跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.208) 您好!臺灣時間:2025/10/04 01:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳志宏
研究生(外文):Zhi-Hong Chen
論文名稱:以軟性基板製備鎳基薄膜式超級電容電極
論文名稱(外文):Nickel-based thin film supercapacitior electrodes on flexible substrates
指導教授:林炯棟
指導教授(外文):Jyung-Dong Lin
學位類別:碩士
校院名稱:義守大學
系所名稱:材料科學與工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:117
中文關鍵詞:超級電容無電鍍法軟性基板酸蝕刻鎳鈷磷膜
外文關鍵詞:SupercapacitorsElectroless PlatingNickel Oxide
相關次數:
  • 被引用被引用:2
  • 點閱點閱:540
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究將無電鍍膜鍍覆在三種軟性基板上(石墨紙、鈦箔板、碳纖維紙),並利用酸蝕刻的方式來製備超級電容電極。利用三極式電極系統以循環伏安法與充放電曲線測量其電化學性質並計算其比電容值,並以電化學交流阻抗法(EIS)分析其電化學反應機制。探討無電鍍膜的鍍覆條件及不同基板與比電容值的關係。另外,加入鈷製備出三元的無電鍍膜(Ni-Co-P),並以硝酸進行蝕刻,研究對膜層顯微結構與比電容值的影響。
其結果顯示,在相同的鍍覆條件下,石墨紙基板所製備之鎳磷膜,在掃描速率為10mV/s,其比電容值(71 F/g)相較其他兩種基板(鈦箔板:30 F/g;碳纖維紙:52 F/g)來的高,這與鍍覆後的電極電阻大小與電荷交換阻抗有關,且與基板鍍覆後與電解液接觸的比表面積大小有關。若進一步進行蝕刻,比電容值在掃描速率為10mV/s下從原先71 F/g增加到了335 F/g,增加了4.7倍。但隨著蝕刻時間的增加,其比電容值並沒有明顯的增加。經由顯微結構觀察,發現適當的蝕刻時間可以有效地增加比表面積,但若是蝕刻時間過長則會造成膜層破壞與脫落,並不會增加比電容值。
另外,必須將原本酸性鍍液改成鹼性才能順利沉積鈷。雖然加入鈷後,比電容值並沒有明顯的提升,但對於其膜層的抗腐蝕性卻有明顯的提升。而經過硝酸蝕刻後,其比電容值也有明顯的提升,對於Ni/Co=70/30系統,在掃描速率為10mV/s,從原先的51 F/g提升至237 F/g
,增加了4.6倍。綜合以上之結果,證明了酸蝕刻能有效地增加Ni-P與Ni-Co-P系統的比電容值,可將其應用在其他材料系統中。

In this study, electroless Nickel and Nickel – Cobalt coatings were deposited on three kinds of flexible substrates (graphite paper, titanium foil, carbon fiber paper), and these coatings further etched in a 5M HNO3 solution to improve the electrochemical characteristics. Using a three-pole electrode system, cyclic voltammetry and charge-discharge curve were measured to calculate the specific capacitance, and electrochemical impedance spectroscopy (EIS) was used to analyze the electrochemical reaction mechanisms. In addition, the effects of Ni/Co ratios of Ni-Co-P system and etching time on the microstructure and the specific capacitance were explored in details. The results showed that nickel-phosphorus coating on the graphite paper substrate exhibited the highest specific capacitance (71 F/g) than the others (Titanium foil: 30 F/g; carbon fiber paper: 52 F/g) under the same plating conditions. After etching in HNO3 solution for 10s, the specific capacitance of Ni-P coating on graphite paper increased up to 335 F/g, in which the specific capacitance of Ni-P coating increase to 4.7 times as compared with the unetched one. Once the etching time was further increased, it did not significantly increase the specific capacitance. Microstructures analysis revealed that an appropriate etching time can effectively increase the surface area of Ni-P coatings and the prolonged etching time damaged the Ni-P coatings and finally the etched coatings peeled off. To deposit Ni-Co-P coatings on graphite paper, the pH value of electroless bath should be changed into 9. The specific capacitance value is not significantly improved by the addition of Co, but the corrosion resistance of the coating is improved. After etching in 5M nitric acid solution, it also significantly raised specific capacitance, for Ni/Co=70/30 system, at a scan rate of 10mV/s, from 51 F/g to 237 F/g. Based on the above the results, the acid-etching treatment effectively increased the specific capacitance of the Ni-P and Ni-Co-P system, it is expected that such method be applied to other material systems.

