跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.172) 您好!臺灣時間:2025/09/11 09:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:沈姵妏
研究生(外文):SHEN, PEI-WUN
論文名稱:石墨氮化物/二氧化錳絲網印刷碳電極檢測亞硝酸鹽研究與二硫化鎳/氧化石墨烯修飾玻璃碳電極在河水中檢測4-羥基硝基苯
論文名稱(外文):Nitride graphite / manganese dioxide screen-printed carbon electrode nitrite detection and the detection of 4-hydroxynitrobenzene in river water by nickel disulfide/graphene oxide glassy carbon electrode
指導教授:陳生明
指導教授(外文):CHEN, SHENG-MING
口試委員:黃國林曾添文陳生明駱碧秀
口試委員(外文):HUANG,GUO-LINTSENG,TIAN-WENCHEN, SHENG-MINGLUO,BI-SHIOU
口試日期:2019-06-21
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:化學工程與生物科技系化學工程碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:63
中文關鍵詞:石墨碳氮化物二氧化錳亞硝酸鹽食品分析二硫化鎳4-羥基硝基苯氧化石墨烯
外文關鍵詞:Graphite carbonitridemanganese dioxidenitritefood analysisnickel disulfide4-hydroxynitrobenzenegraphene oxide
相關次數:
  • 被引用被引用:0
  • 點閱點閱:244
  • 評分評分:
  • 下載下載:61
  • 收藏至我的研究室書目清單書目收藏:0
第一部份:在本研究中,利用簡單、環保的水熱法,來製備多孔性質的石墨碳氮化物/二氧化錳奈米複合材料(GCN / MnO2),將它修飾於絲網印刷碳電極(Screen printed carbon electrode,SPCE),並首次應用於亞硝酸鹽的電化學檢測,該奈米複合材料電極快速且靈敏的檢測效能,有助於亞硝酸鹽電化學檢測上的發展。此實驗中,採用各種物理化學技術檢測性質:X射線繞射分析(XRD),傅里葉轉換紅外光譜(FT-IR),X-射線光電子光譜(XPS),N2吸附-脫附等溫線,場發射掃描式電子顯微鏡(FE-SEM)和高解析場發射穿透式電子顯微鏡(HR-TEM)對其形貌和結構性質進行了驗證;再來使用循環伏安法(CV)、電化學阻抗光譜(EIS)和微分脈衝伏安法(DPV)中,研究了石墨氮化物/二氧化錳修飾絲網印刷碳電極,對亞硝酸鹽的氧化還原性能。在研究中顯示,GCN / MnO2修飾電極具有高靈敏度¬(24.1777 μA µM-1 cm-2)、低檢測限(1.23 nM),以及線性範圍廣(0.01–1520 μm),並且在實際樣品 (腐爛牛肉、自來水、飲水機過濾水)的檢測中,顯示良好的電催化特性,同時具有良好的抗干擾性質,這代表其具有高度實用的價值,可應用於食品安全相關的檢測上。

第二部份:本研究中,先使用簡單的水熱法,合成二硫化鎳/氧化石墨烯(NiS2 / GO)的奈米複合材料,並修飾玻璃探電極,進一步用於檢測毒性物質4-羥基硝基苯(4-HNB)的電化學感測中。在實驗中,通過X射線繞射(XRD)、X-射線光電子光譜(XPS)先確定奈米材料的基團,再使用高解析場發射穿透式電子顯微鏡(HR-TEM)對奈米複合材料的外觀進行研究;接著也利用循環伏安法(CV)、微分脈衝伏安法(DPV)來驗證二硫化鎳/氧化石墨烯修飾玻璃探電極(NiS2 / GO-GCE)的電化學性能,與未修飾的玻璃碳電極(GCE)相比,該電極對於4-HNB的感測性能非常顯著,同時測出的感測器具有寬廣線性範圍(0.1000-1053 μM),和極低的檢測極限(59.5 nM)。另一方面,真實河水樣品的檢測,也有96%以上的檢出率,這表示NiS2 / GO-GCE非常適合應於真實水質的毒物檢測中。

Part I:In this study, a simple and environmentally friendly hydrothermal method was used to prepare a porous graphite carbonitride/manganese dioxide nanocomposite (GCN/MnO2), which was modified on a screen printed carbon electrode(SPCE), and for the first time applied to the electrochemical detection of nitrite, the rapid and sensitive detection efficiency of the nanocomposite electrode is helpful for the development of nitrite electrochemical detection. In this experiment, various physical and chemical techniques were used to detect properties: X-ray diffraction analysis (XRD), Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), N2 adsorption-desorption isotherm Field emission scanning electron microscopy (FE-SEM) and high-resolution field emission transmission electron microscopy (HR-TEM) were used to verify its morphology and structural properties, using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and differential pulse voltammetry (DPV), graphite nitride/manganese dioxide modified screen-printed carbon electrodes were studied for nitrite redox performance. In the study, GCN / MnO2 modified electrodes have high sensitivity (24.1777 μA μM-1 cm-2), low detection limit (1.23 nM), and a wide linear range (0.01–1520 μm), and in actual samples (rotation) In the detection of beef, tap water and water filter, it shows good electrocatalytic properties and good anti-interference properties, which means it has high practical value and can be applied to food safety related testing.

