跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.59) 您好!臺灣時間:2025/10/15 22:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:楊鎮岳
研究生(外文):Zhen Yue Yang
論文名稱:水熱法製備氧化鎳/還原氧化石墨烯複合材料於超級電容之應用
論文名稱(外文):Hydrothermal Synthesis of Reduced Graphene Oxide/Nickel Oxide Composite in Supercapacitor Applications
指導教授:陳志恆陳志恆引用關係
指導教授(外文):Jyh-Herng Chen Ph.D.
口試委員:吳震裕徐治平林景崎
口試委員(外文):Jeng-Yue WuJyh-Ping HsuJing-Chie Lin
口試日期:20170728
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:資源工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:102
中文關鍵詞:超級電容還原氧化石墨烯/氧化鎳氧化鎳還原氧化石墨烯氧化石墨烯
外文關鍵詞:SupercapacitorReduced Graphene Oxide/ Nickel oxideReduced Graphene OxideGraphene Oxide
相關次數:
  • 被引用被引用:0
  • 點閱點閱:1054
  • 評分評分:
  • 下載下載:53
  • 收藏至我的研究室書目清單書目收藏:0
還原氧化石墨烯(reduced Graphene Oxide,rGO)具有大的比表面積、高的導電率以及良好的化學穩定性質等,具有廣泛的應用。NiO電極材料有著與RuO2特性相類似,且價格低廉,可以實現大規模的量產,現在以NiO製備的電容已有實際的應用在生活中。本研究利用水熱法將線狀NiO複合在rGO中形成性質優越的陽極材料。本研究主要分為三部分,第一部分:氧化石墨烯以及NiC2O4前軀體條件與結構變化之探討;第二部分:探討不同GO添加量以及Ni(NO3)2對rGO/NiC2O4、rGO/NiO的影響;第三部分:以一步製程製備rGO/NiO電極薄片,並探討其電容表現。本研究使用PEG作為分子模板在液相中使得NiC2O4錯合物吸附,緊密排列沿著[101]方向成長形成線狀形貌,最後吸附在rGO上。SEM觀察rGO/NiO複合材料的平均長度、平均寬度的趨勢。XRD觀察rGO/NiO複合材料材料的晶相及FTIR觀察rGO的還原能力。並以循環伏安法探討不同鍛燒溫度下NiO含量對rGO/NiO複合材料的影響。
本研究結果顯示,線狀NiO可提升rGO/NiO複合材料的電容性質。最佳的製備條件為:原始Ni(NO3)2濃度為0.418M,鍛燒溫度300℃所形成的rGO/NiO複合材料,金屬半導體氧化物NiO可提供了良好的穩定性,及充放電效率,比電容值可達到177.7F/g。
Due to the large specific surface area, high conductivity and good chemical stability, Reduced Graphene Oxide(rGO) has been widely applied in various fields. NiO material has similar characteristics with RuO2. Due to the low price, NiO can be produced in large-scale production. Recently, the NiO capacitor has found practical application in life. In this study, the linear NiO/rGO is synthesized by hydrothermal method to form an anode material with superior properties. There are three parts in the thesis: (1) the effect of preparation parameters on the structure and morphology of oxidized graphene and NiC2O4 Precursor, (2) the effects of amount of GO and Ni(NO3)2 on rGO/NiO Composites, (3) the application of rGO / NiO electrode. In this study, rGO / NiO composite is prepared by hydrothermal method with NiC2O4 as precursor. PEG is used as a molecular template to ensure the formation of NiO with a linear morphology. The average length and average width of NiO in the rGO/NiO composite were observed by SEM. The crystal phase of rGO/NiO composites was observed by XRD. FTIR observed effect of reduction on rGO formation. The electric performance of rGO/NiO composites is investigated by cyclic voltammetry.