中文摘要 III
英文摘要 V
誌謝 VII
總目錄 VIII
表目錄 XI
圖目錄 XII
第一章 緒論 1
1-1 前言 1
1-2 研究動機 2
第二章 文獻回顧及原理 4
2-1 理論基礎 4
2-1-1 電化學原理 4
2-1-2 超級電容器 6
2-1-3 超級電容器之應用 8
2-1-4 超級電容器分類 8
2-2 超級電容器之電極基板 12
2-3 超級電容電極材料 15
2-4 電解質之介紹 18
2-5 超級電容電極製程之介紹 20
2-6 無電鍍法 23
2-7 去合金化(DEALLOYING) 29
第三章 實驗步驟 30
3-1 實驗材料 30
3-1-1 基板 30
3-2 實驗流程 31
3-2-1 基板前處理 31
3-2-2 無電鍍法(酸性鍍液) 31
3-2-3 無電鍍液(鹼性鍍液) 32
3-3 儀器分析 34
3-3-1 X光繞射分析 (X-Ray Diffraction) 34
3-3-2 場發射式掃描電子顯微鏡 (Field-Emission Scanning Electron Microscope ; FE-SEM) 35
3-3-3 電化學工作站 (Electrochemical Workstation) 36
第四章 結果與討論 40
4-1 基板簡介 40
4-1-1 基板之顯微結構 40
4-1-2 基板特性分析 42
4-2 無電鍍鎳(酸性鍍液) 45
4-2-1 石墨紙基板 45
4-2-2 鈦箔板 53
4-2-3 碳纖維紙 60
4-2-4 不同基板的比較 65
4-3 無電鍍液蝕刻(酸性鍍液) 68
4-3-1 蝕刻時間與重量關係 68
4-3-2 表面形貌 (FE-SEM)與組成分析 69
4-3-3 電化學行為分析 71
4-4 無電鍍鎳(鹼性鍍液) 79
4-4-1 鍍覆時間與重量 79
4-4-2 顯微結構 81
4-4-3 電化學性質 86
第五章 結論 94
第六章 參考文獻 96

[1]. 雷永泉,新能源材料,新文京開發出版股份有限公司,2004年。
[2]. 莊濱豪,利用無電鍍法製被氧化鎳超級電容之研究,義守大學材料科學與工程學系碩士論文,2012年。
[3]. 張雄、孫現眾、馬衍偉,高比能超級電容器的研究進展 ,中國科學雜誌社,vol.44,pp.1081-1096。
[4]. 車倩,超級電容器用過渡金屬氧化物NiCo2O4,南京航空航天大學材料科學與技術學院碩士論文,2013年。
[5]. 胡啟章,電化學原理與方法,五南圖書出版股份有限公司,2002年。
[6]. X.Y.Liu, Y.Q.Zhang, X.H.Xia, S.J.Shi, Y.Lu, X.L.Wang, C.D.Gu and J.P.Tu, “Self-assembled porous NiCo2O4 hetero-structure array for electrochemical capacitor” , J. Power Sources, vol.239, 2013, pp.157-163.
[7]. V. Gupta, S. Gupta and N.Miura, “Electrochemically synthesized nanocrystalline spinel thin film for high performance supercapacitor” , J. Power Sources, vol.195, 2010, pp.3757-3760.
[8]. 劉俊興,氧化錳系超電容之研究,大同大學材料工程碩士論文,2006年。

[9]. Y.Bai, R.B.Rakhi, W.Chen and H.N.Alshareef , “Effect of pH-induced chemical modification of hydrothermally reduced graphene oxide on supercapacitor performance”, J. Power Sources, vol.233, 2013, pp.313-319.
[10]. G.Wang, L.Zhang and J.Zhang, “A review of electrode materials for electrochemical supercapacitors”, Chem. Soc. Rev., vol.41, 2012, pp.797-928.
[11]. D. Dubal, J. G. Kim, Y.Kim, R.Holze, C.Lokhande and W. B.Kim, “Supercapacitors Based on Flexible Substrates:An Overview”, Energy Technol, vol.2, 2014, pp.325-341.
[12]. D.Dubal, J.G.Kim, Y.Kim, R.Holze and W.B.Kim, “Demonstrating the Hight Supercapacitive Performance of Branched MnO2 Nanorods Grown Directly on Flexible Substrates using Controlled Chemisty at Ambient Temperature” Energy Tech., vol.1, 2013, pp.125-130.
[13]. Z.Li, T.Chang, G.Yun, J.Guo and B.Yang , “2D tin dioxide nanoplatelets decorated graphene with enhanced performance supercapacitor” Journal of Alloys and Compounds, vol.586, 2014, pp.353-359.
[14]. L.Hu, J.W.Choi, Y.Yang, S.Jeong, F.L.Mantia, L.F.Cui and Y.Cui, “Highly conductive for energy-storage devices” PNAS. Academy Nate, vol.106, 2009, pp.21490-21494.

