉間小路,豐年社,台北市,3,17-19 (2005)。
8.Kurup, P. A., and Narasimha Rao, P. L., Antibiotic principle from Moringae pterygosperma. J. Indian Inst. Sci., 34(A), 219-227 (1952).
9.Siddiqi, S., and Khan. M. I., Pharmacological study of Moringa pterygosperma. Pak. J. Sci. Ind. Res., 11(3), 268-272 (1968).
10.Eilert. U., Wolters. B., and Nahrstedt. A., The antibiotic principle of seeds of Moringa oleifera and Moringa stenopetala. Planta Med., 42(5), 55-61 (1981).
11.Villasenor, I. M., Lim-Sylianco, C. Y., and Dayrit, F., Mutagens from roasted seeds of Moringa oleifera. Mutat. Res., 224(2), 209-212 (1989).
12.Cáceres, A., Cabrera, O., Morales, O., Mollinedo, P., and Mendia, P., Pharmacological properties of Moringa oleifera. 1: Preliminary screening for antimicrobial activity. J. Ethnopharmacol., 33(3), 213-216 (1991).
13.Faizi, S., Siddiqui, B. S., Saleem, R., Siddiqui, S., Aftab, K., and Gilani, A., Isolation and structure elucidation of novel hypotensive agents, niazinin A, niazinin B, niazimicin and niaziminin A+B from Moringa oleifera: the first naturally occurring thiocarbamates. J. Chem. Soc., Perkin Trans. 1, (23), 3237-3241 (1992).
14.Cáceres, A., Saravia, A., Rizzo, S., Zabala, L., De Leon, E., and Nave, F., Pharmacologic properties of Moringa oleifera. 2: Screening for antispasmodic, antiinflammatory and diuretic activity. J. Ethnopharmacol., 36(3), 233-237 (1992).
15.Faizi, S., Siddiqui, B. S., Saleem, R., Siddiqui, S., Aftab, K., and Gilani, A., Novel hypotensive agents, niazimin A, niazimin B, niazicin A and niazicin B from Moringa oleifera: isolation of first naturally occurring carbarnates. J. Chem. Soc., Perkin Trans. 1, (20), 3035-3040 (1994).
16.Gilani, A. H., Aftab, K., Suria, A., Siddiqui, S., Salem, R., Siddiqui, B. S., and Faizi, S., Pharmacological studies on hypotensive and spasmolytic activities of pure compounds from Moringa oleifera. Phytother. Res., 8(2), 87-91 (1994).
17.Faizi, S., Siddiqui, B. S., Saleem, R., Siddiqui, S., Aftab, K., and Gilani, A. H., Isolation and structure elucidation of new nitrile and mustard oil glycosides from Moringa oleifera and their effect on blood pressure. J. Nat. Prod., 57(9), 1256-1261 (1994).
18.Faizi, S., Siddiqui, B. S., Saleem, R., Siddiqui, S., Aftab, K., and Gilani, A. H., Fully acetylated carbamate and hypotensive thiocarbamate glycosides from Moringa oleifera. Phytochemistry, 38(4), 957-963 (1995).
19.Faizi, S., Siddiqui, B. S., Saleem, R., Aftab, K., Shaheen, F., and Gilani, A., Hypotensive constituents from the pods of Moringa oleifera. Planta Med., 64(3), 225-228 (1998).
20.Murakmi, A., Kitazono, Y., Jiwajida, S., Koshimizu, K., and Ohigashi, H., Niaziminin, a thiocarbamate from the leaves of Moringa oleifera, holds a strict structural requirement for inhibition of tumor-promoter-induced Epstein-Barr virus activation. Planta Med., 64(4), 319-323 (1998).
21.Guevara, A. P., Vargas, C., Sakurai, H., Fujiwara, Y., Hashimoto, K., Maoka, T., Kozuka, M., Ito, Y., Tokuda, H., and Nishino, H., An antitumor promoter from Moringa oleifera Lam. Mutat. Res., 440(2), 181-188 (1999).
22.Mekonnen, Y., Yardley, V., Rock, P., and Croft, S., In vitro antitrypanosomal activity of Moringa stenopetala leaves and roots. Phytother. Res., 13(6), 538-539 (1999).
23.Mekonnen, Y., Effects of ethanol extract of Moringa stenopetala leaves on guinea-pig and mouse smooth muscle. Phytother. Res., 13(5), 442-444 (1999).
24.Ghasi, S., Nwobodo, E., and Ofili, J. O., Hypocholesterolemic effects of crude extract of leaf of Moringa oleifera Lam in high-fat diet fed wistar rats. J. Ethnopharmacol., 69(1), 21-25 (2000).
25.Lalas, S., and Tsaknis, J., Extraction and identification of natural antioxidant from the seeds of the Moringa oleifera tree variety of malawi. J. Am. Oil Chem. Soc., 79(7), 677-683 (2002).
26.Ndiaye, M., Dieye, A. M., Mariko, F., Tall, A., Sall, D. A., and Faye, B., Contribution to the study of the anti-inflammatory activity of Moringa oleifera (moringaceae). Dakar Med., 47(2), 210-212 (2002).
27.Mehta, L. K., Balaraman, R., Amin, A. H., Bafna, P. A., and Gulati, O. D., Effect of fruits of Moringa oleifera on the lipid profile of normal and hypercholesterolaemic rabbits. J. Ethnopharmacol., 86(2-3), 191-195 (2003).
28.Siddhuraju, P., and Becker, K., Antioxidant properties of various solvent extracts of total phenolic constituents from three different agroclimatic origins of drumstick tree (Moringa oleifera Lam.) leaves. J. Agric. Food Chem., 51(8), 2144-2155 (2003).
29.Francis, J. A., Jayaprakasam, B., Olson, L. K., and Nair, M. G., Insulin secretagogues from Moringa oleifera with cyclooxygenase enzyme and lipid peroxidation inhibitory activities. Helv. Chim. Acta, 87(1), 317-326 (2004).