Part II:In this study, a simple hydrothermal method was used to synthesize a nickel-nickel oxide/graphene oxide (NiS2 / GO) nanocomposite, and a glass probe was modified to further detect the toxic substance 4-hydroxynitrobenzene (4-HNB) in electrochemical sensing. In the experiment, the groups of the nanomaterials were first determined by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), and then the high-resolution field emission transmission electron microscope (HR-TEM) was used to laminate the nano composites. The appearance of the study; Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) were also used to verify the electrochemical performance of nickel disulfide/graphene oxide modified glass probe (NiS2 / GO-GCE) with unmodified glassy carbon. Compared to the electrode (GCE), the sensor's sensing performance for 4-HNB is very significant, while the measured sensor has a wide linear range (0.1000-1053 μM) and a very low detection limit (59.5 nM). On the other hand, the detection of real river water samples also has a detection rate of more than 96%, which means that NiS2 / GO-GCE is very suitable for the detection of poisons in real water quality.

摘要 i
ABSTRACT iii
致謝 v
目 錄 vi
表目錄 ix
圖目錄 x
第一章 緒論 1
1.1 電化學簡介 1
1.2 電化學分析簡介 1
1.3 修飾電極簡介 2
1.4 材料簡介 3
1.4.1 亞硝酸鹽 3
1.4.2 二氧化錳 4
1.4.3 二硫化鎳 5
1.4.4 對硝基苯酚 5
1.4.5 氧化石墨烯 5
第二章  實驗藥品、器材和分析法 7
2.1. 實驗藥品簡介 7
2.2. 實驗器材 8
2.3. 分析方法 13
2.3.1. 循環伏安法(Cyclic voltammetry,CV) 13
2.3.2. 掃描式電子顯微鏡(Scanning Electron Microscope,SEM) 14
2.3.3. 微分脈衝伏安法(Differential Pulse Voltammetry,DPV) 14
2.3.4. X-射線繞射分析(X-ray Diffraction,XRD) 15
2.3.5. 比表面積檢測法(Brunauer-Emmett-Teller Theory ) 17
2.3.6. 電化學阻抗光譜(Electrochemistry Impedance Spectroscopy,EIS) 18
2.3.7. 傅里葉轉換紅外光譜 (Fourier-transform infrared spectroscopy,FTIR) 18
第三章  石墨氮化物/二氧化錳修飾絲網印刷碳電極用於亞硝酸鹽電化學檢測 19
3.1 前言 19
3.2 實驗步驟 20
3.2.1 GCN與GCN / MnO2的合成 20
3.2.2 GCN / MnO2修飾電極的製備 21
3.3 實驗結果與討論 22
3.3.1 GCN / MnO2奈米複合材料的結構性能 22
3.3.2 電化學性能研究 29
3.3.3 GCN / MnO2奈米複合材料對亞硝酸根的電催化作用 31
3.3.4 亞硝酸鹽的測定 33
3.3.5 穩定性、重複性和再現性 35
3.3.6 真實樣品分析 36
3.4 結論 37
第四章  二硫化鎳/氧化石墨烯修飾玻璃碳電極在河水中檢測4-羥基硝基苯 38
4.1 前言 38
4.2 實驗步驟 40
4.2.1 NiS2 材料的合成 40
4.2.1 NiS2 / GO - GCE修飾電極的製備 40
4.3 實驗結果與討論 41
4.3.1 結構和形態特徵 41
4.3.2 電化學性能研究 44
4.3.3 酸鹼值的反應 47
4.3.4 4-HNB的伏安法測定 49
4.3.5 感測器的穩定性和再現性 51
4.3.6 實際樣本分析 51
4.4 結論 52
參考資料 53
1.Kumar, J.M. Gonçalves, A. Sukeri, K. Araki, M. Bertotti, Correlating surface growth of nanoporous gold with electrodeposition parameters to optimize amperometric sensing of nitrite, Sens. Actuators, B 263 (2018) 237-247.
2.Sudarvizhi, K. Pandian, O.S. Oluwafemi, S.C. Gopinath, Amperometry detection of nitrite in food samples using tetrasulfonated copper phthalocyanine modified glassy carbon electrode, Sens. Actuators, B (2018).
3.A.A. Chetty, S. Prasad, Flow injection analysis of nitrate and nitrite in commercial baby foods, Food chem.197 (2016) 503-508.
4.A.S. Ahammad, P.R. Pal, S.S. Shah, T. Islam, M.M. Hasan, M.A.A. Qasem, N. Odhikari, S. Sarker, D.M. Kim, M.A. Aziz, Activated jute carbon paste screen-printed FTO electrodes for nonenzymatic amperometric determination of nitrite, J. Electroanal. Chem. 832 (2019) 368-379.
