跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.59) 您好!臺灣時間:2025/10/16 08:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張佳筠
研究生(外文):Chia-Yun Chang
論文名稱:環境因子、養液濃度及穴格大小對洋桔梗穴盤苗生長之影響
論文名稱(外文):Effects of Environmental Factors, Nutrient Concentration, and Plug Cell Size on Growth of Eustoma grandiflorum Plug Seedlings
指導教授:葉德銘葉德銘引用關係
口試委員:李金龍黃光亮羅筱鳳
口試日期:2018-06-27
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:園藝暨景觀學系
學門:農業科學學門
學類:園藝學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:118
中文關鍵詞:日均溫光積值簇生化幼年期
DOI:10.6342/NTU201804149
相關次數:
  • 被引用被引用:2
  • 點閱點閱:182
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
洋桔梗[Eustoma grandiflorum (Raf.) Shinn.]為臺灣重要外銷切花,然其苗期生長速度緩慢,加速穴盤苗育成時間及提高品質之方法亟待建立。本研究探討播種後冷藏、苗期溫度、光積值及施肥濃度,對洋桔梗穴盤苗生長及移植後開花之影響,並探討穴格大小與苗齡及洋桔梗之幼年期,以供業者參考。
洋桔梗‘克萊莉粉’播種後以5oC黑暗冷藏兩週與未冷藏處理,一同移至日夜溫35/30及25/20oC自然日照室。結果以栽培溫度對植株生長影響較顯著;於高溫35/30oC有較大葉寬、葉面積、比葉面積及簇生率,而於25/20oC者,有顯著較大之根乾重及抽苔率。播種後以5oC黑暗冷藏兩週無促進於高溫35/30oC生長者之抽苔率。
洋桔梗‘克萊莉粉’於子葉展開後,置於日均溫18.3、21.0、25.1、29.3或32.5oC,搭配遮蔭0%、70%或90%處理。結果以25.1oC、未遮蔭者有顯著較高根活性、SPAD-502讀值、葉厚、葉面積、全株乾重及葉片分化速率。不論溫度為何,遮蔭均顯著不利植株生長。尤其以18oC、遮蔭90%處理者,生長顯著受抑制。以25.1oC、未遮蔭者有顯著較高之植體可溶性糖及澱粉濃度。
洋桔梗‘克萊莉粉’於30/20oC、8 h光週期育苗至具6-8片本葉,栽培於高溫35/30oC與25/20oC之自然光照室,分別調查簇生與抽苔植株之生長差異。結果不論栽培溫度為何,莖乾重、第一對葉片總可溶性糖含量、第三對葉片澱粉含量及莖蔗糖、總可溶性糖、澱粉含量以抽苔者較簇生者高,SPAD-502讀值以簇生者較高。而不論抽苔與否,莖乾重、根乾重、葉片淨光合作用速率、第一對葉片蔗糖及總可溶性糖含量及莖蔗糖、總可溶性糖、澱粉含量以涼溫者較高。在涼溫下,不論抽苔與否,氣孔導度、細胞間隙二氧化碳濃度及蒸散速率無顯著差異,而於高溫下,則以簇生者較高。
洋桔梗‘克萊莉粉’子葉完全展開後,於25/20oC以8 h、12 h、16 h三種光週,搭配100、150、200、300 μmol·m-2·s-1四種光強度,共8種光積值處理。穴盤苗葉片寬度、厚度、根活性隨光積值增加而上升,而比葉面積則下降,約於13.0 mol·m-2·d-1不再顯著變化;葉長、葉面積、地上部乾重、地下部乾重及全株乾重則隨光積值增加而上升。葉片分化速率隨光積值提高而增加,而自播種到可移植時間則減少且約於13.0 mol·m-2·d-1不再顯著變化。於穴盤苗具6-8片本葉時,置於光積值17.3 mol·m-2·d-1下繼續栽培,結果於12 h及16 h光週期下,花下葉片數及到花苞可見時間隨光強度提高而減少,而8 h光週期則否,以16 h光週期處理者較早開花。洋桔梗可能於育苗時期便結束幼年期,開始感應光週。
洋桔梗‘克萊莉粉’於子葉展開後,置於25/20oC、12 h光週期,光強度100、200、300 μmol·m-2·s-1 (光積值4.3、8.6、13.0 mol·m-2·d-1)之人工光照室,每週施以50%、100%、200%之強生氏養液。於低光積值4.3 mol·m-2·d-1下提高養液濃度對穴盤苗多無顯著影響,而於高光積值13.0 mol·m-2·d-1,以200%強生氏養液有最大植株乾重及葉面積,而植株根冠比亦較低。不論光積值,以50%強生氏養液處理者螢光參數Fm及Fv/Fm值較低。
將洋桔梗‘舞曲白’播種於128 (3.0×3.0×3.5 cm)、288及406穴盤中,於27oC、12 h光週期、200 μmol·m-2·s-1育苗並於不同苗齡時調查及定植至田間(日長10.5-12 h,日夜溫26.9/18.8oC)。結果顯示根活性、葉面積、葉片數及乾重隨苗齡增加而增加。定植七週後株高隨定植時苗齡增加而增加,並以406穴格育苗者較矮。定植後至開花所需天數以128及288格穴盤育苗63天再定植者較短,其定植時葉片數亦較多,隨定植時苗齡較小、葉片數亦較少,定植至開花所需天數較長。自播種至開花所需天數與定植時葉片數迴歸顯示洋桔梗幼年期可能在植株分化10-12片葉時結束。
將洋桔梗‘克萊莉粉’間隔3-4天播種一次,置於23/16 oC,並以10 h及16 h長短光週處理,以驗證其對光週感應時期。結果植株於分化8片葉片前處於幼年期,葉片分化超過10片後結束幼年期並具感應光週能力,花下葉片數增加。此時約為播種後45-50天,肉眼可見6-8片葉時期。