30.Mondal, S., Chakraborty, I., Pramanik, M., Rout, D., Islam, S. S., Structural studies of an immunoenhancing polysaccharide isolated from mature pods (fruits) of Moringa oleifera (Sajina). Med. Chem. Res., 13(6-7), 390-400 (2004).
31.Rathi, B. S., Bodhankar, S. L., and Baheti, A. M., Evaluation of aqueous leaves extract of Moringa oleifera Linn for wound healing in albino rats. Indian J. Exp. Biol., 44(11), 898-901 (2006).
32.Mahajan, S. G., and Mehta, A. A., Inhibitory action of ethanolic extract of seeds of Moringa oleifera Lam. on systemic and local anaphylaxis. J. Immunotoxicol., 4(4), 287-294 (2007).
33.Mahajan, S. G., Mali, R. G., and Mehta, A. A., Protective effect of ethanolic extract of seeds of Moringa oleifera Lam. against inflammation associated with development of arthritis in rats. J. Immunotoxicol., 4(1), 39-47 (2007).
34.Gupta, R., Dubey, D. K., Kannan, G. M., and Flora, S. J. S., Concomitant administration of Moringa oleifera seed powder in the remediation of arsenic-induced oxidative stress in mouse. Cell Biol. Int., 31(1), 44-56 (2007).
35.Chuang, P. H., Lee, C. W., Chou, J. Y., Murugan, M., Shieh, B. J., and Chen, H. M., Anti-fungal activity of crude extracts and essential oil of Moringa oleifera Lam. Bioresour. Technol., 98(1), 232-236 (2007).
36.Mahajan, S. G., and Mehta, A. A, Effect of Moringa oleifera Lam. seed extract on ovalbumin-induced airway inflammation in guinea pigs. Inhal. Toxicol., 20(10), 897-909 (2008).
37.Chumark, P., Khunawat, P., Sanvarinda, Y., Phornchirasilp, S., Morales, N. P., Phivthong-ngam, L., Ratanachamnong, P., Srisawat, S., and Pongrapeeporn, K. U., The in vitro and ex vivo antioxidant properties, hypolipidaemic and antiatherosclerotic activities of water extract of Moringa oleifera Lam. leaves. J. Ethnopharmacol., 116(3), 439-446 (2008).
38.Sashidhara, K. V., Rosaiah, J. N., Tyagi, E., Shukla, R., Raghubir, R., and Rajendran, S. M., Rare dipeptide and urea derivatives from roots of Moringa oleifera as potential anti-inflammatory and antinociceptive agents. Eur. J. Med. Chem., 44(1), 432-436 (2009).
39.Mahajan, S. G., Banerjee, A., Chauhan, B. F., Padh, H., Nivsarkar, M., and Mehta, A. A., Inhibitory effect of n-butanol fraction of Moringa oleifera Lam. seeds on ovalbumin-induced airway inflammation in a guinea pig model of asthma. Int. J. Toxicol., 28(6), 519-527 (2009).
40.Sreelatha, S., and Padma, P. R., Antioxidant activity and total phenolic content of Moringa oleifera leaves in two stages of maturity. Plant Foods Hum. Nutr., 64(4), 303-311 (2009).
41.Verma, A. R., Vijayakumar, M., Mathela, C. S., and Rao, C. V., In vitro and in vivo antioxidant properties of different fractions of Moringa oleifera leaves. Food Chem. Toxicol., 47(9), 2196-2201 (2009).
42.Jaiswal, D., Rai, P. K., Kumar, A., Mehta, S., and Watal, G., Effect of Moringa oleifera Lam. leaves aqueous extract therapy on hyperglycemic rats. J. Ethnopharmacol., 123(3), 392-396 (2009).
43.Ayanbimpe, G. M., Ojo, T. K., Afolabi, E., Opara, F., Orsaah, S., and Ojerinde, O. S., Evaluation of extracts of Jatropha curcas and Moringa oleifera in culture media for selective inhibition of saprophytic fungal contaminants. J. Clin. Lab. Anal., 23(3), 161-164 (2009).
44.Gupta, A., Gautam, M. K., Singh, R. K., Kumar, M. V., Rao, C. V., Goel, R. K., and Anupurba, S., Immunomodulatory effect of Moringa oleifera Lam. extract on cyclophosphamide induced toxicity in mice. Indian J. Exp. Biol., 48(11), 1157-1160 (2010).
45.Sudha, P., Asdaq, S. M., Dhamingi, S. S., and Chandrakala, G. K., Immunomodulatory activity of methanolic leaf extract of Moringa oleifera in animals. Inidan J. Physiol. Pharmacol., 54(2), 133-140 (2010).
46.Promkum, C., Kupradinun, P., Tuntipopipat, S., and Butryee, C., Nutritive evaluation and effect of Moringa oleifera pod on clastogenic potential in the mouse. Asian Pac. J. Cancer Prev., 11(3), 627-632 (2010).
47.Sreelatha, S., and Padma, P. R., Protective mechanisms of Moringa oleifera against CCl4-induced oxidative stress in precision-cut liver slices. Forsch. Komplementmed., 17(4), 189-194 (2010).
48.Lürling, M., and Beekman, W., Anti-cyanobacterial activity of Moringa oleifera seeds. J. Appl. Phycol., 22(4), 503-510 (2010).
49.Atawodi, S. E., Atawodi, J. C., Idakwo, G. A., Pfundstein, B., Haubner, R., Wurtele, G., Bartsch, H., and Owen, R. W., Evaluation of the polyphenol content and antioxidant properties of methanol extracts of the leaves, stem, and root barks of Moringa oleifera Lam. J. Med. Food, 13(3), 710-716 (2010).
50.Mahajan, S. G., and Mehta, A. A., Immunosuppressive activity of ethanolic extract of seeds of Moringa oleifera Lam. in experimental immune inflammation. J. Ethnopharmacol., 130(1), 183-186 (2010).
51.Hamza, A. A., Ameliorative effects of Moringa oleifera Lam seed extract on liver fibrosis in rats. Food Chem. Toxicol., 48(1), 345-355 (2010).