The experimental results indicate that linear NiO can improve the capacitance of rGO / NiO composite. With initial concentration of Ni(NO3)2 of 0.418M, calcination temperature of 300 ℃, the rGO / NiO composite material can have good stability, and charge and charge-discharge efficiency. The specific capacitance value can reach 177.7F/g
目錄
摘要 i
Abstract iii
誌謝 v
表目錄 x
第一章 緒論 xi
1.1前言 1
第二章 文獻回顧 3
2.1石墨烯(Graphite)介紹 3
2.1.1 石墨烯的簡介 3
2.1.2 石墨烯的特性 4
2.1.3 石墨烯的製備 7
2.1.3.2磊晶成長法(Epitaxial growth) 8
2.1.3.3 化學氣相沉積法(Chemical vaper deposition,CVD) 9
2.1.3.4 液相剝離法(Liquid exfoliation) 11
2.1.3.5 氧化還原法(reduction of graphene) 12
2.2 氧化鎳的介紹 13
2.2.1 氧化鎳的物理、化學性質 13
2.2.2 奈米NiO的基本性質 14
2.2.2.1 小尺寸效應 14
2.2.2.2 表面效應 15
2.2.2.3 量子及宏觀量子隧道效應 15
2.2.3 超細氧化鎳(NiO)粉體的製備方法 16
2.2.3.1 溶膠凝膠法 16
2.2.3.2 沉澱法 17
2.2.3.3 微乳液合成法 17
2.2.3.4 固相合成法 18
2.2.3.5 氣相法 19
2.2.3.6 水熱法 20
2.3 電化學原理 22
2.3.1 電化學反應系統 22
2.3.2 不同種類的電極材料 25
2.3.2.1碳電極材料 25
2.3.2.2金屬氧化物電極材料 26
2.3.2.3導電聚合物電極材料 27
2.4 超級電容器 28
2.4.1 超級電容器簡介 28
2.4.2 電化學電容器的種類 30
2.4.2.1 電雙層電容器 31
2.4.2.2 擬電容器 34
2.4.2.3 電容定義 37
第三章 實驗方法與步驟 40
3.1 實驗藥品 40
3.2 實驗與分析儀器 41
3.3實驗流程 42
3.4實驗步驟 43
3.4.1 氧化石墨烯製備條件之探討 43
3.4.2 奈米氧化鎳-石墨烯的合成 43
3.4.3陽極電極的製備 44

第四章 結果與討論 45
4.1 rGO製備 45
4.1.1 Modified Hummers法製備GO 45
4.1.2水熱法製備rGO 47
4.2 水熱法製備氧化鎳線 50
4.2.1分子模板PEG對NiC2O4形貌的影響 51
4.2.2 Ni(NO3)2濃度對NiC2O4結晶性及形貌的影響 51
4.2.3鍛燒溫度對NiO結晶性及形貌的影響 55
4.3水熱法製備rGO/NiO複合材料 61
4.3.1 製備參數對rGO/ NiC2O4複合材料性質的影響 61
4.3.1.1 rGO/NiC2O4結晶性 61
4.3.1.2 Ni(NO3)2濃度對rGO/NiC2O4複合材料含氧官能基的影響 63
4.3.1.3 GO與Ni(NO3)2添加量對rGO/NiC2O4複合材料的形貌影響 65
4.3.1.4 Ni(NO3)2濃度對rGO/NiC2O4複合材料導電度之影響 70
4.3.2 鍛燒溫度對rGO/NiO複合材料性質的影響 71
4.3.2.1 鍛燒溫度對rGO/NiO結晶性的影響 71
4.3.2.2 鍛燒溫度對rGO/NiO複合材料的形貌的影響 75
4.3.2.2 鍛燒溫度對rGO/NiO之含氧官能基影響 81
4.3.2.3 鍛燒溫度對rGO/NiO複合材料之導電度的影響 84
4.4 rGO/NiO複合材料應用測試 85
4.4.1 含線狀NiO之rGO/NiO複合材料 85
4.4.2 含粒狀NiO之rGO/NiO複合材料 87
第五章. 結論與建議 92
5.1 結論 92
5.2 建議 93
參考文獻 94
1.Zhang K, Zhang LL, Zhao XS, Wu JS. “Graphene/polyaniline nanofiber compo-
sites as supercapacitor electrodes” , Chem Mater , vol 22, 2010,pp.1392–401.
