跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.144) 您好!臺灣時間:2025/11/30 12:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王富凱
研究生(外文):Wang, FU-KAI
論文名稱:以非晶態MnO/石墨烯/奈米碳管複合材料作為超級電容器電極之研究
論文名稱(外文):Study on Amorphous MnO/Graphene/Nano-carbon Composite as Supercapacitor Electrodes
指導教授:駱安亞
指導教授(外文):LO, AN-YA
學位類別:碩士
校院名稱:國立勤益科技大學
系所名稱:化工與材料工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:104
中文關鍵詞:石墨烯多元醇還原法水熱合成法
外文關鍵詞:GraphenePolyol reduction methodHydrothermal synthesis
相關次數:
  • 被引用被引用:2
  • 點閱點閱:146
  • 評分評分:
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
在眾多儲能元件中,超級電容器為具有高充放電效率、高功率密度、及高循環壽命之元件。而在電極材料上,由於石墨烯具有優秀的導熱性、導電性及高比表面積等特性,而成為了超級電容器研究的熱門材料之一。但石墨烯本身會有自身聚集、介面阻抗的特性,導致其比表面積下降,而使其無法展現出優異的電容性能。致使目前石墨烯於超級電容的應用仍停留在學術研究,無法成功商業化的主因之一。本研究以多元醇還原法配合水熱合成法合成非晶態氧化錳/石墨烯/奈米碳管的奈米複合材料。利用氧化錳將奈米碳管黏附於石墨烯,避免其自身聚集的現象、提供更好的孔隙與介面性質最大化電解液與材料的接觸,提升比電容。在1 M Na2SO4電解液下,表現出優良的比電容(210F/g)特性;在1A/g的電流下,全元件之比電容可達33F/g。結果表明研究所開發之非晶態氧化錳/石墨烯/奈米碳管是具有潛力之電容材料,且有助於突破石墨烯於超級電容商業化應用之瓶頸。
Among many energy storage devices, supercapacitors are devices with high charge and discharge efficiency, high power density, and high cycle life. On the electrode material, graphene has excellent thermal conductivity, electrical conductivity and high specific surface area, which has become one of the most popular materials for super capacitor research. However, graphene itself has the property of self-aggregation and interface resistance, resulting in a decrease in its specific surface area, which makes it unable to exhibit excellent capacitance performance. As a result, the application of graphene to supercapacitors is still one of the main reasons for academic research and commercialization. In this study, the nanocomposites of amorphous manganese oxide/graphene/carbon nanotubes were synthesized by hydrothermal synthesis method using polyol reduction method. The use of manganese oxide to adhere the carbon nanotubes to the graphene, to avoid the phenomenon of its own aggregation, to provide better pore and interface properties to maximize the contact of the electrolyte and the material, increase the specific capacitance. In the 1 M Na2SO4 electrolyte, excellent specific capacitance (210F/g) characteristics are exhibited; at a current of 1 A/g, the specific capacitance of all components can reach 33 F/g. The results show that the amorphous manganese oxide/graphene/carbon nanotubes developed by the institute are potential capacitive materials and help to break through the bottleneck of the commercial application of graphene in supercapacitors.