52.Sarangapani, S., and Padma, P. R., Modulatory effects of Moringa oleifera extracts against hydrogen peroxide-induced cytotoxicity and oxidative damage. Hum. Exp. Toxicol., in press (2011).
53.Mahajan, S. G., and Mehta, A. A., Suppression of ovalbumin-induced Th2-driven airway inflammation by β-sitosterol in a guinea pig model of asthma. Eur. J. Pharmacol., 650(1), 458-464 (2011).
54.Pal, A., Bawankule, D. U., Darokar, M. P., Gupta, S. C., Arya, J. S., Shanker, K., Mohangupta, M., Yadav, N. P., and Singh, K. S. P., Influence of Moringa oleifera on pharmacokinetic disposition of rifampicin using HPLC-PDA method: a pre-clinical study. Biomed. Chromatogr., 25(6), 641-645 (2011).
55.Faizi, S., Siddiqui, B. S., Saleem, R., Noor, F., and Husnain, S., Isolation and structure elucidation of a novel glycoside niazidin from the pods of Moringa oleifera. J. Nat. Prod., 60(12), 1317-1321 (1997).
56.Lakshminarayana, R., Raju, M., Krishnakantha, T. P., and Baskaran, V., Determination of major carotenoids in a few Indian leafy vegetables by high-performance liquid chromatography. J. Agric. Food Chem., 53(8), 2838-2842 (2005).
57.Gueyrard, D. Barillari, J., Iori, R., Palmieri, S., and Rollin, P., First synthesis of an O-glycosylated glucosinolate isolated from Moringa oleifera. Tetrahedron Lett., 41(43), 8307-8309 (2000).
58.Roy, S. K., Chandra, K., Ghosh, K., Mondal, S., Maiti, D., Ojha, A. K., Das, D., Mondal, S., Chakraborty, I., and Islam, S. S., Structural investigation of a heteropolysaccharide isolated from the pods (fruits) of Moringa oleifera (Sajina). Carbohydr. Res., 342(16), 2380-2389 (2007).
59.Pankajamani, K. S., and Seshadri, T. R., Survey of anthoxanthins-part I. Indian Academy of Sciences Proceedings. Sec. A, 36, 157-169 (1952).
60.Nair, A. G. R., and Subramanian, S. S., Pigments of the flowers of Moringa pterygosperma. Curr. Sci., 31(2), 155-156 (1962).
61.Mekonnen, Y., and Dräger, B., Glucosinolates in Moringa stenopetala. Planta Med., 69(4), 380-382 (2003).
62.Chen, C. Y., Chang, F. R., Teng, C. M., and Wu, Y. C., Cheritamine, a new N-fatty acyl tryptamine and other constituents from the stems of Annona cherimola. J. Chin. Chem. Soc., 46(1), 77-86 (1999).
63.Chang, Y. C., Chang, F. R., and Wu, Y. C., The constituents of Lindera glauca. J. Chin. Chem. Soc., 47(2), 373-380 (2000).
64.Achenbach, H., Lottes, M., Waibel, R., Karikas, G. A., Correa A., M. D., and Gupta, M. P., Alkaloids and other compounds from Psychotria correae. Phytochemistry, 38(6), 1537-1545 (1995).
65.Ahmad, V. U., Iqbal, S., Kousar, F., Bader, S., Areshad, S., and Tareen, R. B., Two new saponins from Zygophyllum atriplicoides. Chem. Pharm. Bull., 53(9), 1126-1130 (2005).
66.El-Askary, H. I., Terpenoids from Cleome droserifolia (Forssk.) Del. Molecules, 10(8), 971-977 (2005).
67.Bibi, N., Tanoli, S. A. K., Farheen, S., Afza, N., Siddiqi, S., Zhang, Y., Kazmi, S. U., and Malik, A., In vitro antituberculosis activities of the constituents isolated from Haloxylon salicornicum. Bioorg. Med. Chem. Lett., 20(14), 4173-4176 (2010).
68.Faizi, S., Ali, M., Saleem, R., Irfanullah, and Bibi, S., Complete 1H and 13C NMR assignments of stigma-5-en-3-O-β-glucoside and its acetyl derivative. Magn. Reson. Chem., 39(7), 399-405 (2001).
69.Noguchi, M., Mochida, K., Shingu, T., Kozuka, M., and Fujitani, K., Über die bestandteile der chinesischen droge“Ti-ku-’pi.”I. Isolierung und konstitution von lyciumamid, einem neuen dipeptid. Chem. Pharm. Bull., 32(9), 3584-3587 (1984).
70.Talapatra, S. K., Mallik, A. K., and Talapatra, B., Pongaglabol, a new hydroxyfuranoflavone, and aurantiamide acetate, a dipeptide from the flowers of Pongamia glabra. Phytochemistry, 19(6), 1199-1202 (1980).
71.Ahmad, F., Ali, M., and Alam, P., New phytoconstituents from the stem bark of Tinospora cordifolia Miers. Nat. Prod. Res., 24(10), 926-934 (2010).
72.Kuo, Y. H., and Li, Y. C., Constituents of the bark of Ficus microcarpa L.f. J. Chin. Chem. Soc., 44(3), 321-325 (1997).
73.Umbetova, A. K., Choudhary, M. I., Sultanova, N. A. Burasheva, G. S., and Abilov, Z. A., Triterpenoids from plants of the genus Tamarix. Chem. Nat. Compd., 42(3), 332-335 (2006).
74.Rani, S., Khan, S. A., and Ali, M., Phytochemical investigation of the seeds of Althea officinalis L. Nat. Prod. Res., 24(14), 1358-1364 (2010).
75.Rudiyansyah, and Garson, M. J. Secondary metabolites from the wood bark of Durio zibethinus and Durio kutejensis. J. Nat. Prod., 69(8), 1218-1221 (2006).
76.Aldridge, D. C., Galt, S., Giles, D., and Turner, W. B., Metabolites of Lasiodiplodia theobromae. J. Chem. Soc. (C), 1623-1627 (1971).
