跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.62) 您好!臺灣時間:2025/11/16 05:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:游旻憲
研究生(外文):Ming-Hsien Yu
論文名稱:一些非對稱的去線性趨勢的完全區集設計
論文名稱(外文):Some Non-Strongly Linear Trend-Free Complete Block Designs
指導教授:林文欽林文欽引用關係
指導教授(外文):W.-C. Lin
學位類別:碩士
校院名稱:逢甲大學
系所名稱:統計與精算所
學門:數學及統計學門
學類:統計學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:85
中文關鍵詞:A 最佳設計空間趨勢共變異數分析區集設計時間趨勢
外文關鍵詞:A-optimalblock designANCOVAtime-trendspace-trend
相關次數:
  • 被引用被引用:0
  • 點閱點閱:211
  • 評分評分:
  • 下載下載:8
  • 收藏至我的研究室書目清單書目收藏:0
一個區集的實驗設,若有趨勢存在,則我們可以考慮每個區集內的趨勢是否相同 ,且為何種趨勢,如 : 倒數趨勢、線性趨勢,…,等等。為了去除趨勢所造成處理比較的影響,我們可以選擇共變異數分析,來探討處理比較的變異數問題。另外,在不改變處理-區集的發生矩陣 N ,適當地安排處理給區集內的實驗單元,則可以找到最佳的趨勢區集設計,使得趨勢對估計的影響最低。

當一個完全的區集設計,假設有線性(p=1)趨勢存在且考慮每個區集內的趨勢皆相同時,除了已知可以使其轉成對稱的去線性趨勢設計外,我們探討使其轉成非對稱的去線性趨勢設計,並且解決了,k是奇數且b=3時,可以找到區集實驗單元位置的組合效果為0的情況,再利用系統相異元素代表系統(systems of distinct representatives)來指派處理給區集內的實驗單元,而得到非對稱的去線性趨勢的完全區集設計。
第一章 緒論…1
1.1 背景介紹…1
1.2 區集設、去趨勢和去線性趨勢的區集設計…3
1.3 實例分析…8
1.4 最佳的趨勢區集設計…16
第二章 去趨勢區集設計的文獻回顧…19
2.1 去線性趨勢區集設計的文獻探討…19
2.2 可轉成去線性趨勢的特殊區集設計…22
2.3 去趨勢區集設計的最近發展…23
第三章 一些非對稱的去線性趨勢的完全區集設計…25
3.1 對稱與非對稱的去線性趨勢區集設計…25
3.2 k 為奇數時,存在非對稱的去線性趨勢區集設計的必要條件…29
3.3 k 為奇數且 b=3 時,非對稱的去線性趨勢的完全區集設計…31
第四章 結論與尚待解決的問題…38

參考文獻…39

附錄: 一些非對稱的去線性趨勢的完全區集設計…42
[1] Agrawal, H. (1966). Some generalizations of distinct representatives with applications to statistical designs. Annals of Mathematical Statistics 37, 525-528.[2] Atkinson, A.C. and Donev, A.N. (1996). Experimental designs optimally balanced for trend. Technometrics 38, 333-341.[3] Besag, J. and Higdon, D. (1999). Bayesian analysis of agricultural field experiments (with discussion). Journal of the Royal StatisticalSociety Ser. B 61, 691-746.[4] Box, G.E.P. (1952). Multi-factor designs of first order. Biometrika 39, 49-57.[5] Bradley, R.A. and Yeh, C.M. (1980). Trend-free block designs: Theory. The Annals of Statistics 8, 883-893.[6] Bradley, R.A. and Yeh, C.M. (1983). Trend-free block designs: Existence and construction results. Communications in Statistics-Theory and Methods 12, 1-24.[7] Bradley, R.A. and Yeh, C.M. and Notz, W.I. (1985). Nearly trend-free block designs. Journal of the American Statistical Assocation 80, 985-992.[8] Cameron, P.J. (1994). Combinatorics:Topics techniques algorithms. Cambridge University Press.[9] Chai, F.S. and Majumdar, D. (1993). On the Yeh-Bradley conjecture on linear trend-free Block designs. The Annals of Statistics 21, 2087-2097.[10] Chai, F.S. (1995). Construction and optimality of nearly linear trend-free designs. Journal of Statistical Planning and Inference 48, 113-129.[11] Chai, F.S. and Stufken, J. (1999). Trend-free block designs for higher order trends. Utilitas Mathematica 56, 65-78.[12] Cheng, C.S. and Jacroux, M. (1988). The construction of trend-free run orders of two-level factorial designs. Journal of the American Statistical Assocation 83, 1152-1158.[13] Cheng, C.S. and Coster, D.C. (1988). Minimum cost trend-free run orders of fractional factorial designs. The Annals of Statistics 16, 1188-1205.[14] Coster, D.C. (1993a). Trend-free run orders of mixed-level fractional designs. The Annals of Statistics 21, 2072-2086.[15] Cox, D.R. (1951). Some systematic experimental designs. Biometrika 38, 312-323.[16] Cox, D.R. (1952). Some recent work on systematic experimental designs. Journal of the Royal Statistical Society Ser. B 14, 211-219.[17] Dey, A. and Mukerjee, R. (1999). Fractional Factorial Plans. John Wiley and Sons, Inc.[18] Federer, W.T. and Schlottfeldt, C.S. (1954). The use of covariance to control gradients in experimental. Biometrics 10, 282-290.[19] Hall, P. (1935). On representatives of subsets. Journal of Mathematic Society 10, 26-30.[20] Hinkelmann, K. and Jinnam, J. (1998). Linear trend-free Box-Behnken designs. Journal of Statistical Planning and Inference 72, 347-354.[21] Hwang C.C. and Chai F.S.(1994). Construction and optimality of trend-free versions of PBIB designs. NationalChengchi University Press.[22] Jacroux, M. and Majumdar, D. and Shah, K. (1995). Efficient block designs in the presence of trends. Statistica Sinica 5, 605-615.[23] Jacroux, M. and Majumdar, D. and Shah, K. (1997). On the determination and construction of optimal block designs in the presence of lineartrends. Journal of the American Statistical Association 92, 375-382.[24] Jacroux, M. and R. Saharay (1990). On the construction of trend free row-column 2-level factorial experiments. Metrika 37, 163-180.[25] Jo, J. and Hinkelmann, K. (1998). Linear trend-free Box-Behnken designs. Journal of Statistical Planning and Inference 72, 347-354.[26] Lin, M. and Dean, A.M. (1991). Trend-free block designs for varietal and factorial experiments. The Annals of Statistics 19, 1582-1596.[27] Lin W.-C. and Stufken, J. (1999). On finding trend-free block designs. Journal of Statistical Planning and Inference 78, 57-70.[28] Lin W.-C. and Stufken, J. (2000). Strongly linear trend-free block designs and 1-factors of representative graphs. Journal of Statistical Planning and Inference, accepted.[29] Mead, R. (1988). The Design of Experiments. Cambridge University Press.[30] Mukhopadhyay, A.C. (1972). Construction of BIBD''s from OA''s and combinatorial arrays analogous to OA''s. Calcutta Statistical Association Bulletin 21, 45-50.[31] Phillips, J.P.N. (1968). Methods of constructing one-way and factorial designs balanced for trend. Applied Statistics 17, 162-170.[32] Rao, C.R. (1961). Combinatorial arrangements anlogous to OA''s. Sankhya Ser. A 23, 283-286.[33] Stufken, J. (1988). On the existence of linear trend-free block designs. Communications in Statistics-Theory and Methods 17, 3857-3863.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top