5.Alcudia-León, M., et al., 2011. Determination of phenols in waters by stir membrane liquid–liquid–liquid microextraction coupled to liquid chromatography with ultraviolet detection. 1218, 2176-2181.
6.Bharath, G., et al., 2015. Edge-carboxylated graphene anchoring magnetite-hydroxyapatite nanocomposite for an efficient 4-nitrophenol sensor. 5, 13392-13401.
7.C. Chang, X. Yang, S. Xiang, X. Lin, H. Que, M. Li, Nitrogen and Sulfur Co-Doped Glucose-Based Porous Carbon Materials with Excellent Electrochemical Performance for Supercapacitors, J. Electrochem. Soci. 164 (2017) A1601-A1607.
8.C. Ma, Y. Qian, S. Zhang, H. Song, J. Gao, S. Wang, M. Liu, K. Xie, X. Zhang, Temperature-controlled ethanolamine and Ag-nanoparticle dual-functionalization of graphene oxide for enhanced electrochemical nitrite determination, Sens. Actuators, B 274 (2018) 441-450.
9.C. Rajkumar, B. Thirumalraj, S.-M. Chen, S. Palanisamy, Novel electrochemical preparation of gold nanoparticles decorated on a reduced graphene oxide–fullerene composite for the highly sensitive electrochemical detection of nitrite, RSC Adv. 6 (2016) 68798-68805.
10.Chen, D., et al., 2010. Graphene-based materials in electrochemistry. 39, 3157-3180.
11.Chen, J., et al., 2013. An improved Hummers method for eco-friendly synthesis of graphene oxide. 64,225-229.
12.Dong, Z., et al., 2015. Ni@ Pd core–shell nanoparticles modified fibrous silica nanospheres as highly efficient and recoverable catalyst for reduction of 4-nitrophenol and hydrodechlorination of 4- chlorophenol. 162, 372-380.
13.F. Mollarasouli, M.R. Majidi, K. Asadpour-Zeynali, Amperometric sensor based on carbon dots decorated self-assembled 3D flower-like β-Ni (OH)2 nanosheet arrays for the determination of nitrite, Electrochim. Acta 291 (2018) 132-141.
14.Geng, Q., Du, J. J. R. A., 2014. Reduction of 4-nitrophenol catalyzed by silver nanoparticles supported on polymer micelles and vesicles. 4, 16425-16428.
15.Gong, J., et al., 2012. Highly sensitive visible light activated photoelectrochemical biosensing oforganophosphate pesticide using biofunctional crossed bismuth oxyiodide flake arrays. 38, 43-49.
16.H. Che, Y. Lv, A. Liu, J. Mu, X. Zhang, Y. Bai, Facile synthesis of three dimensional flower-like Co3O4@ MnO2 core-shell microspheres as high-performance electrode materials for supercapacitors, Ceramics Inter. 43 (2017) 6054-6062.
17.H. Kodamatani, S. Yamazaki, K. Saito, T. Tomiyasu, Y. Komatsu, Selective determination method for measurement of nitrite and nitrate in water samples using high-performance liquid chromatography with post-column photochemical reaction and chemiluminescence detection, J. Chromatogr. A, 1216 (2009) 3163-3167.
18.H. Liu, K. Guo, J. Lv, Y. Gao, C. Duan, L. Deng, Z. Zhu, A novel nitrite biosensor based on the direct electrochemistry of horseradish peroxidase immobilized on porous Co3O4 nanosheets and reduced graphene oxide composite modified electrode, Sens. Actuators, B 238 (2017) 249-256.
19.H. Rao, Y. Liu, J. Zhong, Z. Zhang, X. Zhao, X. Liu, Y. Jiang, P. Zou, X. Wang, Y. Wang, Gold nanoparticle/chitosan@ N, S co-doped multiwalled carbon nanotubes sensor: fabrication, characterization, and electrochemical detection of catechol and nitrite, ACS Sustain. Chem. Eng. 5 (2017) 10926-10939.
20.H. Shao, X. Zhao, Y. Wang, R. Mao, Y. Wang, M. Qiao, S. Zhao, Y. Zhu, Synergetic activation of peroxymonosulfate by Co3O4 modified g-C3N4 for enhanced degradation of diclofenac sodium under visible light irradiation, Appl. Catal., B 218 (2017) 810-818.
21.H. Sudrajat, A one-pot, solid-state route for realizing highly visible light active Na-doped gC3N4 photocatalysts, J. Solid State Chem. 257 (2018) 26-33.
22.H. Zhang, W. Tian, L. Zhou, H. Sun, M. Tade, S. Wang, Monodisperse Co3O4 quantum dots on porous carbon nitride nanosheets for enhanced visible-light-driven water oxidation, Appl. Catal., A 223 (2018) 2-9.
23.Haldorai, Y., et al., 2016. Facile synthesis of α-MnO2 nanorod/graphene nanocomposite paper electrodes using a 3D precursor for supercapacitors and sensing platform to detect 4-nitrophenol. 222, 717-727.