Lisianthus [Eustoma grandiflorum (Raf.) Shinn.] is an important cut flower for export trade in Taiwan. Production during plug stage period of lisianthus is crucial and might be hastened under appropriate environmental conditions and nutrional managements. This study aimed to determine the effects of cooling during seed imbibition, temperature, light integral, nutrient solution concentration, and plug cell size during plug production on seedling growth and flowering performance of lisianthus.
Imbibed seeds of ‘Claris Pink’ were stored at 5oC in the dark for two weeks and then moved into phytotrons with growing day/night temperatures of 35/30 or 25/20 oC, while control seeds were not cool-stored. Results showed that growing temperatures, but not dark-cooling, affected seedling growth. Leaf width, leaf area, specific leaf area, and rosette percentage were higher for seedlings grown at 35/30oC, whereas root dry weight and bolting percentage were higher for those grown at 25/20oC. Dark-cooling for two weeks after sowing did not enhance bolting in seedlings subsequently grown at 35/30oC.
Seedlings, with cotyledon unfolded, of ‘Claris Pink’ were grown at mean temperatures of 18.3, 21.0, 25.1, 29.3, or 32.5oC combined with 0%, 70%, or 90% shading. Results showed that seedlings grown without shading under 25.1oC had the highest root activity, SPAD-502 value, leaf thickness, leaf area, total dry weight, leaf initiation rate, total soluble sugar and starch concentrations. Shading reduced seedling growth, especially for those grown with 90% shading under 18oC.
Seedlings of ‘Claris Pink’ were raised under 8 h photoperiod at 30/20oC until 3-4 leaf pairs were formed, and rosette and bolting plants were then moved into phytotrons of 35/30 or 25/20oC. Stem dry weight, total soluble sugar content of the uppermost unfolded leaves, starch content of the third unfolded leaf pairs, and stem carbohydrate content were higher in bolting than rosette plants, regardless of growing temperature. SPAD-502 value was higher for rosette plants. Stem and root dry weights, net photosynthesis of newly unfolded leaves, and carbohydrate content of the uppermost unfolded leaves and stems were higher in those grown at 25/20oC. Stomatal conductance, intercellular CO2 concentration, and transpiration were higher in rosette plants grown at 35/30oC, but did not differ in those grown at 25/20oC.
