[1] A. H. a. W. V. C. H. Hamann, Electrochemistry, 1998.
[2] B. Conway, V. Birss, and J. Wojtowicz, "The role and utilization of pseudocapacitance for energy storage by supercapacitors," Journal of Power Sources, vol. 66, pp. 1-14, 1997.
[3] A. A. M. Yu.M. Volfkovich and V. E. S. a. V. S. B. D.A. Bograchev, Studies of Supercapacitor Carbon Electrodes with High Pseudocapacitance
[4] 林佑勳, "含氧化錳複合氣凝膠在超級電容器之應用," 碩士, 化學工程學系, 國立清華大學, 新竹市, 2010.[5] L. L. Zhang, R. Zhou, and X. Zhao, "Graphene-based materials as supercapacitor electrodes," Journal of Materials Chemistry, vol. 20, pp. 5983-5992, 2010.
[6] 袁國輝, 電化學電容器[M], 2006.
[7] 郭秉軒, "電解質添加劑及其濃度於水系KOH電解質中對鋅二次電池陽極電化學性質的影響," 碩士, 材料科學與工程研究所, 國立中央大學, 桃園縣, 2016.[8] Y. Chen, X. Zhang, D. Zhang, P. Yu, and Y. Ma, "High performance supercapacitors based on reduced graphene oxide in aqueous and ionic liquid electrolytes," Carbon, vol. 49, pp. 573-580, 2011.
[9] M. Bichat, E. Raymundo-Piñero, and F. Béguin, "High voltage supercapacitor built with seaweed carbons in neutral aqueous electrolyte," Carbon, vol. 48, pp. 4351-4361, 2010.
[10] 李守慧, "有機溶液及離子液體電解質在電雙層電容器應用之比較," 碩士, 化學工程學系, 國立成功大學, 台南市, 2015.[11] 林芳慶, "離子液體於鋁離子電池電解質之應用," 碩士, 材料科學與工程研究所, 國立中央大學, 桃園縣, 2013.[12] 黃柏菱, "離子液體電解質應用於石墨烯超級電容之特性分析," 碩士, 材料科學與工程研究所, 國立中央大學, 桃園縣, 2014.[13] B. Ricketts and C. Ton-That, "Self-discharge of carbon-based supercapacitors with organic electrolytes," Journal of Power Sources, vol. 89, pp. 64-69, 2000.
[14] 蘇世軒, "離子型聚醚醚酮電解質於固態超級電容之應用研究," 碩士, 材料科學所, 逢甲大學, 台中市, 2011.[15] 范錦松, "以碳黑披覆中間相微碳球製備碳電極於超級電容器之研究," 碩士, 電機工程學系研究所, 國立中山大學, 高雄市, 2014.[16] 王柏欣, "光固化高分子離子液體/離子液體作為固態電解質應用於超級電容器," 碩士, 化學工程及材料工程學系碩士班, 國立高雄大學, 高雄市, 2017.[17] Q. Qu, P. Zhang, B. Wang, Y. Chen, S. Tian, Y. Wu, et al., "Electrochemical performance of MnO2 nanorods in neutral aqueous electrolytes as a cathode for asymmetric supercapacitors," The Journal of Physical Chemistry C, vol. 113, pp. 14020-14027, 2009.
[18] Q. Gao, L. Demarconnay, E. Raymundo-Piñero, and F. Béguin, "Exploring the large voltage range of carbon/carbon supercapacitors in aqueous lithium sulfate electrolyte," Energy & Environmental Science, vol. 5, pp. 9611-9617, 2012.
[19] V. Khomenko, E. Raymundo-Pinero, E. Frackowiak, and F. Beguin, "High-voltage asymmetric supercapacitors operating in aqueous electrolyte," Applied Physics A, vol. 82, pp. 567-573, 2006.
[20] 化學工程會, "超高電容器的發展專刊,超高電容器的發展專輯前言," 2013年10月.
[21] J. T. Nelson and C. F. Green, "Organic electrolyte battery systems," HARRY DIAMOND LABS ADELPHI MD1972.
[22] A. Balducci, R. Dugas, P.-L. Taberna, P. Simon, D. Plee, M. Mastragostino, et al., "High temperature carbon–carbon supercapacitor using ionic liquid as electrolyte," Journal of Power Sources, vol. 165, pp. 922-927, 2007.
[23] P. G. Bruce, Solid state electrochemistry vol. 5: Cambridge university press, 1997.
[24] W. Y. Xuan, Lithium-ion batteries: solid-electrolyte interphase: World Scientific, 2004.
[25] P. Simon and Y. Gogotsi, "Materials for electrochemical capacitors," Nature materials, vol. 7, p. 845, 2008.
[26] 劉志毅, 吳奕寬, 張駿晟, and 曾永華, "從超薄石墨膜至原子層石墨烯: 光電特性及應用," 真空科技, vol. 26, pp. 25-34, 2013.
[27] 翁任賢, "揭開神奇材料的面紗...石墨烯(Graphene)," 2013.