24.Hu, S., et al., 2001. Voltammetric determination of 4-nitrophenol at a sodium montmorillonite21 anthraquinone chemically modified glassy carbon electrode. 54, 115-123.
25.Huang, K.-J., et al., 2015. Preparation of porous layered molybdenum selenide-graphene composites on Ni foam for high-performance supercapacitor and electrochemical sensing. 180, 770-777.
26.Ik, N. I., et al., 2016. Controlled synthesis of reduced graphene oxide supported silver nanoparticles for selective and sensitive electrochemical detection of 4-nitrophenol. 192, 392-399.
27.J. Dong, G. Lu, F. Wu, C. Xu, X. Kang, Z. Cheng, Facile synthesis of a nitrogen-doped graphene flower-like MnO2 nanocomposite and its application in supercapacitors, Appl. Surface Sci.
28.J. Wang, D. Zhao, Y. Zhang, J. Li, C. Xu, A highly sensitive sensor for the detection of nitrite based on a nanoporous Fe2O3–CoO composite, Anal. Methods 6 (2014) 3147-3151.
29.J. Zhang, Z. Zhu, J. Di, Y. Long, W. Li, Y. Tu, A sensitive sensor for trace Hg2+ determination based on ultrathin g-C3N4 modified glassy carbon electrode, Electrochim. Acta 186 (2015) 192-200.
30.J.-J. Feng, P.-P. Zhang, A.-J. Wang, Y. Zhang, W.-J. Dong, J.-R. Chen, One-pot hydrothermal synthesis of uniform β-MnO2 nanorods for nitrite sensing, J. Colloid Interface Sci. 359 (2011) 1-8.
31.J.-M. Jian, L. Fu, J. Ji, L. Lin, X. Guo, T.-L. Ren, Electrochemically reduced graphene oxide/gold nanoparticles composite modified screen-printed carbon electrode for effective electrocatalytic analysis of nitrite in foods, Sens. Actuators, B 262 (2018) 125-136.
32.Jeyapragasam, T., Ganesh, V. J. I., 2018. Molybdenum disulfide-based modifier for electrochemical detection of 4-nitrophenol. 24, 4033-4041.
33.Jiao, X. X., et al., 2013. Fabrication of graphene–gold nanocomposites by electrochemical co-reduction and their electrocatalytic activity toward 4-nitrophenol oxidation. 691, 83-89.
34.K. Wang, C. Wu, F. Wang, C. Liu, C. Yu, G. Jiang, In-situ insertion of carbon nanotubes into metal-organic frameworks-derived α-Fe2O3 polyhedrons for highly sensitive electrochemical detection of nitrite, Electrochim. Acta 285 (2018) 128-138.
35.K.M. Miranda, M.G. Espey, D.A. Wink, A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite, Nitric oxide, 5 (2001) 62-71.
36.Khaing Oo, M. K., et al., 2012. Ultrasensitive vapor detection with surface-enhanced Raman scattering31 active gold nanoparticle immobilized flow-through multihole capillaries. 84, 3376-3381.
37.Kubendhiran, S., et al., 2018. Innovative strategy based on a novel carbon-black− β-cyclodextrin nanocomposite for the simultaneous determination of the anticancer drug flutamide and the environmental pollutant 4-nitrophenol. 90, 6283-6291.
38.L. Jiang, X. Yuan, G. Zeng, J. Liang, Z. Wu, H. Yu, D. Mo, H. Wang, Z. Xiao, C. Zhou, Nitrogen self-doped g-C3N4 nanosheets with tunable band structures for enhanced photocatalytic tetracycline degradation, J. colloid interface sci. 536 (2019) 17-29.
39.L. Lu, Highly sensitive detection of nitrite at a novel electrochemical sensor based on mutually stabilized Pt nanoclusters doped CoO nanohybrid, Sens. Actuators, B 281 (2019) 182-190.
40.L.-L. Feng, Y. Zou, C. Li, S. Gao, L.-J. Zhou, Q. Sun, M. Fan, H. Wang, D. Wang, G.-D. Li, Nanoporous sulfur-doped graphitic carbon nitride microrods: A durable catalyst for visible-light-driven H2 evolution, Int. j. hydrogen energy, 39 (2014) 15373-15379.
41.Li, J., et al., 2009. High-sensitivity determination of lead and cadmium based on the Nafion-graphene composite film. 649, 196-201.
42.Li, J., et al., 2012. A graphene oxide-based electrochemical sensor for sensitive determination of 4-nitrophenol. 201, 250-259.
43.Liu, J., et al., 2010. Preparation of surface imprinting polymer capped Mn-doped ZnS quantum dots and their application for chemiluminescence detection of 4-nitrophenol in tap water. 82, 7380-7386.
44.Liu, Z., et al., 2009. Electrochemical sensor for detection of p-nitrophenol based on nanoporous gold. 11,1365-1368.
45.M. Ghanei-Motlagh, M.A. Taher, A novel electrochemical sensor based on silver/halloysite nanotube/molybdenum disulfide nanocomposite for efficient nitrite sensing, Biosens. Bioelectron. 109 (2018) 279-285.