Seedlings of ‘Claris Pink’ were grown at 25/20oC and received eight daily light integrals (DLI), resulting from 8 h, 12 h, or 16 h photoperiods combined with 100, 150, 200, and 300 μmol·m-2·s-1 PPF. Results show that leaf width, leaf thickness, and root activity increased, while specific leaf area and time to transplanting decreased with increasing DLI and plateaured at 13.0 mol·m-2·d-1. Leaf length, leaf area, shoot, root, and total dry weights increased linearly with increasing DLI. Leaf initiation rate increased with increasing DLI. Seedlings with 3-4 leaf pairs were received 17.3 mol·m-2·d-1 afterwards. Results show that leaf number below the flower and time to visible flower bud decreased with increasing DLI Flowering occurred earlier in seedlings raised under 16 h photoperiods, than 8 or 12 h photoperiods.
Seedlings of ‘Claris Pink’ were grown at 25/20oC under 12 h of 100, 200, or 300 μmol·m-2·s-1 PPF (4.3, 8.6, 13.0 mol·m-2·d-1 DLI) and fertilized weekly with 50%, 100% or 200% Johnson’s nutrient solution (J). Rsults show that seedling growth was severely reduced under 4.3 mol·m-2·d-1. Seedlings receiving 200% J and 13.0 mol·m-2·d-1 had the highest total dry weight and leaf area, and lowest root to shoot ratio. Seedlings with 50% J had lower Fm and Fv/Fm value regardless of DLIs.
Seeds of ‘Bolero White’ were sown at one-week-inteval and raised at 27oC under 12 h photoperiods of 300 μmol·m-2·s-1 PPF using 128- (3.0×3.0×3.5 cm), 288-, and 406-cell plug tray. Growth parameters at different plant ages were recorded and planted into the field (10.5-12.0 h daylenght, 26.9/18.8oC). Results show that root activity, leaf area, leaf number, and dry weight increased with increasing plant age, but seedlings were smaller when raised with 406-cell plug at the age of 49-63 d. Plant height at 35 d after planting increased with increasing plant age at planting, and were shorter when raised with 406-cells. Time from planting to flowering were shorter for 63 d-old seedlings raised with 128- and 288-cells, and more leaf number including leaf priomordia were recorded.Younger seedlings, with fewer leaf number, at planting required longer time from planting to flowering. Regression between time from sowing to flowering and leaf number including primordia at planting, indicated juvenile phase of lisianthus ended when 10-12 leaves were formed.
Seeds of ‘Claris Pink’ were sown at 3-4-day-inteval and raised at 23/16oC under 10 h photoperiods and transferred together to 16 h photoperiods, in order to verify the ending of juvenility. Results show that juvenility persisted until plants initiated 8-10 leaves. After juvenility ends, seedling age 45-50 days after sowing and initiated 8-10 leaves, plants have competence to persive florally inductive stimuli.
摘要 I
Abstract III
目錄 VI
表目錄 VIII
圖目錄 X
前言 (Introduction) 1
前人研究 (Literature review) 3
一、洋桔梗之形態及生長習性 3
二、影響洋桔梗穴盤苗生長及簇生之環境因子 3
三、光對洋桔梗生長及開花之影響 6
四、苗期補光對草本花卉生長及開花之影響 8
五、以溫度和光積值建立草本花卉與洋桔梗生長開花模式 10
六、根域限制對草本花卉生長之影響 13
七、草本花卉之幼年期 14
材料與方法 (Materials and Methods) 16
試驗一、種子冷藏與栽培溫度對洋桔梗穴盤苗生長之影響 16
試驗二、遮光程度及溫度對洋桔梗穴盤苗生長之影響 17
試驗三、簇生或抽苔苗移至高溫或涼溫之生長、光合作用與碳水化合物 20
試驗四、光週期、光強度與光積值對洋桔梗育苗及後續開花之影響 22
試驗五、光積值與養液濃度對洋桔梗苗期生長之影響 23
試驗六、穴格大小及苗齡對洋桔梗穴盤苗生長及後續開花之影響 24
試驗七、洋桔梗幼年期之研究 25
結果 (Results) 27
試驗一、種子冷藏與栽培溫度對洋桔梗穴盤苗生長之影響 27
試驗二、遮光程度及溫度對洋桔梗穴盤苗生長之影響 27
試驗三、簇生或抽苔苗移至高溫或涼溫之生長、光合作用與碳水化合物 29
試驗四、光週期、光強度與光積值對洋桔梗育苗及後續開花之影響 31
試驗五、光積值與養液濃度對洋桔梗穴盤苗生長之影響 32
試驗六、穴格大小及苗齡對洋桔梗穴盤苗生長及後續開花之影響 33
試驗七、洋桔梗幼年期之研究 35
討論 (Discussion) 92
試驗一、種子冷藏與栽培溫度對洋桔梗穴盤苗生長之影響 92
試驗二、遮光程度及溫度對洋桔梗穴盤苗之影響 93
試驗三、簇生或抽苔苗移至高溫或涼溫之生長、光合作用與碳水化合物 95
試驗四、光週期、光強度與光積值對洋桔梗育苗及後續開花之影響 97
試驗五、光積值與養液濃度對洋桔梗穴盤苗生長之影響 99
試驗六、穴格大小及苗齡對洋桔梗育苗生長及後續開花之影響 100
試驗七、洋桔梗幼年期之研究 103
綜合討論與結論 (General Discission and Conclusion) 105
參考文獻 (References) 109
附錄(Appendix) 118
王信文. 2015. 環境因子對洋桔梗葉片頂燒與光合作用之影響. 國立臺灣大學園藝學系碩士論文. 臺北.