[15]. P.Li, C.Kong, Y.Shang, E.Shi, Y.Yu, W.Qian, F.Wei, J.Q.Wei, K.Wang, H.Zhu, A.Cao and D.Wu, “Highly deformation-tolerant carbon nanotube sponges as supercapacitor electrodes”, Nanoscale, vol.5, 2013, pp.8472-8479.
[16]. J.Zhang, Y.Wang, J.Zang, G.Xin, Y.Yuan and X.Qu, “Electrophoretic eposition of MnO2-coated carbon nanotubes on a graphite sheet as a flexible electrode for supercapacitors”, Carbon, vol.50, 2012, pp.5196-5202.
[17]. W.Zhao, Y. Li, S.Wang, X.He, Y.Shang, Q.Peng, C.Wang, S.Du, X.Gui, Y.Yang, E.Shi, S.Wu, W.Xu and A.Cao, “Elastic improvement of carbon nanotube sponges by depositing amorphous carbon coating” , Carbon, vol.76, 2014, pp.19-26.
[18]. 劉瀟娟、楊光、廖紅英、孟蓉、張華,超级电容器电解质的研究进展,化學試劑,第35卷,第6期,第510~514頁。
[19]. 孫帆,電解液對超級電容器電化學性能影響的研究,中國海洋大學碩士論文,2013年。
[20]. J.N.Broughton and M.J.Brett, “Investigation of thin sputtered Mn films for electrochemical capacitors”, Electrochimica Acta, vol.49, 2004, pp.4439-4446.

[21]. C.Y.Chen, S.C. Wang, Y.H. Tien, W.T. Tsai and C.K. Lin, “Hybrid manganese oxide films for supercapacitor application prepared by sol-gel technique”, Thin Solid Films, vol.518, 2009, pp.1557-1560.
[22]. Y.Wang, S.Gai, C.Li, F.He, M.Zhang and P.Yang, “Controlled synthesis and enhanced supercapacitor performance of uniform pompon-like β-Ni(OH)2 hollow microspheres”, Electrochiica Acta, vol.90, 2013, pp.673-681.
[23]. T.S.Narayanan, S.Selvakumar and A.Stephen, “Electroless Ni–Co–P ternary alloy deposits: preparation and characteristics”, Surface and Coatings Technology, vol.172, 2003, pp.298-307.
[24]. J.Sudagar, J.Lian and W.Sha, “Electroless nickel, alloy, composite and nano coatings”, J. Alloys Compd., vol.571, 2013, pp.183-204.
[25].K.S.Novoselov, A.K.Geim, S.V.Morozov, D.Jiang, Y.Zhang, S.V.Dubonos, I.V.Grigorieva and A. A. Firsov, “Electric Field Effect in Atomically Thin Carbon Films”, Science, vol.306, 2004, pp.666-669.
[26]. S.Tong, T.Fan, W.Zeng, D.Zhang, C.Y.Kao and Y.Liu, “Formation of tunable three-dimensional networks of graphene hydrogel via covalent bond”, Synthetic Metals, vol.196, 2014, pp.27-32.
[27]. S.Wu, W. Chen and L. Yan, “Fabrication of a 3D MnO2/graphene hydrogel for high-performance asymmetric supercapacitors”, Journal of Materials Chemisity A, vol.2, 2014, pp.2765-2772.