46.M. Guo, J. Chen, J. Li, B. Tao, S. Yao, Fabrication of polyaniline/carbon nanotube composite modified electrode and its electrocatalytic property to the reduction of nitrite, Anal. Chim. Acta 532 (2005) 71-77.
47.M. Wang, M. Shen, L. Zhang, J. Tian, X. Jin, Y. Zhou, J. Shi, 2D-2D MnO2/g-C3N4 heterojunction photocatalyst: In-situ synthesis and enhanced CO2 reduction activity, Carbon, 120 (2017) 23-31.
48.M.M. Zahedi, A.H. Amiri, M. Nasiri, Spectrophotometric monitoring of nitrite in seawater after liquid microextraction of its derivative with 2, 3-diaminonaphthalene, Water Qual. Res. J. 52 (2017) 11-17.
49.Masqué, N., et al., 2000. Synthesis and evaluation of a molecularly imprinted polymer for selective on44 line solid-phase extraction of 4-nitrophenol from environmental water. 72, 4122-4126.
50.Miura, N., et al., 1996. Sensing characteristics and mechanisms of hydrogen sulfide sensor using stabilized zirconia and oxide sensing electrode. 34, 367-372.
51.Mu, Y., et al., 2011. Nano nickel oxide modified non-enzymatic glucose sensors with enhanced sensitivity through an electrochemical process strategy at high potential. 26, 2948-2952.
52.N. Jaiswal, I. Tiwari, C.W. Foster, C.E. Banks, Highly sensitive amperometric sensing of nitrite utilizing bulk-modified MnO2 decorated Graphene oxide nanocomposite screen-printed electrodes, Electrochim. Acta 227 (2017) 255-266.
53.N. Kanaujiya, N. Kumar, A. Srivastava, Y. Sharma, G. Varma, One-step synthesized mesoporous MnO2@MoS2 nanocomposite for high performance energy storage devices, J. Electroanal. Chem. 824 (2018) 226-237.
54.Niaz, A., et al., 2009. Voltammetric Determination of 4‐Nitrophenol Using a Novel Type of Silver Amalgam Paste Electrode. 21, 1786-1791.
55.Nikolova, V., et al., 2000. Tungsten carbide-based electrochemical sensors for hydrogen determination in gas mixtures. 30, 705-710.
56.Koyun, Y. Sahin, Voltammetric determination of nitrite with gold nanoparticles/poly (methylene blue)-modified pencil graphite electrode: application in food and water samples, Ionics (2018) 1-11.
57.P. Xia, B. Zhu, B. Cheng, J. Yu, J. Xu, 2D/2D g-C3N4/MnO2 nanocomposite as a direct Z-scheme photocatalyst for enhanced photocatalytic activity, ACS Sustain. Chem. Eng. 6 (2017) 965-973.
58.P. Xia, B. Zhu, B. Cheng, J. Yu, J. Xu, 2D/2D g-C3N4/MnO2 nanocomposite as a direct Z-scheme photocatalyst for enhanced photocatalytic activity, ACS Sustain. Chem. Eng., 6 (2018) 965-973.
59.Park, S., et al., 2003. Nonenzymatic glucose detection using mesoporous platinum. 75, 3046-3049.
60.Peng, D., et al., 2014. An electrochemical sensor based on polyelectrolyte-functionalized graphene for detection of 4-nitrophenol. 734, 1-6.
61.R. Mo, X. Wang, Q. Yuan, X. Yan, T. Su, Y. Feng, L. Lv, C. Zhou, P. Hong, S. Sun, Electrochemical Determination of Nitrite by Au Nanoparticle/Graphene-Chitosan Modified Electrode, Sens.18 (2018) 1986.
62.R.A. Davoglio, G. Cabello, J.F. Marco, S.R. Biaggio, Synthesis and characterization of α-MnO2 nanoneedles for electrochemical supercapacitors, Electrochim. Acta 261 (2018) 428-435.
63.Ramaraj, S., et al., 2018. Hydrothermal Synthesis of Cr 2 Se 3 Hexagons for Sensitive and Low-level Detection of 4-Nitrophenol in Water. 8, 4839.
64.S. Aralekallu, I. Mohammed, N. Manjunatha, M. Palanna, L.K. Sannegowda, Synthesis of novel azo group substituted polymeric phthalocyanine for amperometric sensing of nitrite, Sens. Actuators, B 282 (2019) 417-425.
65.S. Zhu, W. Cen, L. Hao, J. Ma, L. Yu, H. Zheng, Y. Zhang, Flower-like MnO2 decorated activated multihole carbon as high-performance asymmetric supercapacitor electrodes, Mater. Letters, 135 (2014) 11-14.
66.S.-S. Huang, L. Liu, L.-P. Mei, J.-Y. Zhou, F.-Y. Guo, A.-J. Wang, J.-J. Feng, Electrochemical sensor for nitrite using a glassy carbon electrode modified with gold-copper nanochain networks, Microchim. Acta 183 (2016) 791-797.