王瑞章、孫文章. 2009. 不同格式穴盤對洋桔梗育苗及切花品質之影響. 臺南區農業改良場研究彙報. 53:47-55
王裕權、張元聰、陳耀煌、王仕賢、吳慶杉. 2006. 洋桔梗育苗技術之研究. 臺南區農業改良場研究彙報 48: 47-59
林士詠. 2010. 洋桔梗根系生長對植株抽苔之影響. 國立中興大學園藝學系碩士論文. 臺中.
許鈺佩. 2004. 洋桔梗種子發芽之研究. 國立臺灣大學農藝學系碩士論文. 臺北.
黃群哲. 2013. 養液氮、磷與鉀濃度及氮型態對洋桔梗穴盤苗生長及後續開花之影響. 國立臺灣大學園藝學系碩士論文. 臺北.
黃群哲、魏子耀、葉德銘. 2015. 養液氮濃度對洋桔梗穴盤苗生長及後續開花之影響. 臺灣園藝. 61:177-196.
陳慈華. 2013. 溫度與光積值對洋桔梗生長與開花之影響模式. 國立臺灣大學園藝學系碩士論文. 臺北.
大川清. 1993. 花專科育種と栽培. トレルキギョウ. 誠文堂新光社. 東京.
竹田義. 1994. トルコギキョウのロゼット苗の抽だい開花に及ぼす低溫處理の影響. 園學雜. 64:359-366.
Adams, S.R., M. Munir, V.M. Valdes, F.A. Langton, and S.D. Jackson. 2003. Using flowering times and leaf numbers to model the phases of photoperiod sensitivity in Antirrhinum majus L. Ann Bot 92:689-696.
Atherton, J.G., D.M. Yeh, J. Craigon, and G.A. Tucker. 1998. Leaf initiation and shoot apical diameter in relation to phase transition in cineraria. J. Hort. Sci. Biotechnol. 73:45-51.
Ballantine, J.E.M. and B.J. Forde. 1970. The effect of light intensity and temperature on plant growth and chloroplast ultrastructure in soybean. Amer. J. Bot. 57:1150-1159.
Blanchard, M.G. and E.S. Runkle. 2011. Quantifying the thermal flowering rates of eighteen species of annual bedding plants. Scientia Hort. 128:30-37.
Blanchard, M.G., E.S. Runkle, and P.R. Fisher. 2011. Modeling plant morphology and development of petunia in response to temperature and photosynthetic daily light integral. Scientia Hort. 129:313-320.
Boardman, N.K. 1977. Comparative photosynthesis of sun and shade plants. Ann. Rev. Plant Physio. 28:355-377.
Carmi, A. and B. Heuer. 1981. The role of roots in control of bean shoot growth. Ann. Bot. 48:519-527.
Chen, W.-S., H.-Y. Liu, Z.-H. Liu, L. Yang, and W.-H. Chen. 1994. Gibberellin and temperature influence carbohydrate content and flowering in Phalaenopsi. Physiol. Plant. 90:391-395.
Di Benedetto, A. 2011. Root restriction and post-transplant effects for bedding pot plants p. 47-49. In: J.C. Aquino (ed.), Ornamental Plants: Types, Cultivation and Nutrition. Nova Science Publishers.