2.Wu Q, Sun YQ, Shi GQ. “Supercapacitors based on selfassembled graphene organogel” , Phys Chem Chem Phys, vol 13, 2011,pp.17249–54.
3.Reddy AL, Shaijumon MM, Gowda SR, Ajayan PM.“ Multisegmented Au-MnO2 /carbon nanotube hybrid coaxial arrays for high-power supercapacitor application s”, J Phys Chem C , vol 114, 2010, pp.658–63.
4.Chen Y L,Hu z A,Chang Y Q,et a1. “Zinc Oxide/Reduced Graphene Oxide Composites and Electrochemical Capacitance Enhanced by Homogeneous Incorporation of Reduced Graphene Oxide Sheets in Zinc Oxide Matrix” , J Phys Chem C, vol 115,2011, pp.2563-2571.
5.Manab Kundu, Gopalu Karunakaran, Denis Kuznetsov. “Green synthesis of NiO nanostructured materials using Hydrangea paniculata flower extracts and their efficient application as supercapacitor electrodes”, Powder Technology , vol 311, 2017 ,pp.132–136.
6.Gang Chen, Hongtao Guan, Chengjun Dong. “Effect of calcination temperatures on the electrochemical performances of nickel oxide/reduction graphene oxide (NiO/RGO) composites synthesized by hydrothermal method” , J Phys Chem , vol 98 ,2016,pp.209–219.
7.洪偉修,「世界最薄的材料-石墨烯」,康熹化學報,第五期(2009)
8.K. Geim.“Graphene: Status and Prospects”, Science, vol 324, 2009, pp. 1530-1534.
9.K. S. Novoselov, “Electric field effect in atomically thin carbon films”, Science, vol 306 , 2004, pp. 666–6693.
10.莊鎮宇,「石墨烯簡介與熱裂解化學氣相合成方法合成石墨烯的近期發展」,物理雙月刊,第33卷,第2期(2011)
11.K. Geim and K. S. Novoselov, “The rise of graphene”, Nature Materials, vol 6 , 2007, pp.183-191.
12.R. Colin Johnson, “Carbon could enable fastest chips”, EE Times, 2008.
13.蘇清文,「石墨烯量產技術與產業應用」,光連雙月刊,No.108,2013.
14.R.R. Nair et al. , “Fine Structure Constant Defines Visual Transparency of Grap- hene”,Science,320,2008, pp.1308–1308.
15.A. Balandin et al. ,“Superior Thermal Conductivity of Single-Layer Graphene
”, Nano Lett. ,vol 8, 2008, pp.902.
16.K. S. Novoselov et al., “A roadmap for graphene”,Nature, vol 490, 2012, pp.192- 200.
17.K. P. Loh et al., J. Mater. Chem.,“The chemistry of graphene”, Master Chem , vol 20,2010, pp.2277-2289.
18.蘇清文,「石墨烯氧化物之特性與應用前景」,物理雙月刊,第33卷,第2期(2011).
19.曾建州,林佑仲,「石墨烯發展現況」,真空科技,第24卷,第2期(2011).
20.蔡宜壽、徐平承,「本世紀最夯的材料石墨烯」,真空科技,第26卷,第2期,2013.
21.S. Stankovich et al., “Graphene-based composite materials”, Nature , vol 442 ,2006, pp.282- 286 .
22.J. Kim et al., “ Low-temperature synthesis of graphene on nickel foil by micro- wave plasma chemical vapor deposition”, Appl. Phys. Lett., vol 98,2011, pp. 0915-02.
23.Park S, Ruoff RS. “Chemical methods for the production of graphenes”. Nat Nanotechnol , vol 4, 2009, pp.217–224.
24.M. Chhowalla et al., “Graphene oxide as a chemically tunable platform for optical applications”, Nature Chem , vol 2, 2010, pp.1015–1024.
25.C. Y. Su et al.,“High-Quality Thin Graphene Films from Fast Electrochemical Exfoliation”,ACS Nano, vol 4 , 2010, pp.5285-5292.
26.G. Eda et al.,“Chemically derived graphene oxide: towards large-area thin-film electronics and optoelectronics”,Adv. Mater. , vol 22 ,2010, pp.2392-415.