[28]. D.Chen, M.K.Song, S.Cheng, L.Huang and M.Liu, “Contribution of carbon fiber paper(CFP) to the capacitance of a CFP-supported manganese oxide supercapacitor”, Journal of Power Sources , 2014, vol.248, pp.1197-1200.
[29]. Y.Li, D.Cao, Y.Wang, S.Yang, D.Zhang, K.Ye, K.Cheng, J.Yin, G.Wang and Y.Xu, “Hydrothermal deposition of manganese dioxide nanosheets on electrodeposited graphene covered nickel foam as a high-performance electrode for supercapacitors”, Journal of Power Sources, 2015, vol.279, pp.138-145.
[30]. H.J.Qiu, H.T.Xu, L.Liu and Y.Wang, “Correlation of the structure and applications ofdealloyed nanoporous metals in catalysis andenergy conversion/storage”, Nanoscale, 2015, vol.7, pp.386-400.
[31]. X.Cai, X.Shen, L.Ma, Z.Ji, C.Xu and A.Yuan, “Solvothermal synthesis of NiCo-layered double hydroxide nanosheets decorated on RGO sheets for high performance supercapacitor”, Chemical Engineering Journal, 2015, vol.268, pp.251-259.
[32]. K. Liang, X.Tang, B.Wei and We. Hu, “Fabrication and characterization of a nanoporous NiO film with high specific energy and power via an electrochemical dealloying approach”, Materials Research Bulletin, 2013, vol.48, pp.3829-3833.
[33].L.S.Yuan,Y.X.Zheng, M.L.Jia, S.J.Zhang, X.-L.Wang and C.Peng, “Nanoporous nickel-copper-phosphorus amorphous alloy film for methanol electro-oxidation in alkaline medium”, Electrochimica Acta, 2015, vol.154, pp.54-62.

[34]. P.Yang and W.Mai, “Flexible solid-state electrochemical supercapacitors”, Nano, vol.8, 2014, pp.274-290.
[35]. L.Q.Mai, A.M.Khan, X.Tian, K.M.Hercule, Y.L.Zhao, X.Lin and X.Xu, “Synergistic interaction between redox-activeelectrolyte and binder-free functionalized carbonfor ultrahigh supercapacitor performance”, Nature Communication, vol.4, p.2923.
[36]. H.Jin, X.Wang, Z.Gu and J.Polin, “Carbon materials from high ash biochar for supercapacitor and improvement of capacitance with HNO3 surface oxidation”, J.Power Sources, vol.236, 2013, pp.285-292.
[37]. K.G.Keong, W.Sha and S. Malinov, “Crystallisation kinetics and phase transformation behaviour of electroless nickel-phosphorus deposits with high phosphorus content”, J. Alloys Compd., vol.334, 2002, pp.192-199.
[38]. L. Feng, Y. Zhu, H. Ding and C. Ni, “Recent Progress in Nickel Based Materials for High Performance Pseudocapacitor Electrodes”, J.Power Sources, vol.267, 2014, pp.430-444.
[39].W.Xing, S.Qiao, X.Wu, X.Gao, J.Zhou, S.Zhou, S.B.Hartono and D.H.Jurcakov, “Exaggerated Capacitance Using Electrohemically Active Nickel Foam as Current Collector in Electrochemical Measurement”, J.Power Sources, vol.196, 2011, pp.4123-4127.
[40].Y.F.Wang, W.G.Fu, M.Feng and X.W.Cao, “Investigation of the Structure and the Physical Properties of Nickel- Phosphorus Ultra-Black Surfaces”, Applied Physics A-Materials Science & Processing, vol.90, 2008, pp.549-553.
[41].J.Kang, Y.Yang and H.Shao, “Comparing the Anodic Reactions of Ni-P Amorphous Alloy in Alkaline Solution”, Corros.Sci., vol.51, 2009, pp.1907-1913.
[42].Y.Zhang, Y.Liu, Y.Guo,Y.X.Yeow, H.Duan, H.Li and H.Liu, “In Stiu Preparation of Flower-Like A-Ni(OH)2and NiO from Nickel Formate with Excellent Capacitive Properties as Electrode Materials for Supercapacitiors”, Mater.Chem.Phys, vol.151, 2015, pp.151-166.
[43].M. Papini and F.Papini, “Standy and Realization of a Selective Absorber Ni-P Compound for the Photothermal Conversion of Solar Radiation”, Thin Solid Films, vol.115,1984, pp.1-11.
[44].M. Papini, “Chemical,Structural and Option Characterization of Ni-P Chemical Conversion Coatings for Photothermal Absorption of Solar Energy”, Solar Energy Materials, vol.13, 1986, pp.233-265.
[45].R.J.C. Brown , P.J. Brewerv and M.J.T. Milton, “The Physical and Chemical Properties of Electroless Nickel-Phosphorus Alloys and Low Reflectance Nickel-Phosphorous Black Surfaces”, J.Mater.Chem, vol.12, 2002, pp.2749-2754.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top