Di Benedetto, A. and R. Klasman. 2007. The effects of plug cell volume, paclobutrazol height control and the transplant stage on the post-transplant growth of Impatiens wallerana pot plant. European J. Hort. Sci. 5:193-197.
Di Benedetto, A.H. and R. Klasman. 2004. The effect of plug cell volume on the post-transplant growth for Impatiens walleriana pot plant. European J. Hort. Sci. 69:82-86.
Dole, J.M. and H.F. Wilkins. 1999. Floriculture: principles and species. Prentice-Hall Inc.
Faust, J.E., V. Holcombe, N.C. Rajapakse, and D.R. Layne. 2005. The effect of daily light integral on bedding plant growth and flowering. HortScience 40:645-649.
Fukushima, K., S. Kajihara, S. Ishikura, N. Katsutani, H. Imamura, and T. Goto. 2016. Effect of temperature at the seedling stage after low-temperature treatment of imbibed seeds on the growth and characteristics of Eustoma grandiflorum. Hort. Res. 15:377-382.
Graper, D.F. and W. Healy. 1992. Modification of petunia seedling carbohydrate partitioning by irradiance. J. Amer. Soc. Hort. Sci. 117:477-480.
Graper, D.F., W. Healy, and D. Lang. 1990. Supplemental irradiance control of petunia seedling growth at specific stages of development. Acta Hort. 272:153-158.
Ha, T.M. 2014. A review of plants’ flowering physiology: The control of floral induction by juvenility, temperature and photoperiod in annual and ornamental crops. Asian J. Agr. Food Sci. 2:186-195.
Hand, D.J. and J.G. Atherton. 1987. Curd initiation in the cauliflower I. Juvenility. J. Expt. Bot. 38:2050-2058.
Harbaugh, B.K., M.S. Roh, R.H. Lawson, and B. Pemberton. 1992. Rosetting of Lisianthus cultivars exposed to high temperature. HortScience 27:885-887.
Hermans, C., J.P. Hammond, P.J. White, and N. Verbruggen. 2006. How do plants respond to nutrient shortage by biomass allocation? Trends Plant Sci. 11:610-617.
Hisamatsu, T., M. Koshioka, T. Nishijima, and L.N. Mander. 1998. Identification of endogenous gibberellins and their role in rosetted seedlings of Eustoma grandiflorum. J. Jpn. Soc. Hort. Sci. 67:866-871.
Hu, H.R., X.L. Hu, W.W. Di, and M.Z. Bao. 2007. Studies on juvenility and limited inductive photoperiod of Petunia hybrida ''Fantasy''. Acta Hort.Sinica 34:179.
Huang, Z.A., D.A. Jiang, Y. Yang, J.W. Sun, and S.H. Jin. 2004. Effects of nitrogen deficiency on gas exchange, chlorophyll fluorescence, and antioxidant enzymes in leaves of rice plants. Photosynthetica 42:357-364.
Islam, N., G.G. Patil, and H.R. Gislerød. 2005. Effect of photoperiod and light integral on flowering and growth of Eustoma grandiflorum (Raf.) Shinn. Scientia Hort. 103:441-451.
Kang, J.G. and M.W. van Iersel. 2004. Nutrient solution concentration affects shoot: root ratio, leaf area ratio, and growth of subirrigated salvia Salvia splendens. HortScience 39:49-54.
Keever, G., J. Kessler Jr, G. Fain, and D. Mitchell. 2015. Seedling developmental stage at transplanting affects growth and flowering of medallion flower and globe amaranth. J. Environ. Hort. 33:53-57.
Kessler, R., A.M. Armitage, and D.S. Koranski. 1991. Acceleration of Begonia ×semperflorens-cultorum growth using supplemental irradiance. HortScience 26:258-260.
Korczynski, P.C., J. Logan, and J.E. Faust. 2002. Mapping monthly distribution of daily light integrals across the contiguous United States. HortTechnology 12:12-16.
Larouche, R., A. Gosselin, and L.P. Vezina. 1989. Nitrogen concentration and photosynthetic photon flux in greenhouse tomato production: I. growth and development. J. Amer. Soc. Hort. Sci. 114:458-461.