77.Chen, C. Y., Chang, F. R., and Wu, Y. C., The constituents from the stems of Annona cherimola. J. Chin. Chem. Soc., 44(3), 313-319 (1997).
78.Gavagnin, M., Ungur, N., Mollo, E., Templado, J., and Cimino, G., Structure and synthesis of a progesterone homologue from the skin of the dorid nudibranch Aldisa smaragdina. Eur. J. Org. Chem., 2002(9), 1500-1504 (2002).
79.Nick, A., Wright, A. D., Rali, T., and Sticher, O., Antibacterial triterpenoids from Dillenia papuana and their structure-activity relationships. Phytochemistry, 40(6), 1691-1695 (1995).
80.Symon, A. V., Kaplun, A. P., Vlasenkova, N. K., Gerasimova, G. K., Shon, L. B., Litvin, E. F., Kozlova, L. M., Surkova, E. L., and Shvets, V. I., Epimerization of hydroxyl group in lupan series triterpenoids. Russ. J. Bioorg. Chem., 29(2), 185-189 (2003).
81.Khan, Z., Ali, M., and Bagri, P., A new steroidal glycoside and fatty acid esters from the stem bark of Tectona grandis Linn. Nat. Prod. Res., 24(11), 1059-1068 (2010).
82.Gnoatto, S. C. B., Dassonville-Klimpt, A., Da Nascimento, S., Galéra, P., Boumediene, K., Gosmann, G., Sonnet, P., and Moslemi, S., Evaluation of ursolic acid isolated from Ilex paraguariensis and derivatives on aromatase inhibition. Eur. J. Med. Chem., 43(9), 1865-1877 (2008).
83.Onocha, P. A., Okorie, D. A., Connolly, J. D., and Roycroft, D. S., Monoterpene diol, iridoid glucoside and dibenzo-α-pyrone from Anthocleista djalonesis. Phytochemistry, 40(4), 1183-1189 (1995).
84.Xie, L. H., Akao, T., Hamasaki, K., Deyama, T., and Hattori, M., Biotransformation of pinoresinol diglucoside to mammalian lignans by human intestinal microflora, and isolation of Enterococcus faecalis strain PDG-1 responsible for the transformation of (+)-pinoresinol to (+)-lariciresinol. Chem. Pharm. Bull., 51(5), 508-515 (2003).
85.Mir, Q. Y., Ali, M., and Alam, P., Lignan derivatives from the stem bark of Syzygium cumini (L.) Skeels. Nat. Prod. Res., 23(5), 422-430 (2009).
86.Guz, N. R. And Stermitz, F. R., Spectral comparisons of coniferyl and cinnamyl alcohol epoxide derivatives with a purported cis-epoxyconiferyl alcohol isolate. Phytochemistry, 54(8), 897-899 (2000).
87.Lee, C. K., Lu, C. K., Kuo, Y. H., Chen, J. Z., and Sun, G. Z., New prenylated flavones from the roots of Ficus beecheyana. J. Chin. Chem. Soc., 51(2), 437-441 (2004).
88.Aresta, M., and Quaranta, E., Role of the macrocyclic polyether in the synthesis of N-alkylcarbamate esters from primary amines, CO2 and alkyl halides in the presence of crown-ethers. Tetrahedron, 48(8), 1515-1530 (1992).
89.Bazin, M. A., Kihel, L. E., Jouanne, M., Lancelot, J. C., and Rault, S., Synthesis of new avenalumic carboxamide derivatives in the ferulic series. Synth. Commun., 38(22), 3947-3959 (2008).
90.Gopalakrishnan, S., Subbarao, G. V., Nakahara, K., Yoshihashi, T., Ito, O., Maeda, I., Ono, H., and Yoshida, M., Nitrification inhibitors from the root tissues of Brachiaria humidicola, a tropical grass. J. Agric. Food Chem., 55(4), 1385-1388 (2007).
91.Mitra, A. K., De, A., and Karchaudhuri, N., Application of microwave irradiation techniques for the syntheses of cinnamic acids by doebner condensation. Synth. Commun., 29(4), 573-581 (1999).
92.Kitagawa, T., Kawaguchi, M., and Ikiuchi, M., An improved method for the synthesis of arylacetonitriles from 3-aryl-2-hydroxyiminopropionic acids using 1,1''-oxalyldiimidazole. Chem. Pharn. Bull., 39(1), 187-189 (1991).
93.Narsaiah, A. V., and Nagaiah, K., An efficient and improved method for the preparation of nitriles from primary amides and aldoximes. Adv. Synth. Catal., 346(11),1271-1274 (2004).
94.Lee, C. K., and Chang, M. H., The chemical constituents from the heartwood of Eucalyptus citriodora. J. Chin. Chem. Soc., 47(3), 555-560 (2000).
95.Jong, T. T., and Jean, M. Y., Constituents of Houttuyniae cordata and crystal structure of vomifoliol. J. Chin. Chem. Soc., 40(4), 399-402 (1993).
96.Li, P., Takahashi, K., Matsuura, H., and Yoshihara, T., Novel potato micro-tuber-inducing compound, (3R,6S)-6-hydroxylasiodiplodin, from a strain of Lasiodiplodia theobromae. Biosci. Biotechnol. Biochem., 69(8), 1610-1612 (2005).
97.Xin, X. L., Aisa, H. A., and Wang, H. Q., Flavonoids and phenolic compounds from seeds of the chinese plant Nigella glandulifera. Chem. Nat. Compd., 44(3), 368-369 (2008).
98.Bashir, N. B., Phythian, S. J., Reason, A. J., and Roberts, S. M., Enzymatic esterification and de-esterification of carbohydrates: synthesis of a naturally occurring rhamnopyranoside of p-hydroxybenzaldehyde and a systematic investigation of lipase-catalysed acylation of selsected arylpyranosides. J. Chem. Soc., Perkin Trans. 1, (18), 2203-2222 (1988).