27.Charmaine Lamiel, Van Hoa Nguyen, Dirk Tuma, Jae-Jin Shim, “Non-aqueous synthesis of ultrasmall NiO nanoparticle-intercalated graphene composite as active electrode material for supercapacitors”,Materials Research Bulletin , vol 83,2016, pp.275–283.
28.Bo Zhao, Tao Wang, Li Jiang, “NiO mesoporous nanowalls grown on RGO coated nickel foam as high performance electrodes for supercapacitors and biosensors”, Electrochimica Acta, vol 192 , 2016, pp. 205–215.
29.Atkinson and R.I. Taylor, “The self-diffusion of Ni in NiO and its relevance to the oxidation of Ni”, Journal of Materials Science, vol 13,1978, pp.427-432.
30.Milton L. Volpe and John Reddy, “Cation self-diffusion and semiconductivity in NiO”, the journal of chemical physics, vol 53 , 1970, pp.1170-1125.
31.Li G. J . , Huang X. X. , Shi Y. , “Preparation and characteristics of nanocrystall- ine NiO by organic solvent method ”, Mater.Lett , vol 51 , 2001 , pp.325-330.
32.Anas A. Ahmed, Mutharasu Devarajan, Naveed Afzal, “Effects of substrate temp- erature on the degradation of RF sputtered NiO properties”,Materials Science in Semiconductor Processing , vol 63 , 2017, pp.137–141.
33.Matteo Bonomo, Andrea Giacomo Marrani,Vittoria Novelli,“Surface properties of nanostructured NiO undergoing electrochemical oxidation in 3-methoxy- propion itrile”,Applied Surface Science, vol 403 , 2017, pp.441–447.
34.Yidong Zhang, Shujie Wang, Ling Chen, Yan Fang, Huaibin Shen, Zuliang Du, “Solution-processed quantum dot light-emitting diodes based on NiO nanocrystals hole injection layer”, Organic Electronics,vol 44,2017, pp.189-197.
35.Yajie Zhang, Wen Zeng, “New insight into gas sensing performance of nanonee dle-assembled and nanosheet-assembled hierarchical NiO nanoflowers”, Materials Letters, vol 7 , 2017, pp.217–219.
36.Yunyun Huang, Yijun Zhang, Sai Lin, Lu Yan, Rui Cao, Ruohan Yang, Xiaojuan Liang, “Sol-gel synthesis of NiO nanoparticles doped sodium borosilicate glass with third-order nonlinear optical properties”, Journal of Alloys and Compounds, vol 7 , 2016, pp.564-570.
37.Yunyun Huang, Yijun Zhang, Sai Lin, Lu Yan, Rui Cao, Ruohan Yang, Xiaojuan Liang, “Sol-gel synthesis of NiO nanoparticles doped sodium borosilicate glass with third-order nonlinear optical properties”, Journal of Alloys and Compounds , vol 686 , 2016, pp.564–570.
38.Junfeng Zhao, Yang Tan, “A facile homogeneous precipitation synthesis of NiO nanosheets and their applications in water treatment”, Applied Surface Science, vol 337 , 2015, pp.111–117.
39.K. Anandan, V. Rajendran, “Effects of Mn on the magnetic and optical properties and photocatalytic activities of NiO nanoparticles synthesized via the simple precipitation process”, Materials Science and Engineering B, vol 199 , 2015, pp. 48–56.
40.K. Karthik, G. Kalai Selvan, M. Kanagaraj, “Particle size effect on the magnetic properties of NiO nanoparticles prepared by a precipitation method”, Journal of Alloys and Compounds, vol 509 , 2011, pp.181–184.
41.Shao-Fei Wang , Li-Yi Shi, Xin Feng , Shu-Rui Ma, “Eutectic assisted synthesis of nanocrystalline NiO through chemical precipitation”, Materials Letters, vol 61 , 2007, pp. 1549–1551.
42.Kongfa Chen, Zhe Lu, Xiangjun Chen, “Characteristics of NiO-YSZ anode based on NiO particles synthesized by the precipitation method”, Journal of Alloys and Compounds, vol 454 , 2008, pp. 447–453.