67.Shao, Y., et al., 2010. Graphene based electrochemical sensors and biosensors: a review. 22, 1027-1036.
68.Singh, K., et al., 2014. Synthesis of CeO2–ZnO nanoellipsoids as potential scaffold for the efficient detection of 4-nitrophenol. 202, 1044-1050.
69.T. Farhadinejad, A. Khakzad, M. Jafari, Z. Shoaee, K. Khosrotehrani, R. Nobari, V. Shahrokhi, The study of environmental effects of chemical fertilizers and domestic sewage on water quality of Taft region, Central Iran, Arabian J. Geosci. 7 (2014) 221-229.
70.Tang, Y., et al., 2013. Electrochemical detection of 4-nitrophenol based on a glassy carbon electrode modified with a reduced graphene oxide/Au nanoparticle composite. 5, 5508-5514.
71.V. Shanmugam, A.L. Muppudathi, S. Jayavel, K.S. Jeyaperumal, Construction of high efficient g-C3N4 nanosheets combined with Bi2MoO6-Ag photocatalysts for visible-light-driven photocatalytic activity and inactivation of bacterias, Arabian J. Chem. (2018).
72.V. Sudha, K. Krishnamoorthy, S.M.S. Kumar, R. Thangamuthu, Copper oxide nanosheet modified electrodes for simultaneous determination of environmentally hazardous anions, J. Alloys Compd. (2018).
73.V. Sudha, S.M.S. Kumar, R. Thangamuthu, Simultaneous electrochemical sensing of sulphite and nitrite on acid-functionalized multi-walled carbon nanotubes modified electrodes, J. Alloys Compd. 749 (2018) 990-999.
74.V.S. Manikandan, Z. Liu, A. Chen, Simultaneous detection of hydrazine, sulfite, and nitrite based on a nanoporous gold microelectrode, J. Electroanal. Chem. 819 (2018) 524-532.
75.Vilian, A. E., et al., 2017. Pd nanospheres decorated reduced graphene oxide with multi-functions: highly efficient catalytic reduction and ultrasensitive sensing of hazardous 4-nitrophenol pollutant.333, 54-62.
76.Wang, L., et al., 2010. Hydrothermal synthesis of NiS nanobelts and NiS2 microspheres constructed of cuboids architectures. 183, 223-227.
77.Wang, P., et al., 2015. Electrochemical determination of 4-nitrophenol using uniform nanoparticle film electrode of glass carbon fabricated facilely by square wave potential pulses. 176, 448-455.
78.Wei, T., et al., 2015. Simultaneous electrochemical determination of nitrophenol isomers with the polyfurfural film modified glassy carbon electrode. 743, 105-111.
79.Wu, S., et al., 2012. Electrochemically reduced single‐layer MoS2 nanosheets: Characterization,properties, and sensing applications. 8, 2264-2270.
80.X. Zhou, Y. Zhou, Z. Hong, X. Zheng, R. Lv, Magnetic Co@ carbon nanocages for facile and binder-free nitrite sensor, J. Electroanal. Chem. 824 (2018) 45-51.
81.Xing, Z., et al., 2013. Biomolecule-assisted synthesis of nickel sulfides/reduced graphene oxide nanocomposites as electrode materials for supercapacitors. 32, 9-13.
82.Xu, Y. F., et al., 2013. Nickel/nickel (II) oxide nanoparticles anchored onto cobalt (IV) diselenide nanobelts for the electrochemical production of hydrogen. 52, 8546-8550.
83.Y. Dai, J. Huang, H. Zhang, C.C. Liu, Highly sensitive electrochemical analysis of tunnel structured MnO2 nanoparticle-based sensors on the oxidation of nitrite, Sens. Actuators, B 281 (2019) 746-750.
84.Y. Sun, J. Jiang, Y. Liu, S. Wu, J. Zou, A facile one-pot preparation of Co3O4/g-C3N4 heterojunctions with excellent electrocatalytic activity for the detection of environmental phenolic hormones, Appl. Surface Sci. 430 (2018) 362-370.
85.Y. Tan, C. Xu, G. Chen, Z. Liu, M. Ma, Q. Xie, N. Zheng, S. Yao, Synthesis of ultrathin nitrogen-doped graphitic carbon nanocages as advanced electrode materials for supercapacitor, ACS appl. mater. interfaces 5 (2013) 2241-2248.
86.Yang, A., et al., 2013. A simple one-pot synthesis of graphene nanosheet/SnO 2 nanoparticle hybrid nanocomposites and their application for selective and sensitive electrochemical detection of dopamine. 1, 1804-1811.
87.Yang, C. J. M. A., 2004. Electrochemical determination of 4-nitrophenol using a single-wall carbon nanotube film-coated glassy carbon electrode. 148, 87-92.
88.Yang, X., et al., 2014. Fluorescent detection of TNT and 4-nitrophenol by BSA Au nanoclusters. 43,10057-10063.