摘要 I
Abstract II
第一章 前言 1
1.1研究背景 1
1.2研究動機 2
第二章 文獻回顧 3
2.1電化學電容器原理 3
2.1.1電容定義 3
2.1.2電雙層原理與結構 4
2.1.3贋電容原理 10
2.2 超級電容器簡介 13
2.3 超級電容器結構 15
2.3.1 電極材料 16
2.3.2 電解液 21
2.4 石墨烯簡介 24
2.4.1 石墨烯的結構 26
2.5 奈米碳管簡介 28
2.6錳氧化物於超級電容器之應用 32
2.6.1 錳氧化物的合成 34
第三章 研究方法 41
3.1 實驗藥品 41
3.2 檢測儀器 44
3.2.1 掃描式電子顯微鏡(Scanning Elecron Microscopy;FE-SEM) 44
3.2.2穿透式電子顯微鏡(Transmission Electron Micoroscopy;TME) 45
3.2.3 X-射線繞射分析儀(X-ray diffraction;XRD) 46
3.2.4 電化學分析儀(Electric Analysis Instrument) 47
3.3 實驗流程 48
3.3.1奈米碳管的前處理 49
3.3.2 非晶態氧化錳/石墨烯/奈米碳管之合成 50
3.3.3 複合式碳材料電極樣品製備 51
3.4 電化學分析實驗 52
3.5全元件封裝測試 53
第四章 結果與討論 54
4.1材料微結構之鑑定 55
4.1.1非晶態氧化錳/奈米碳管/石墨烯之材料鑑定 55
4.1.2 非晶態氧化錳/奈米碳管/石墨烯複合材料比例對表面結構之影響 56
4.1.3 非晶態氧化錳/奈米碳管/石墨烯複合材料成分分析 59
4.1.3非晶態氧化錳/奈米碳管/石墨烯複合材料顯微結構、成分分析 62
4.2石墨烯/奈米碳管/非晶態氧化錳不同比例對電容特性影響 66
4.2.1石墨烯與奈米碳管混和比對電容特性之影響 68
4.2.2不同含量非晶態氧化錳對電容特性之影響 71
4.2.3黏著劑PVDF對電容特性之影響 74
4.3全元件測試 78
第五章 結論與建議 82
第六章 參考文獻 84
[1] A. H. a. W. V. C. H. Hamann, Electrochemistry, 1998.
[2] B. Conway, V. Birss, and J. Wojtowicz, "The role and utilization of pseudocapacitance for energy storage by supercapacitors," Journal of Power Sources, vol. 66, pp. 1-14, 1997.
[3] A. A. M. Yu.M. Volfkovich and V. E. S. a. V. S. B. D.A. Bograchev, Studies of Supercapacitor Carbon Electrodes with High Pseudocapacitance
[4] 林佑勳, "含氧化錳複合氣凝膠在超級電容器之應用," 碩士, 化學工程學系, 國立清華大學, 新竹市, 2010.
[5] L. L. Zhang, R. Zhou, and X. Zhao, "Graphene-based materials as supercapacitor electrodes," Journal of Materials Chemistry, vol. 20, pp. 5983-5992, 2010.
[6] 袁國輝, 電化學電容器[M], 2006.
[7] 郭秉軒, "電解質添加劑及其濃度於水系KOH電解質中對鋅二次電池陽極電化學性質的影響," 碩士, 材料科學與工程研究所, 國立中央大學, 桃園縣, 2016.
[8] Y. Chen, X. Zhang, D. Zhang, P. Yu, and Y. Ma, "High performance supercapacitors based on reduced graphene oxide in aqueous and ionic liquid electrolytes," Carbon, vol. 49, pp. 573-580, 2011.
[9] M. Bichat, E. Raymundo-Piñero, and F. Béguin, "High voltage supercapacitor built with seaweed carbons in neutral aqueous electrolyte," Carbon, vol. 48, pp. 4351-4361, 2010.
[10] 李守慧, "有機溶液及離子液體電解質在電雙層電容器應用之比較," 碩士, 化學工程學系, 國立成功大學, 台南市, 2015.
[11] 林芳慶, "離子液體於鋁離子電池電解質之應用," 碩士, 材料科學與工程研究所, 國立中央大學, 桃園縣, 2013.
[12] 黃柏菱, "離子液體電解質應用於石墨烯超級電容之特性分析," 碩士, 材料科學與工程研究所, 國立中央大學, 桃園縣, 2014.
[13] B. Ricketts and C. Ton-That, "Self-discharge of carbon-based supercapacitors with organic electrolytes," Journal of Power Sources, vol. 89, pp. 64-69, 2000.
[14] 蘇世軒, "離子型聚醚醚酮電解質於固態超級電容之應用研究," 碩士, 材料科學所, 逢甲大學, 台中市, 2011.
[15] 范錦松, "以碳黑披覆中間相微碳球製備碳電極於超級電容器之研究," 碩士, 電機工程學系研究所, 國立中山大學, 高雄市, 2014.
[16] 王柏欣, "光固化高分子離子液體/離子液體作為固態電解質應用於超級電容器," 碩士, 化學工程及材料工程學系碩士班, 國立高雄大學, 高雄市, 2017.
[17] Q. Qu, P. Zhang, B. Wang, Y. Chen, S. Tian, Y. Wu, et al., "Electrochemical performance of MnO2 nanorods in neutral aqueous electrolytes as a cathode for asymmetric supercapacitors," The Journal of Physical Chemistry C, vol. 113, pp. 14020-14027, 2009.