43.Ravi Kant Sharma, Ranjana Ghose, “Synthesis of porous nanocrystalline NiO with hexagonal sheet-like morphology by homogeneous precipitation method”, Superlattices and Microstructures, vol 80 , 2015, pp.169–180.
44.ZHU Fu-liang,MENG Yan-Shuang, “Preparation and Characterization of NiO Nanowires via Single-Phase Precipitation”, Advanced Materials Research, vol 688 , 2013, pp.331-334.
45.Yu Du, Weinan Wang, Xiaowei Li, Jing Zhao, Jinming Ma, Yinping Liu, Geyu Lu, “Preparation of NiO nanoparticles in microemulsion and its gas sensing performance”, Materials Letters , vol 68 , 2011, pp. 168–170.
46.Hua Huang, Jie Lin, Yunlong Wang, “Facile one-step forming of NiO and yttrium -stabilized zirconia composite anodes with straight open pores for planar solid oxide fuel cell using phase-inversion tape casting method”, Journal of Power Sources, vol 274 , 2015, pp.1114–1117.
47.Kazuo Uchida, Ken-ichi Yoshida, Dongyuan Zhang, Atsushi Koizumi, Shinji Nozaki, “High-quality single crystalline NiO with twin phases grown on sapphire substrate by metalorganic vapor phase epitaxy”, AIP Advances, vol 2 , 2012, pp.042154 .
48.Seiichi Ohyama , Kristoffer E Popp, Mayfair C Kung, Harold H Kung, “Effect of vanadia on the performance of NiO in vapor-phase oxidative decarboxylation of benzoic acid to phenol”, Catalysis Communications, vol 3(8),2002, pp.357–362.
49.Ruiyang Miao, Wen Zeng, “SDS-assisted hydrothermal synthesis of NiO flake -flower architectures with enhanced gas-sensing properties”, Applied Surface Science, vol 384 , 2016, pp. 304–310.
50.Shutao Wang, Cong Wang, Guijuan Wei, Huaqing Xiao, Ning An, Yan Zhou, “Non-enzymatic glucose sensor based on facial hydrothermal synthesized NiO nanosheets loaded on glassy carbon electrode”,Colloids and Surfaces A, vol 509 , 2016, pp.252–258.
51.Mikael Cugnet, Nicolas Guillet, Angel Kirchev, “Electrochemistry of thin-plate lead-carbon batteries employing alternative current collectors”,Journal of Power Sources, vol 352 , 2017, pp.194–207.
52.Andrew P. Abbott, Francesca Bevan, Monika Baeuerle, Robert C. Harris, Gawen R.T. Jenkin, “Paint casting: A facile method of studying mineral electrochemistr- y ”, Electrochemistry Communications, vol 76 , 2017, pp. 20–23.
53.F. M. Lehr, M. Kristiaasen, “Electrode erosion from high current moving arcs,” IEEE Trans on Plasma Science, vol 17 , 1989, pp.811-817.
54.B. Juttner, “Cathode spots of electric arcs” , J Phys D: Appl Phys, vol 34 , 2001, pp.103-123 .
55.Lee, Min Eui; Kim, Na Rae; Song, Min Yeong; Jin, Hyoung-Joon, “Microporous Carbon Nanoplate/Amorphous Ruthenium Oxide Hybrids as Supercapacitor Ele- ctrodes”, Journal of Nanoscience and Nanotechnology, vol 16 , 2016, pp.10431- 10436.
56.Xian Leng, Jianpeng Zou, , Xiang Xiong, Hanwei He, “Electrochemical capacitive behavior of RuO2/graphene composites prepared under various precipitation cond- itions”, Journal of Alloys and Compounds, vol 25 , 577–584 (2015).
57.Fan Yang, Lianbing Zhang, Ana Zuzuarregui, Keith Gregorczyk, “Functionalizat- ion of Defect Sites in Graphene with RuO2 for High Capacitive Performance”, ACS Applied Materials and Interfaces,vol 7,2015, pp.20513- 20519.