99.Wang, Y., Ouyang, G., Zhang, J., Wang, Z., A DNA-templated catalyst: the preparation of metal-DNA nanohybrids and their application in organic reactions. Chem. Commun., 46(42), 7912-7914 (2010).
100.Akhbari, K., and Morsali, A., Thermal, fluorescence, structural and solution studies of a thallium(I) one-dimensional coordination polymer with 4-aminobenzoate (AB–), [Tl (μ4-AB)]n. J. Organomet. Chem., 692(23), 5141-5146 (2007).
101.Samsonowicz, M., Hrynaszkiewicz, T., Świsłocka, R., Regulska, E., and Lewandowski, W., Experimental and theoretical IR, Raman, NMR spectra of 2-, 3- and 4-aminobenzoic acids. J. Mol. Struct., 744-747, 345-352 (2005).
102.Takano, S., Ohkawa, T., Tamori, S. Satoh, S., and Ogasawara, K., Enantio-controlled route to the furofuran lignans: the total synthesis of (-)-sesamolin, (-)-sesamin, and (-)-acuminatolide. J. Chem. Soc., Chem. Commun., (3), 189-191 (1988).
103.Haslam, E., The stereochemistry of sesamolin. J. Chem. Soc. (C), (17), 2332-2334 (1970).
104.Kijima, H., Ide, T., Otsuka, H., Ogimi, C., Hirata, E., Takushi, A., and Takeda, Y., Water-soluble phenolic glycosides from leaves of Alangium premnifolium. Phytochemistry, 44(8), 1551-1557 (1997).
105.Kawahara, E., Fujii, M., Kato, K., Ida, Y., and Akita, H., Chemoenzymatic synthesis of naturally occurring benzyl 6-O-glycosyl-β-D-glucopyranosides. Chem. Pharm. Bull., 53(8), 1058-1061 (2005).
106.Otsuka, H., Takeda, Y., and Yamasaki, K., Xyloglucosides of benzyl and phenethyl alcohols and Z-hex-3-en-1-ol from leaves of Alangium platanifolium var. trilobum. Phytochemistry, 29(11), 3681-3683 (1990).
107.Laurent, P., Lebrun, B., Braekman, J. C., Daloze, D., and Pasteels, J. M., Biosynthetic studies on adaline and adalinine, two alkaloids from ladybird beetles (coleoptera: coccinellidae). Tetrahedron, 57(16), 3403-3412 (2001).
108.Chen, Y. H., Chang, F. R., Lu, M. C., Hsieh, P. W., Wu, M. J., Du, Y. C., and Wu, Y. C., New benzoyl glucosides and cytotoxic pterosin sesquiterpenes from Pteris ensiformis Burm. Molecules, 13(2) 255-266 (2008).
109.Noto, R., Lamartina, L., Arnone, C., and Spinelli, D., An analysis of 13C nuclear magnetic resonance substituent chemical shifts in 3-substituted thiophene-2-carboxylic and 2-substituted benzoic acids by linear free energy relationships. J. Chem. Soc., Perkin Trans. 2, (6), 887-892 (1988).
110.Leont''eva, V. G., Modonova, L. D., and Tyukavkina, N. A., Lignans from Abies nephrolepis and Picea ajanensis. Chem. Nat. Compd., 9(2), 252-253 (1973).
111.Murzagaliev, U. M., Chumbalov, T. K., Nurgalieva, G. M., and Tegisbaev, E. T., Quercetin, isoquercitrin, and apocynin from apocynum lancifolium and A. pictum. Chem. Nat. Compd., 9(3), 404 (1973).
112.Parkin, K. L., and Xiao, H., Isolation and identification of potential cancer chemopreventive agents from methanolic extracts of green onion (Allium cepa). Phytochemistry, 68(7), 1059-1067 (2007).
113.Asghar, S. F., Rehman, H., Rahman, A. and Choudhary, M. I., Phytochemical investigations on Iris germanica. Nat. Prod. Res., 24(2), 131-139 (2010).
114.Duarte, N., Ferreira, M. J. U., Lagaspholones A and B: two new jatropholane-type diterpenes from Euphorbia lagascae. Org. Lett., 9(3), 489-492 (2007).
115.Nakabayashi, R., Kusano, M., Kobayashi, M., Tohge, T., Yonekura-Sakakibara, K., Kogure, N., Yamazaki, M., Kitajima, M., Saito, K., and Takayama, H., Metabolomics-oriented isolation and structure elucidation of 37 compounds including two anthocyanins from Arabidopsis thaliana. Phytochemistry, 70(8), 1017-1029 (2009).
116.Yamazaki, K., Nakamura, Y., and Kondo, Y., Solid-phase synthesis of indolecarboxylates using palladium-catalyzed reactions. J. Org. Chem., 68(15), 6011-6019 (2003).
117.Wu, T. S., Leu, Y. L., and Chan, Y. Y., Aristolochic acisds as a defensive substance for the aristolochiaceous plant-feeding swallowtail butterfly, Pachliopta aristolochiae interpositus. J. Chin. Chem. Soc., 47(1), 221-226 (2000).
118.West, K. A., and Hibbert, H., Studies on lignin and related compounds. LXIV. Synthesis and properties of 3-hydroxy-1-(4-hydroxy-3-methoxy phenyl)-1-propanone. J. Am. Chem. Soc., 65(6), 1170-1172 (1943).
119.Luo, J. R., Jiang, H. E., Zhao, Y. X., Zhou, J., and Qian, J. F., Components of the heartwood of Populus euphratica from an ancient tomb. Chem. Nat. Compd., 44(1), 6-9 (2008).
120.Karonen, M., Hämäläinen, M., Nieminen, R., Klika, K. D., Loponen, J., Ovcharenko, V. V., Moilanen, E., and Pihlaja, K., Phenolic extractives from the bark of Pinus sylvestris L. and their effects on inflammatory mediators nitric oxide and prostaglandin E2. J. Agric. Food Chem., 52(25), 7532-7540 (2004).
121.Scott, A. I., Interpretation ultraviolet spectra of natural products, 2nd ed., New York : Pergamon Press (1964).