89.Yin, H., et al., 2012. Electrochemical oxidation determination and voltammetric behaviour of 4-nitrophenol based on Cu2O nanoparticles modified glassy carbon electrode. 92, 742-754.
90.Z. Aksu, M. Alanyalıoğlu, Fabrication of free-standing reduced graphene oxide composite papers doped with different dyes and comparison of their electrochemical performance for electrocatalytical oxidation of nitrite, Electrochim. Acta 258 (2017) 1376-1386.
91.Z. Lin, W. Xue, H. Chen, J.-M. Lin, Peroxynitrous-acid-induced chemiluminescence of fluorescent carbon dots for nitrite sensing, Anal. chem. 83 (2011) 8245-8251.
92.Z. Mao, J. Chen, Y. Yang, D. Wang, L. Bie, B.D. Fahlman, Novel g-C3N4/CoO nanocomposites with significantly enhanced visible-light photocatalytic activity for H2 evolution, ACS appl. mater. interfaces 9 (2017) 12427-12435.
93.Z. Xue, X. Fu, H. Rao, X. Zhou, X. Liu, X. Lu, A new electron transfer mediator actuated non-enzymatic nitrite sensor based on the voltammetry synthetic composites of 1-(2-pyridylazo)-2-naphthol nanostructures coated electrochemical reduced graphene oxide nanosheets, Electrochim. Acta 260 (2018) 623-629.
94.Zhang, H., et al., 2016. Equipment-Free Deposition of Graphene-Based Molybdenum Oxide Nanohybrid Langmuir–Blodgett Films for Flexible Electrochromic Panel Application. 8, 21539-21544.
95.Zhang, Y., et al., 2011a. In situ green synthesis of Au nanostructures on graphene oxide and their application for catalytic reduction of 4-nitrophenol. 1, 1142-1144.
96.Zhang, Z., et al., 2011b. In situ assembly of well-dispersed gold nanoparticles on electrospun silica nanotubes for catalytic reduction of 4-nitrophenol. 47, 3906-3908.
97.Zhou, H.-f., et al., 2016. Nitrogen-doped carbon spheres surface modified with in situ synthesized Au nanoparticles as electrochemical selective sensor for simultaneous detection of trace nitrophenol and dihydroxybenzene isomers. 237, 487-494.
98.Zhou, M., et al., 2009. Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide. 81, 5603-5613.
99.BET儀器外觀- 檢自https://www.google.com/search?q=Micromeritics%EF%BC%8CASAP+2020M&source=lnms&tbm=isch&sa=X&ved=0ahUKEwi818Kdt9rjAhWJy4sBHST4DFoQ_AUIESgB&biw=983&bih=508#imgrc=iIom1Bk3OIyO5M:.
100.FE-SEM儀器外觀- 檢自https://www.google.com/search?q=FE-SEM%EF%BC%8CJSM-7610F&source=lnms&tbm=isch&sa=X&ved=0ahUKEwiM7urW6NzjAhURNKYKHcUPAjAQ_AUIESgB&biw=983&bih=508#imgrc=S-6Mew5DdEu8nM:.
101.FT-IR儀器外觀- 檢自https://www.google.com/search?biw=983&bih=508&tbm=isch&sa=1&ei=nA0_XZbxMeqAr7wP7IG5wAY&q=Shimadzu+FTIR+6600&oq=Shimadzu+FTIR+6600&gs_l=img.3...11247.11983..12210...0.0..0.88.391.5......0....1..gws-wiz-img.......0i19j0i30i19.clUh1-X7F3A&ved=0ahUKEwiWr9jr.
102.FT-TEM儀器外觀- 檢自https://www.google.com/search?q=HR-TEM%EF%BC%8CJEM-2100F&source=lnms&tbm=isch&sa=X&ved=0ahUKEwiBmeCO6tzjAhVeyosBHSciCScQ_AUIESgB&cshid=1564496137846158&biw=983&bih=508.
103.HR-XPS儀器外觀/ 作者 圖HRXPS. - 檢自https://www.google.com/search?biw=983&bih=508&tbm=isch&sa=1&ei=Pwc_XefKNIy-wAPRuLa4Bg&q=HR+XPSThermo+ESCALAB+250&oq=HR+XPSThermo+ESCALAB+250&gs_l=img.3...3853.10971..11121...3.0..0.104.684.7j1......0....1..gws-wiz-img.......35i39.pAOJM5vS-sY&ved=0ahUKEw.
104.Nitrite as undesirable substances in animal feed - / 作者 Authority(European Food SafetyEFSA. - 2009年.
105.SEM構造圖- 檢自http://2.bp.blogspot.com/-WOk9PRVkbYs/VTIq1qZyW8I/AAAAAAAAABA/-bt_0r5WJp8/s1600/2007530191858953.gif.
106.shutterstock,二氧化錳結構- 檢自https://image.shutterstock.com/image-illustration/manganeseiv-oxide-inorganic-compound-formula-260nw-1062277751.jpg.