58.Hu, C.-C., Wang, C.-W., Chang, K.-H., Chen, M.-G, “Anodic composite deposit- ion of RuO2/reduced graphene oxide/carbon nanotube for advanced supercapaci- tors”, Nanotechnology, vol 26 , 2015, pp.274004.
59.Chen, R., Ata, M.S., Zhao, X., “Strategies for liquid-liquid extraction of oxide particles for applications in supercapacitor electrodes and thin films”, Journal of Colloid and Interface Science, vol 499 , 2017, pp.1-8.
60.Zhang, L., Yao, H., Li, Z., “Synthesis of delaminated layered double hydroxides and their assembly with graphene oxide for supercapacitor application”, Journal of Alloys and Compounds, vol 711 , 2017, pp. 31-41.
61.Jiang, D., Xu, Q., Meng, S., Xia, C., Chen, M., “Construction of cobalt sulfide/ graphitic carbon nitride hybrid nanosheet composites for high performance super- capacitor electrodes”, Journal of Alloys and Compounds, vol 706 , 2017, pp.41-47.
62.Liu, Y., Peng, X., “Recent advances of supercapacitors based on two-dimensional materials”, Applied Materials Today, vol 7 , 2017, pp.1-12.
63.Tang, L., Yang, Z., Duan, F., Chen, M., “Fabrication of graphene sheets/polyanil- ine nanofibers composite for enhanced supercapacitor properties”,Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol 520 , 2017, pp. 184-192.
64.Elshahawy, A.M., Ho, K.H., Hu, Y., “Microwave-assisted hydrothermal synthesis of nanocrystal β-Ni(OH)2 for supercapacitor applications”, Cryst Eng Comm, vol 18 , 2016 , pp.3256-3264.
65.Tran, M.-H., Jeong, H.K., “One-pot synthesis of graphene/glucose/nickel oxide composite for the supercapacitor application”, Electrochimica Acta, vol 180 , 2015, pp.679-686 .
66.Zhu, Y., Chu, W., Wang, N., “ Self-assembled Ni/NiO/RGO heterostructures for high-performance supercapacitors”, RSC Advances, vol 5 , 2015, pp.77958- 77964.
67.Li, W., Bu, Y., Jin, H., “ The preparation of hierarchical flowerlike NiO/reduced graphene oxide composites for high performance supercapacitor applications”, Energy and Fuels, vol 27 , 2013, pp.6304-6310.
68.Khoh, W.-H., Hong, J.-D., “Layer-by-layer self-assembly of ultrathin multilayer films composed of magnetite/reduced graphene oxide bilayers for supercapacitor application”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol 436 , 2013, pp. 104-112.
69.Bai, Y., Du, M., Chang, J., Sun, J., Gao, L., “Supercapacitors with high capacita- nce based on reduced graphene oxide/carbon nanotubes/NiO composite electro- des”, Journal of Materials Chemistry A, vol 2 , 2014, pp.3834-3840.
70.Min, S., Zhao, C., Chen, G., Qian, X, “ One-pot hydrothermal synthesis of reduced graphene oxide/Ni(OH)2 films on nickel foam for high performance supercapacitors”, Electrochimica Acta, vol 115 , 2014, pp.155-164.
71.Yu, Z., Sun, S., Huang, M., Electrodeposition of gold nanoparticles on electroche- mically reduced graphene oxide for high performance supercapacitor electrode materials, International Journal of Electrochemical Science, vol 11 , 2016, pp.3643-3650.
72.Li, Q., Wei, Q., Xie, L., Su, F.-Y., Zhou, P., “ Layered NiO/reduced graphene oxi- de composites by heterogeneous assembly with enhanced performance as high- performance asymmetric supercapacitor cathode”, RSC Advances, vol 6 , 2016, pp.46548 -46557.
73.Chen, H., Hu, L., Yan, Y., Chen, M., Wu, L., “One-step fabrication of ultrathin porous nickel hydroxide-manganese dioxide hybrid nanosheets for supercapacitor electrodes with excellent capacitive performance”, Advanced Energy Materials, vol 3 , 2013, pp.1636-1646.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top