122.林義恭,台灣的黑芝麻生產概要,雜糧與畜產,301,18-21 (1997)。
123.並木滿夫,蘇正德編譯,吃芝麻好處多多,暖流出版社,台北市 (2000)。
124.Tashiro, T., Fukuda, Y., Osawa, T., and Namiki, M., Oil and minor components of ssesame (Sesamum indicum L.) strains. J. Am. Oil Chem. Soc., 67(8), 508-511 (1990).
125.蔡世勇,芝麻油之特性及製程介紹,食品工業,上海市,24(9),33-39 (1992)。
126.Fukuda, T. Food chemical studies on the antioxidants in sesame seed. Nippon Shokuhin Kogyo Gakkaishi., 35, 484-492 (1990).
127.Chu, Y. H., A comparative study of analytical methods for evaluation of soybean oil quality. J. Am. Oil Chem. Soc., 68(6), 379-384 (1991).
128.Kamal-Eldin, A., and Appelqvist, L. A., Variation in fatty acid composition of the different acyl lipids in seed oils from four sesame species. J. Am. Oil Chem. Soc., 71(2), 135-139 (1994).
129.Mohamed, H. M. A., and Awatif, I. I., The use of sesame oil unsaponifiable matter as a natural antioxidant. Food Chem., 62(3), 269-279 (1998).
130.許鴻源,陳玉盤,許順吉,許照信,陳建志,張憲昌,簡明藥材學,新醫藥出版社,台北市 (1985)。
131.李時珍,御史編譯,本草綱目,大地出版社,台北市,279 (2008).
132.清水昌,世界性的健康食品「芝麻」,牧村圖書有限公司,台北市 (2001)。
133.蕭培根,連文琰,原色中藥源植物圖鑑(下冊),南天書局出版社,台北市,437 (1998)。
134.Namiki, M., The chemistry and physiological functions of sesame. Food Rev. Int., 11(2), 281-329 (1995).
135.Kamal, E. A., Pettersson, D., and Appelqvist, L. A., Sesamin (a compound from sesame oil) increases tocopherol levels in rats fedad libitum. Lipids, 30(6), 499-505 (1995).
136.Kang, M. H., Naito, M., Tsujihara, N., and Osawa, T., Sesamolin inhibits lipid peroxidation in rat liver and kidney. J. Nutr., 128(6), 1018-1022 (1998).
137.Kaur, I. P., and Saini, A., Sesamol exhibits antimutagenic activity against oxygen species mediated mutagenicity. Mutat. Res., 470(1), 71-76 (2000).
138.Hirose, N., Doi, F., Ueki, T., Akazawa, K., Chijiiwa, K., Akimoto, K., Sugano, M., Shimizu, S., and Yamada, H., Suppressive effects of sesamin against 7,12-dimethylbenz[a]-anthracene induced rat mammary carcinogenesis. Anticancer Res., 12, 1259-1266 (1992).
139.Chavali, S. R., Utsunomiya, T., and Forse, R. A., Increased survival after cecal ligation and puncture in mice consuming diets enriched with sesame seed oil. Crit. Care Med., 29(1), 140-143 (2001).
140.洪秋雅,攝取芝麻對倉鼠脂質代謝之影響,輔仁大學食品營養所碩士論文,台北 (2000)。
141.Kang, M. H., Naito, M., Sakai, K., Uchida, K., and Osawa, T., Mode of action of sesame lignans in protecting low density lipoprotein against oxidative damage in vitro. Life Sci., 66(2), 161-171 (200).
142.Nakano, D., Itoh, C., Ishii, F., Kawanishi, H., Takaoka, M., Kiso, Y., Tsuruoka, N., Tanaka, T., and Matsumura, Y., Effects of sesamin on aortic oxidative stress and endothelial dysfunction in deoxycorticosterone acetate-salt hypertensive rats. Biol. Pharm. Bull., 26(12), 1701-1705 (2003).
143.Akimoto, K., Kitagawa, A., Akamatsu, T., Hirose, N., Sugano, M., Shimizu, S., and Yamada, H., Protective effects of sesamin against liver damage caused by alcohol or carbon tetrachloride in rodents. Ann. Nutr. Meta., 37(4), 218-224 (1993).
144.Kamal-Eldin, A., and Yousif, G., A furofuran lignan from Sesamun alatum. Phytochemistry, 31(8), 2911-2912 (1992).
145.Potterat, O., Msonthi, J. D., and Hostettmann, K., Four iridoid glucosides and a phenylpropanoid glycoside from Sesamun angolense. Phytochemistry, 27(2), 2677-2679 (1988).
146.Suzuki, N., Miyase, T., and Ueno, A., Phenylethanoid glycosides of Sesamun indicum. Phytochemistry, 34(3), 729-732 (1993).
147.Marchand, P. A., Kato, M. J., and Lewis, N. G., (+)-Episesaminone, a Sesamum indicum furofuran lignan. Isolation and hemisynthesis. J. Nat. Prod., 60(11), 1189-1192 (1997).
148.Osawa, T., Nagata, M., Namiki, M., and Fukuda, Y., Sesamolinol, a novel antioxidant isolated from sesame seeds. Agric. Biol. Chem., 49(11), 3351-3352 (1985).
149.Moazzami, A. A., Andersson, R. E., and Kamal-Eldin, A., HPLC analysis of sesaminol glucosides in sesame seeds. J. Agric. Food Chem., 54(3), 633-638 (2006).
150.Jain, S. C., Isolation of pedaliin from Sesamum indicum L., tissue cultures. Agric. Biol. Chem., 45(9), 2127 (1981).
151.Kobaysahi, S., Watanabe, J., Kawabata, J., Fukushi, E., and Shinmoto, H., A novel method for producing a foodstuff from defatted black sesame seed that inhibits allergen absorption. Biosci. Biotechnol. Biochem., 68(2), 300-305 (2004).
152.Moazzami, A. A., Andersson, R. E., and Kamal-Eldin, A., Characterization and analysis of sesamolinol diglucoside in sesame seeds. Biosci. Biotechnol. Biochem., 70(6), 1478-1481 (2006).