[18] Q. Gao, L. Demarconnay, E. Raymundo-Piñero, and F. Béguin, "Exploring the large voltage range of carbon/carbon supercapacitors in aqueous lithium sulfate electrolyte," Energy & Environmental Science, vol. 5, pp. 9611-9617, 2012.
[19] V. Khomenko, E. Raymundo-Pinero, E. Frackowiak, and F. Beguin, "High-voltage asymmetric supercapacitors operating in aqueous electrolyte," Applied Physics A, vol. 82, pp. 567-573, 2006.
[20] 化學工程會, "超高電容器的發展專刊,超高電容器的發展專輯前言," 2013年10月.
[21] J. T. Nelson and C. F. Green, "Organic electrolyte battery systems," HARRY DIAMOND LABS ADELPHI MD1972.
[22] A. Balducci, R. Dugas, P.-L. Taberna, P. Simon, D. Plee, M. Mastragostino, et al., "High temperature carbon–carbon supercapacitor using ionic liquid as electrolyte," Journal of Power Sources, vol. 165, pp. 922-927, 2007.
[23] P. G. Bruce, Solid state electrochemistry vol. 5: Cambridge university press, 1997.
[24] W. Y. Xuan, Lithium-ion batteries: solid-electrolyte interphase: World Scientific, 2004.
[25] P. Simon and Y. Gogotsi, "Materials for electrochemical capacitors," Nature materials, vol. 7, p. 845, 2008.
[26] 劉志毅, 吳奕寬, 張駿晟, and 曾永華, "從超薄石墨膜至原子層石墨烯: 光電特性及應用," 真空科技, vol. 26, pp. 25-34, 2013.
[27] 翁任賢, "揭開神奇材料的面紗...石墨烯(Graphene)," 2013.
[28] A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, et al., "Superior thermal conductivity of single-layer graphene," Nano letters, vol. 8, pp. 902-907, 2008.
[29] A. K. Geim and K. S. Novoselov, "The rise of graphene," Nature materials, vol. 6, p. 183, 2007.
[30] K. I. Bolotin, K. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, et al., "Ultrahigh electron mobility in suspended graphene," Solid State Communications, vol. 146, pp. 351-355, 2008.
[31] R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, et al., "Fine structure constant defines visual transparency of graphene," Science, vol. 320, pp. 1308-1308, 2008.
[32] M. D. Stoller, S. Park, Y. Zhu, J. An, and R. S. Ruoff, "Graphene-based ultracapacitors," Nano letters, vol. 8, pp. 3498-3502, 2008.
[33] C. H. Pham and R. Fayerberg, "Current trends in patenting graphene and graphene-based inventions," Nanotech. L. & Bus., vol. 8, p. 10, 2011.
[34] I. Villar, S. Roldan, V. Ruiz, M. Granda, C. Blanco, R. Menéndez, et al., "Capacitive deionization of NaCl solutions with modified activated carbon electrodes," Energy & Fuels, vol. 24, pp. 3329-3333, 2010.
[35] S. Wang, D. Wang, L. Ji, Q. Gong, Y. Zhu, and J. Liang, "Equilibrium and kinetic studies on the removal of NaCl from aqueous solutions by electrosorption on carbon nanotube electrodes," Separation and Purification Technology, vol. 58, pp. 12-16, 2007.
[36] P. A. Thrower, Chemistry & physics of carbon vol. 25: CRC Press, 1996.
[37] H. Y. Lee and J. B. Goodenough, "Supercapacitor behavior with KCl electrolyte," Journal of Solid State Chemistry, vol. 144, pp. 220-223, 1999.
[38] P. Ragupathy, H. Vasan, and N. Munichandraiah, "Synthesis and characterization of nano-MnO2 for electrochemical supercapacitor studies," Journal of the Electrochemical Society, vol. 155, pp. A34-A40, 2008.
[39] M. K. Johnson, "Iron—sulfur proteins: new roles for old clusters," Current opinion in chemical biology, vol. 2, pp. 173-181, 1998.
[40] W. M. Haynes, CRC handbook of chemistry and physics: CRC press, 2014.
[41] W. Wei, X. Cui, W. Chen, and D. G. Ivey, "Manganese oxide-based materials as electrochemical supercapacitor electrodes," Chemical society reviews, vol. 40, pp. 1697-1721, 2011.