Latimer, J.G. 1991. Container size and shape influence growth and landscape performance of marigold seedlings. HortScience 26:124-126.
Law, R.D. and S.J. Crafts-Brandner. 1999. Inhibition and acclimation of photosynthesis to heat stress is closely correlated with activation of ribulose-1,5-bisphosphate carboxylase/oxygenase. Plant Physiol. 120:173-181.
Li, J., H. Ohno, and K. Ohkawa. 2004. Influences of temperature and photoperiod on rosetting characteristics of Eustoma grandiflorum (Raf.) Shinn. cultivars grown in growth chambers. Environ. Control Biol. 42:131-136.
Lugassi-Ben-Hamo, M., M. Kitron, A. Bustan, and M. Zaccai. 2010. Effect of shade regime on flower development, yield and quality in lisianthus. Scientia Hort. 124:248-253.
Marchese, J.A., I. Katz, A.P. Sousa, and J.D. Rodrigues. 2005. Gas exchange in lisianthus plants (Eustoma grandiflorum) submitted to different doses of nitrogen. Photosynthetica 43:303-305.
Moccaldi, L.A. and E.S. Runkle. 2007. Modeling the effects of temperature and photosynthetic daily light integral on growth and flowering of Salvia splendens and Tagetes patula. J. Amer. Soc. Hort. Sci. 132:283-288.
Nemali, K.S. and M.W. van Iersel. 2004. Light intensity and fertilizer concentration: II. optimal fertilizer solution concentration for species differing in light requirement and growth rate. HortScience 39:1293-1297.
NeSmith, D. 1993. Transplant age influences summer squash growth and yield. HortScience 28:618-620.
NeSmith, D.S. and J.R. Duval. 1998. The effect of container size. HortTechnology 8:495-498.
Niu, G., R.D. Heins, A.C. Cameron, and W.H. Carlson. 2000. Day and night temperatures, daily light integral, and CO2 enrichment affect growth and flower development of pansy (Viola ×wittrockiana). J. Amer. Soc. Hort. Sci. 125:436-441.
Oh, W., I.H. Cheon, K.S. Kim, and E.S. Runkle. 2009. Photosynthetic daily light integral influences flowering time and crop characteristics of Cyclamen persicum. HortScience 44:341-344.
Oh, W., E.S. Runkle, and R.M. Warner. 2010. Timing and duration of supplemental lighting during the seedling stage influence quality and flowering in petunia and pansy. HortScience 45:1332-1337.
Ohkawa, K., A. Kano, K. Kanematsu, and M. Korenaga. 1991. Effects of air temperature and time on rosette formation in seedlings of Eustoma grandiflorum (Raf.) Shinn. Scientia Hort. 48:171-176.
Ohkawa, K., M. Korenaga, and T. Yoshizumi. 1993. Influence of temperature prior to seed ripening and at germination on rosette formation and bolting of Eustoma grandiflorum. Scientia Hort. 53:225-230.
Paradiso, R., S. Fiorenza, and S. De Pascale. 2008. Light requirements for flowering of lisianthus. Acta Hort. 801:1155-1160.
Peterson, T.A., M.D. Reinsel, and D.T. Krizek. 1991. Tomato (Lycopersicon esculentum Mill., cv.‘Better Bush’) plant response to root restriction. J. Expt. Bot. 42:1241-1249.
Pietsch, G.M., W.H. Carlson, R.D. Heins, and J.E. Faust. 1995. The effect of day and night temperature and irradiance on development of Catharanthus roseus (L.) ''Grape Cooler''. J. Amer. Soc. Hort. Sci. 120:877-881.
Pramuk, L.A. and E.S. Runkle. 2005. Photosynthetic daily light integral during the seedling stage influences subsequent growth and flowering of Celosia, Impatiens, Salvia, Tagetes, and Viola. HortScience 40:1336-1339.
Ramin, A. and J. Atherton. 1991. Manipulation of bolting and flowering in celery (Apium graveolens L. var. dulce). II. Juvenility. J. Hort. Sci. 66:709-717.
Randall, W.C. and R.G. Lopez. 2014. Comparison of supplemental lighting from high-pressure sodium lamps and light-emitting diodes during bedding plant seedling production. HortScience 49:589-595.