107.wikipedia,亞硝酸鹽結構- https://zh.wikipedia.org/wiki/File:Nitrit-Ion2.svg.
108.XRD儀器外觀- 檢自https://www.google.com/search?biw=983&bih=508&tbm=isch&sa=1&ei=OgQ_XaqcJe6Wr7wPuoej8AY&q=X%27PERT-PRO&oq=X%27PERT-PRO&gs_l=img.3..0i7i30j0i8i30.5791.5791..6058...0.0..0.81.81.1......0....1..gws-wiz-img.AZ-YjgDkJL0&ved=0ahUKEwiqoZ3yrNrjAhVuy4sBHbrDCG4Q4d.
109.百度百科,DPV介紹- 2015年02月. - 檢自https://baike.baidu.com/item/%E5%B7%AE%E5%88%86%E8%84%89%E5%86%B2%E4%BC%8F%E5%AE%89%E6%B3%95/16763576.
110.百度百科,XRD應用知識- 2019年06月18日. - 檢自https://baike.baidu.com/item/XRD#9.
111.百度百科,化學修飾電極- 2018年07月04日. - 檢自https://baike.baidu.com/item/%E5%8C%96%E5%AD%A6%E4%BF%AE%E9%A5%B0%E7%94%B5%E6%9E%81.
112.材料世界網,EIS知識/ 作者 工研院材化所鐘琍菁. - 2013年12月02日. - 檢自https://www.materialsnet.com.tw/DocView.aspx?id=11514.
113.科學Online,XRD知識/ 作者 國立臺灣大學化學系學士生張育唐/國立臺灣大學化學系陳藹然博士責任編輯. - 2011年12月23日. - 檢自http://highscope.ch.ntu.edu.tw/wordpress/?p=41141.
114.絲網印刷電極 / 作者 禪譜科技. - 檢自http://www.zensor.com.tw/assets/download/Zensor%20R&D%20Technology-4.1%20Screen%20printed%20carbon%20electrode-%E4%B8%AD%E6%96%87.pdf年.
115.華人百科,電化學分析法- 檢自https://www.itsfun.com.tw/%E9%9B%BB%E5%8C%96%E5%AD%B8%E5%88%86%E6%9E%90%E6%B3%95/wiki-1864326-4861206.
116.維基百科,BET- 2019年07E月26日. - 檢自https://en.wikipedia.org/w/index.php?title=BET_theory&direction=next&oldid=904317817.
117.維基百科,SEM介紹- 2019年4月30日. - 檢自https://zh.wikipedia.org/w/index.php?title=%E5%BE%AA%E7%92%B0%E4%BC%8F%E5%AE%89%E6%B3%95&oldid=54231786.
118.維基百科,FT-IR介紹- 2018年11月20日. - 檢自https://zh.wikipedia.org/w/index.php?title=%E5%82%85%E9%87%8C%E8%91%89%E8%BD%89%E6%8F%9B%E7%B4%85%E5%A4%96%E5%85%89%E8%AD%9C&oldid=52095286.
119.維基百科,SEM介紹- 2018年08月06日. - 檢自https://zh.wikipedia.org/w/index.php?title=%E6%89%AB%E6%8F%8F%E7%94%B5%E5%AD%90%E6%98%BE%E5%BE%AE%E9%95%9C&oldid=50751740.
120.維基百科,二氧化錳- 2019年07月19日. - 檢自https://zh.wikipedia.org/w/index.php?title=%E4%BA%8C%E6%B0%A7%E5%8C%96%E9%94%B0&oldid=55274225.
121.維基百科,二硫化鎳- 2019年05月17日. - 檢自https://zh.wikipedia.org/w/index.php?title=%E4%BA%8C%E7%A1%AB%E5%8C%96%E9%95%8D&oldid=54368047.
122.維基百科,正鐵血紅蛋白症- 2018年07月14日. - 檢自https://zh.wikipedia.org/w/index.php?title=%E6%AD%A3%E9%90%B5%E8%A1%80%E7%B4%85%E8%9B%8B%E7%99%BD%E8%A1%80%E7%97%87&oldid=50409309.
123.維基百科,亞硝酸鹽- 2019年07月31日. - 檢自https://zh.wikipedia.org/w/index.php?title=%E4%BA%9A%E7%A1%9D%E9%85%B8%E7%9B%90&oldid=55447416.
124.維基百科,氧化石墨- 19年02月12日. - 檢自https://zh.wikipedia.org/w/index.php?title=%E6%B0%A7%E5%8C%96%E7%9F%B3%E5%A2%A8&oldid=53169619.
125.維基百科,電化學- 2018年08月20日. - 檢自https://zh.wikipedia.org/w/index.php?title=%E7%94%B5%E5%8C%96%E5%AD%A6&oldid=50948674.
126.維基百科,對硝基苯酚- 2018年05月19日. - 檢自https://zh.wikipedia.org/w/index.php?title=%E5%AF%B9%E7%A1%9D%E5%9F%BA%E8%8B%AF%E9%85%9A&oldid=49632892.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