[42] R. T. Downs and M. Hall-Wallace, "The American Mineralogist crystal structure database," American Mineralogist, vol. 88, pp. 247-250, 2003.
[43] R. BRCNR, "Transition Metal Oxides: Structure, Properties, and Synthesis of Ceramic Oxides," ed: Wiley–VCH, New York and Weinheim, 1998.
[44] Y. Tian, D. Li, J. Liu, H. Wang, J. Zhang, Y. Zheng, et al., "Facile Synthesis of Mn3O4 Nanoplates-Anchored Graphene Microspheres and Their Applications for Supercapacitors," Electrochimica Acta, vol. 257, pp. 155-164, 2017.
[45] L. Li, K. H. Seng, H. Liu, I. P. Nevirkovets, and Z. Guo, "Synthesis of Mn3O4-anchored graphene sheet nanocomposites via a facile, fast microwave hydrothermal method and their supercapacitive behavior," Electrochimica Acta, vol. 87, pp. 801-808, 2013.
[46] V. Subramanian, H. Zhu, and B. Wei, "Synthesis and electrochemical characterizations of amorphous manganese oxide and single walled carbon nanotube composites as supercapacitor electrode materials," Electrochemistry Communications, vol. 8, pp. 827-832, 2006.
[47] E. Raymundo-Pinero, V. Khomenko, E. Frackowiak, and F. Beguin, "Performance of manganese oxide/CNTs composites as electrode materials for electrochemical capacitors," Journal of the Electrochemical Society, vol. 152, pp. A229-A235, 2005.
[48] Y.-T. Wu and C.-C. Hu, "Effects of electrochemical activation and multiwall carbon nanotubes on the capacitive characteristics of thick MnO2 deposits," Journal of The Electrochemical Society, vol. 151, pp. A2060-A2066, 2004.
[49] C. Y. Lee, H. M. Tsai, H. J. Chuang, S. Y. Li, P. Lin, and T. Y. Tseng, "Characteristics and electrochemical performance of supercapacitors with manganese oxide-carbon nanotube nanocomposite electrodes," Journal of the Electrochemical Society, vol. 152, pp. A716-A720, 2005.
[50] K. A. M. Ahmed, "Exploitation of KMnO4 material as precursors for the fabrication of manganese oxide nanomaterials," Journal of Taibah University for Science, vol. 10, pp. 412-429, 2016.
[51] Y. Li, H. Tan, O. Lebedev, J. Verbeeck, E. Biermans, G. Van Tendeloo, et al., "Insight into the growth of multiple branched MnOOH nanorods," Crystal Growth & Design, vol. 10, pp. 2969-2976, 2010.
[52] K. A. M. Ahmed, H. A. Abbood, and K. Huang, "Hydrothermal synthesis of Mn (OH) O nanowires and their thermal conversion to (1D)-manganese oxides nanostructures," Journal of Crystal Growth, vol. 358, pp. 33-37, 2012.
[53] L. Qi, "Colloidal chemical approaches to inorganic micro-and nanostructures with controlled morphologies and patterns," Coordination Chemistry Reviews, vol. 254, pp. 1054-1071, 2010.
[54] L. Espinal, S. L. Suib, and J. F. Rusling, "Electrochemical catalysis of styrene epoxidation with films of MnO2 nanoparticles and H2O2," Journal of the American Chemical Society, vol. 126, pp. 7676-7682, 2004.
[55] R. Chitrakar, H. Kanoh, Y.-S. Kim, Y. Miyai, and K. Ooi, "Synthesis of layered-type hydrous manganese oxides from monoclinic-type LiMnO2," Journal of Solid State Chemistry, vol. 160, pp. 69-76, 2001.
[56] Y. Chabre and J. Pannetier, "Structural and electrochemical properties of the proton/γ-MnO2 system," Progress in Solid State Chemistry, vol. 23, pp. 1-130, 1995.
[57] A. R. Armstrong and P. G. Bruce, "Synthesis of layered LiMnO2 as an electrode for rechargeable lithium batteries," Nature, vol. 381, p. 499, 1996.
[58] K. Chen, Y. Dong Noh, K. Li, S. Komarneni, and D. Xue, "Microwave–hydrothermal crystallization of polymorphic MnO2 for electrochemical energy storage," The Journal of Physical Chemistry C, vol. 117, pp. 10770-10779, 2013.