153.Grougnet, R., Magiatis, P., Mitaku, S., Terzis, A., Tillequin, F., and Skaltsounis, A. L., New lignans from the perisperm of Sesamum indicum. J. Agric. Food Chem., 54(20), 7570-7574 (2006).
154.Furumoto, T., Iwata, M., Hasan, A. F. M. F., and Fukui, H., Anthrasesamones from roots of Sesamun indicum. Phytochemistry, 64(4), 863-866 (2003).
155.Hasan, A. F. M. F., Furumoto, T., Begum, S., and Fukui, H., Hydroxysesamone and 2,3-epoxysesamone from roots of Sesamun indicum. Phytochemistry, 58(8), 1225-1228 (2001).
156.Hasan, A. F. M. F., Begum, S., Furumoto, T., and Fukui, H., A new chlorinated red naphthoquinone from roots of Sesamun indicum. Biosci. Biotechnol. Biochem., 64(4), 873-874 (2000).
157.Furumoto, T., Takeuchi, A., and Fukui, H., Anthrasesamones D and E from Sesamun indicum roots. Biosci. Biotechnol. Biochem., 70(7), 1784-1785 (2006).
158.Krishnaswamy, N. R., Rao, G. N., and Omana, P., Lipids and flavonoids from Sesamum laciniatum Klein. Indian J. Chem., 34B, 750-752 (1995).
159.Abe, F., Yahara, S., Kubo, K., Nonaka, G., Okabe, H., and Nishioka, I., Studies on Xanthoxylum spp. II. Constituents of the bark of Xanthoxylum piperitum DC. Chem. Pharm. Bull., 22(11), 2650-2655 (1974).
160.Yamauchi, S., Ina, T., Kirikihira, T., and Masuda, T., Synthesis and antioxidant activity of oxygenated furofuran lignans. Biosci. Biotechnol. Biochem., 68(1), 183-192 (2004).
161.Kuo, P. C., Lin, M. C., Chen, G. F., Yiu, T. J., and Tzen, J. T. C., Identification of methanol-soluble compounds in sesame and evaluation of antioxidant potential of its lignans. J. Agric. Food Chem., 59(7), 3214-3219 (2011).
162.Maiti, G., Adhikari, S., and Roy, S. C., Ster32eoselective total synthesis of (+)-samin and dimethoxy analogue, the general furofuran lignan precursors. Tetrahedron, 51(30), 8389-8396 (1995).
163.Katsui, N., Matsue, H., Hirata, T., and Masamune, T., Phytosterols and triterpenes in the roots of the“kidney bean”(Phaseolus vulgaris L.). Bull. Chem. Soc. Jpn., 45(1), 223-226 (1972).
164.Lin, R. W., Tsai, I. L., Duh, C. Y., Lee, K. H., and Chen, I. S., New lignans and cytotoxic constituents from Wikstroemia lanceolata. Planta Med., 70(3), 234-238 (2004).
165.Saladino, R., Fiani, C., Crestini, C., Argyropoulos, D. S., Marini, S., and Coletta, M., An efficient and stereoselective dearylation of asarinin and sesamin tetrahydrofurofuran lignans to acuminatolide by methyltrioxorhenium/H2O2 and UHP systems. J. Nat. Prod., 70(1), 39-42 (2007).
166.Alam, A., and Tsuboi, S., Total synthesis of 3,3′,4-tri-O-methylellagic acid from gallic acid. Tetrahedron, 63(42), 10454-10465 (2007).
167.Ramos, C. S., Vanin, S. A., and Kato, M. J., Metabolism of (-)-grandisin from Piper solmsianum in Coleoptera and Lepidoptera species. Phytochemistry, 69(11), 2157-2161 (2008).
168.Kamaya, Y., Fukaya, Y., and Suzuki, K., Acute toxicity of benzoic acids to the crustacean Daphnia magna. Chemosphere, 59(2), 255-261 (2005).
169.Pettit, G. R., Melody, N., Thornhill, A., Knight, J. C., Groy, T. L., and Herald, C. L., Antineoplastic agents. 579. Synthesis and cancer cell growth evaluation of E-stilstation 3: a resveratrol structural modification. J. Nat. Prod., 72(9), 1637-1642 (2009).
170.Fecher, R., Codington, J. F., and Fox, J. J., Pyrimidine nucleosides. IX. Facile synthesis of 1-β-D-lyxofuranosyluracil via 2,3′-anhydrolyxosyl intermediates. J. Am. Chem. Soc., 83(8), 1889-1895 (1961).
171.Wang, C. Y., Han, L., Kang, K., Shao, C. L., Wei, Y. X., Zheng, C. J., and Guan, H. S., Secondary metabolites from green algae Ulva pertusa. Chem. Nat. Compd., 46(5), 828-830 (2010).
172.Ptasińska, S., Candori, P., Denifl, S., Yoon, S., Grill, V., Scheier, P., and Märk, T. D., Dissociative ionization of the nucleosides thymidine and uridine by electron impact. Chem. Phys. Lett., 409(4-6), 270-276 (2005).
173.Mori, T., Okamoto, K., Endo, H., Hill, J. P., Shinoda, S., Matsukura, M., Tsukube, H., Suzuki, Y., Kanekiyo, Y., and Ariga, K., Mechanical Tuning of molecular recognition to discriminate the single-methyl-group difference between thymine and uracil. J. Am. Chem. Soc., 132(37), 12868-12870 (2010).
174.Sang, S., Kikuzaki, H., Lapsley, K., Rosen, R. T., Nakatani, N., and Ho, C. T., Sphingolipid and other constituents from almond nuts (Prunus amygdalus Batsch). J. Agric. Food Chem., 50(16), 4709-4712 (2002).
175.Zhang, A. L., Zhao, X. N., Chen, H., Liu, L. P., Konishi, Y., and Gao, J. M., Chemical constituents from the ascomycetous fungus Tuber indicum. Chem. Nat. Compd., 43(3), 349-350 (2007).