Randall, W.C. and R.G. Lopez. 2015. Comparison of bedding plant seedlings grown under sole-source light-emitting diodes (LEDs) and greenhouse supplemental lighting from LEDs and high-pressure sodium lamps. HortScience 50:705-713.
Roberts, E. and R. Summerfield. 1987. Measurement and prediction of flowering in annual crops, p. 17-50. In: J.G. Atherton (ed.), Manipulation of flowering. Butterworths, London, UK.
Runkle, E. 2007. The benefits of lighted plugs. Greenhouse Product News:70.
Sachs, R.M., C.F. Bretz, and A. Lang. 1959. Shoot histogenesis: the early effects of gibberellin upon stem elongation in two rosette plants. Amer. J. Bot. 46:376-384.
Styer, R.C. and D.S. Koranski. 1997. Plug & transplant production. A grower''s guide. Ball publishing.
Takeda, T. 1994. Studies on rosette formation and bolting of seedlings and lateral buds of Eustoma grandiflorum (Raf.) Shinn. J. Jpn. Soc. Hort. Sci 63:653-662 (In Japanese).
Takezaki, A., Y. Yoshida, and M. Masuda. 2004. Leaf structure and photosynthetic properties in rosetting and bolting Eustoma Plants. J. Jpn. Soc. Hort. Sci. 73:287-292.
Tanigawa, T., N. Kuroyanagi, and T. Kunitake. 2002. Effects of low temperature treatment of imbibed seeds of Eustoma grandiflorum (Raf.) Shinn. on their germination and subsequent bolting. J. Jpn. Soc. Hort. Sci. 71:697-701.
Tsukada, T., Y. Miyazawa, and F. Otsuka. 1989. Studies on the physiological characters and the cultivation of Russell prairie gentian [Gentiana sp.], 4: Effects of environmental factors in seedling period on the growth and flowering. Bul. Nagano Veg. Ornamental Crops Expt. Sta. (Japan) 5:65-74.
Vaid, T.M. and E.S. Runkle. 2013. Developing flowering rate models in response to mean temperature for common annual ornamental crops. Scientia Hort. 161:15-23.
van Iersel, M. 1997. Root restriction effects on growth and development of salvia (Salvia splendens). HortScience 32:1186-1190.
Wang, Q., R. Guo, C. Zhang, Z. Zhou, and H. Hu. 2014. Optimal photoperiod and floral transition of Eustoma grandiflorum ‘Tiramisu Double Cream’. Scientia Hort. 175:121-127.
Warner, R.M. and J.E. Erwin. 2005. Prolonged high temperature exposure and daily light integral impact growth and flowering of five herbaceous ornamental species. J. Amer. Soc. Hort. Sci. 130:319-325.
Yamada, A., T. Tanigawa, T. Suyama, T. Matsuno, and T. Kunitake. 2011. Effects of Red:Far-Red light ratio of night-break treatments on growth and flowering of Eustoma Grandiflorum (Raf.) Shinn. Acta Hort. 907:313-317.
Yamashita, M. and H. Imamura. 2007. Shoot and root growth and lysigenous aerenchyma formation in rosetted and stem-extensional plants of Eustoma grandiflorum (Raf.) Shinn. J. Jpn. Soc. Hort. Sci 76:54-59.
Yeh, D.M. and J. Atherton. 1997. Manipulation of flowering in cineraria. II. Juvenility. J. Hort. Sci. 72:55-66.
Yeh, D.M. and J. Atherton. 1999. Effects of irradiance on growth and flowering in the shade plant, cineraria. Ann. Appl. Biol. 134:329-334.
Yeh, D.M. and H.H. Chiang. 2001. Growth and flower initiation in hydrangea as affected by root restriction and defoliation. Scientia Hort. 91:123-132.
Yuan, M., W.H. Carlson, R.D. Heins, and A.C. Cameron. 1998. Determining the duration of the juvenile phase of Coreopsis grandiflora (Hogg ex Sweet.), Gaillardia ×grandiflora (Van Houtte), Heuchera sanguinea (Engelm.) and Rudbeckia fulgida (Ait.). Scientia Hort. 72:135-150.
Zaccai, M. and N. Edri. 2002. Floral transition in lisianthus (Eustoma grandiflorum). Scientia Hort. 95:333-340.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top