[59] S. D. Škapin, Š. Kunej, and D. Suvorov, "Phase relations and electrical properties in the pseudo-ternary La2O3–TiO2–Mn2O3 system in air," Journal of the European Ceramic Society, vol. 28, pp. 3119-3124, 2008.
[60] Y. Liu, Y. Qian, Y. Zhang, M. Zhang, Z. Chen, L. Yang, et al., "Preparation of nanocrystalline manganic oxide Mn2O3 powders by use of γ-ray radiation," Materials Letters, vol. 28, pp. 357-359, 1996.
[61] Z.-W. Chen, S.-Y. Zhang, S. Tan, J. Wang, and S.-Z. Jin, "Different aspects of the microstructure of nanometer-sized Mn2O3," Materials research bulletin, vol. 34, pp. 1583-1587, 1999.
[62] M. Salavati-Niasari, F. Mohandes, F. Davar, and K. Saberyan, "Fabrication of chain-like Mn2O3 nanostructures via thermal decomposition of manganese phthalate coordination polymers," Applied Surface Science, vol. 256, pp. 1476-1480, 2009.
[63] P. K. Sharma and M. Whittingham, "The role of tetraethyl ammonium hydroxide on the phase determination and electrical properties of γ-MnOOH synthesized by hydrothermal," Materials Letters, vol. 48, pp. 319-323, 2001.
[64] Z. Gui, R. Fan, X.-H. Chen, and Y.-C. Wu, "A simple direct preparation of nanocrystalline γ-Mn2O3 at ambient temperature," Inorganic Chemistry Communications, vol. 4, pp. 294-296, 2001.
[65] J. Cao, Y. Zhu, L. Shi, L. Zhu, K. Bao, S. Liu, et al., "Double‐Shelled Mn2O3 Hollow Spheres and Their Application in Water Treatment," European Journal of Inorganic Chemistry, vol. 2010, pp. 1172-1176, 2010.
[66] J. Cao, Y. Zhu, K. Bao, L. Shi, S. Liu, and Y. Qian, "Microscale Mn2O3 hollow structures: sphere, cube, ellipsoid, dumbbell, and their phenol adsorption properties," The Journal of Physical Chemistry C, vol. 113, pp. 17755-17760, 2009.
[67] Y. C. Zhang, T. Qiao, and X. Y. Hu, "Preparation of Mn3O4 nanocrystallites by low-temperature solvothermal treatment of γ-MnOOH nanowires," Journal of Solid State Chemistry, vol. 177, pp. 4093-4097, 2004.
[68] B. Yang, H. Hu, C. Li, X. Yang, Q. Li, and Y. Qian, "One-step route to single-crystal γ-Mn3O4 nanorods in alcohol–water system," Chemistry letters, vol. 33, pp. 804-805, 2004.
[69] J. Du, Y. Gao, L. Chai, G. Zou, Y. Li, and Y. Qian, "Hausmannite Mn3O4 nanorods: synthesis, characterization and magnetic properties," Nanotechnology, vol. 17, p. 4923, 2006.
[70] F. Al Sagheer, M. Hasan, L. Pasupulety, and M. Zaki, "Low-temperature synthesis of Hausmannite Mn3O4," Journal of materials science letters, vol. 18, pp. 209-211, 1999.
[71] P. Gibot and L. Laffont, "Hydrophilic and hydrophobic nano-sized Mn3O4 particles," Journal of Solid State Chemistry, vol. 180, pp. 695-701, 2007.
[72] Y. Z.-H. Z. Chen-Xu, S. X.-M. Z. Wei-Xin, and N. ZHANG, "Synthesis of Various Nanostructured Manganese Oxides via Facile Hydrothermal Reaction [J]," Chinese Journal of Inorganic Chemistry, vol. 10, p. 026, 2008.
[73] Y. Liu, Z.-F. Gao, Q. Sun, and Y.-P. Zeng, "Template-assisted synthesis of single-crystalline Mn3O4 nanoframes and hollow octahedra," Solid State Sciences, vol. 14, pp. 1462-1466, 2012.
[74] T. Chen and L. Dai, "Flexible supercapacitors based on carbon nanomaterials," Journal of Materials Chemistry A, vol. 2, p. 10756, 2014.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