176.Hayat, S., Atta-ur-Rahman, Choudhary, M. I., Khan, K. M., and Abbaskhan, A., Two new cinnamic acid esters from marine brown alga Spatoglossum variabile. Chem. Pharm. Bull., 50(9), 1297-1299 (2002).
177.Ferreira, F. P., and de Oliveira, D. C. R., New constituents from Mikania laevigata Shultz Bip. ex Baker. Tetrahedron Lett., 51(52), 6856-6859 (2010).
178.Roy, S. K., Roy, S. C., and Rao, H. S., The anomalous behaviour of isoquinoline relative to quinoline and its significance in relation to structure and reactivity. J. Appl. Chem. Biotechnol., 23(5), 363-373 (1973).
179.Ding, H. Y. Wu, Y. C., Lin, H. C., Chan, Y. Y., Wu, P. L., and Wu, T. S., Glycosides from Paeonia suffruticosa. Chem. Pharm. Bull., 47(5), 652-655 (1999).
180.Hou, R. C. M., Huang, H. M., Tzen, J. T. C., and Jeng, K. C. G., Protective effects of sesamin and sesamolin on hypoxic neuronal and PC12 cells. J. Neurosci. Res., 74(37), 123-133 (2003).
181.Yu, H. J., Chen, C. C., and Shieh B. J., The constituents from the leaves of Magnolia coco. J. Chin. Chem. Soc., 45(6), 773-778 (1998).
182.Singh, P., Faridi, U., Srivastava, S., Kumar, J. K., Darokar, M. P., Luqman, S., Shanker, K., Chanotiya, C. S., Gupta, A., Gupta, M. M., and Negi, A. S., Design and synthesis of C-Ring lactone-and lactam-based podophyllotoxin analogues as anticancer agents. Chem. Pharm. Bull., 58(2), 242-246 (2010).
183.Fridovic, I., The biology of oxygen radicals. Science, 201(4359), 875-880 (1978).
184.Shimada, K., Fujikawa, K., Yahara, K., and Nakamure, T., Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion. J. Agric. Food Chem., 40(6), 945-948 (1992).
185.Fontanam M., Mosca, L., and Rosei, M. A., Interaction of enkephalins with oxyradicals. Biochem. Pharmacol., 61(10), 1253-1257 (2001).
186.Yen, G. C., Duh, P. D., and Chuang, D. Y., Antioxidant activity of anthraquinones and anthrone. Food Chem., 70(4), 437-441 (2000).
187.Liu, J. R., Chen, M. J., and Lin, C. W., Antimutagenic and antioxidant properties of milk-kefir and soymilk-kefir. J. Agric. Food Chem., 53(7), 2467-2474 (2005).
188.黃振文,十字花科蔬菜炭疽病菌之生物特性與防治,國立中興大學植物病理學系,台中市 (2009)。
189.黃鴻章,黃振文,謝廷芳,永續農業之植物病害管理,國立中興大學植物病理學系,台中市,250 (2008)。
190.顏焜,原色常用中藥圖鑑,南天書局,台北市,197 (2005)。
191.梁文俐,市售五倍子品質及抗菌活性之探討,行政院衛生署中醫藥委員會,九十一年度委託研究計畫成果報告,台北市 (2002)。
192.林煥哲,小本山葡萄及羅氏鹽膚木蟲癭之成分研究,臺北醫學院藥學研究所碩士論文,台北市 (1998)。
193.http://www.zysj.com.cn/zhongyaocai/yaocai_d/dingxiang.html
194.葉春利,常見中草藥,千代出版社,台北市,32-33 (1990)。
195.http://baike.baidu.com/view/41891.htm
196.謝明村,中國藥材學,國立編譯館,台北市,417 (1988)。
197.蕭培根,連文琰,原色中藥原植物圖鑑(上冊),南天出版社,台北市,66 (1998)。
198.本草綱目彩色藥圖(上卷),薪傳出版社,台北市,309 (2001)。
199.盧艷花,中藥有效成分提取分離實例,化學工業出版社,生物、醫藥出版分社,北京市,107 (2007)。
200.謝明村,中國藥材學,國立編譯館,台北市,53 (1988)。
201.蕭培根,連文琰,原色中藥原植物圖鑑(上冊),南天出版社,台北市,72 (1998)。
202.本草綱目彩色藥圖(上卷),薪傳出版社,台北市,321 (2001)。
203.顏焜熒,原色常用中藥圖鑑,南天書局,台北市,113 (1980)。
204.成春喜,耿芹,HPLC法測定從五倍子提取的單寧酸中焦性沒食子酸的含量,化學與生物工程,24(4),73-74 (2007)。
205.Lu, J. J., Wei, Y., and Yuan, Q. P., Preparative separation of gallic acid from Chinese traditional medicine by high-speed counter-current chromatography and followed by preparative liquid chromatography. Sep. Purif. Technol., 55(1), 40-43 (2007).
206.Silva, A. A., Nascimento, E. S., P., Cardoso, D. R., and Franco, D. W., Coumarins and phenolic fingerprints of oak and Brazilian wood extracted by sugarcane spirit. J. Sep. Sci., 32(22), 3681-3691 (2009).
207.余小平,RP-HPLC法測定中藥丁香中丁香酚的含量,中華中醫藥學刊,27(4), 880-881 (2009)。
208.He, Z. D., Qiao,C. F., Han, Q. B., Cheng, C. L., Xu, H. X., Jiang, R. W., But, P. P. H., and Shaw, P. C., Authentication and quantitative analysis on the chemical profile of cassia bark (Cortex cinnamomi) by high-pressure liquid chromatography. J. Agric. Food Chem., 53(7), 2424-2428 (2005).
209.謝廷芳,花卉真菌性病害之診斷,植物重要防疫檢疫病害診斷鑑定技術研習會專刊(三),台北市,1-22 (2004)。
210.http://pesticide.baphiq.gov.tw/web/Insecticides_MenuItem5_3_UseRange.aspx?id=F226


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top