[28] A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, et al., "Superior thermal conductivity of single-layer graphene," Nano letters, vol. 8, pp. 902-907, 2008.
[29] A. K. Geim and K. S. Novoselov, "The rise of graphene," Nature materials, vol. 6, p. 183, 2007.
[30] K. I. Bolotin, K. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, et al., "Ultrahigh electron mobility in suspended graphene," Solid State Communications, vol. 146, pp. 351-355, 2008.
[31] R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, et al., "Fine structure constant defines visual transparency of graphene," Science, vol. 320, pp. 1308-1308, 2008.
[32] M. D. Stoller, S. Park, Y. Zhu, J. An, and R. S. Ruoff, "Graphene-based ultracapacitors," Nano letters, vol. 8, pp. 3498-3502, 2008.
[33] C. H. Pham and R. Fayerberg, "Current trends in patenting graphene and graphene-based inventions," Nanotech. L. & Bus., vol. 8, p. 10, 2011.
[34] I. Villar, S. Roldan, V. Ruiz, M. Granda, C. Blanco, R. Menéndez, et al., "Capacitive deionization of NaCl solutions with modified activated carbon electrodes," Energy & Fuels, vol. 24, pp. 3329-3333, 2010.
[35] S. Wang, D. Wang, L. Ji, Q. Gong, Y. Zhu, and J. Liang, "Equilibrium and kinetic studies on the removal of NaCl from aqueous solutions by electrosorption on carbon nanotube electrodes," Separation and Purification Technology, vol. 58, pp. 12-16, 2007.
[36] P. A. Thrower, Chemistry & physics of carbon vol. 25: CRC Press, 1996.
[37] H. Y. Lee and J. B. Goodenough, "Supercapacitor behavior with KCl electrolyte," Journal of Solid State Chemistry, vol. 144, pp. 220-223, 1999.
[38] P. Ragupathy, H. Vasan, and N. Munichandraiah, "Synthesis and characterization of nano-MnO2 for electrochemical supercapacitor studies," Journal of the Electrochemical Society, vol. 155, pp. A34-A40, 2008.
[39] M. K. Johnson, "Iron—sulfur proteins: new roles for old clusters," Current opinion in chemical biology, vol. 2, pp. 173-181, 1998.
[40] W. M. Haynes, CRC handbook of chemistry and physics: CRC press, 2014.
[41] W. Wei, X. Cui, W. Chen, and D. G. Ivey, "Manganese oxide-based materials as electrochemical supercapacitor electrodes," Chemical society reviews, vol. 40, pp. 1697-1721, 2011.
[42] R. T. Downs and M. Hall-Wallace, "The American Mineralogist crystal structure database," American Mineralogist, vol. 88, pp. 247-250, 2003.
[43] R. BRCNR, "Transition Metal Oxides: Structure, Properties, and Synthesis of Ceramic Oxides," ed: Wiley–VCH, New York and Weinheim, 1998.
[44] Y. Tian, D. Li, J. Liu, H. Wang, J. Zhang, Y. Zheng, et al., "Facile Synthesis of Mn3O4 Nanoplates-Anchored Graphene Microspheres and Their Applications for Supercapacitors," Electrochimica Acta, vol. 257, pp. 155-164, 2017.
[45] L. Li, K. H. Seng, H. Liu, I. P. Nevirkovets, and Z. Guo, "Synthesis of Mn3O4-anchored graphene sheet nanocomposites via a facile, fast microwave hydrothermal method and their supercapacitive behavior," Electrochimica Acta, vol. 87, pp. 801-808, 2013.
[46] V. Subramanian, H. Zhu, and B. Wei, "Synthesis and electrochemical characterizations of amorphous manganese oxide and single walled carbon nanotube composites as supercapacitor electrode materials," Electrochemistry Communications, vol. 8, pp. 827-832, 2006.
[47] E. Raymundo-Pinero, V. Khomenko, E. Frackowiak, and F. Beguin, "Performance of manganese oxide/CNTs composites as electrode materials for electrochemical capacitors," Journal of the Electrochemical Society, vol. 152, pp. A229-A235, 2005.
[48] Y.-T. Wu and C.-C. Hu, "Effects of electrochemical activation and multiwall carbon nanotubes on the capacitive characteristics of thick MnO2 deposits," Journal of The Electrochemical Society, vol. 151, pp. A2060-A2066, 2004.
[49] C. Y. Lee, H. M. Tsai, H. J. Chuang, S. Y. Li, P. Lin, and T. Y. Tseng, "Characteristics and electrochemical performance of supercapacitors with manganese oxide-carbon nanotube nanocomposite electrodes," Journal of the Electrochemical Society, vol. 152, pp. A716-A720, 2005.
[50] K. A. M. Ahmed, "Exploitation of KMnO4 material as precursors for the fabrication of manganese oxide nanomaterials," Journal of Taibah University for Science, vol. 10, pp. 412-429, 2016.
[51] Y. Li, H. Tan, O. Lebedev, J. Verbeeck, E. Biermans, G. Van Tendeloo, et al., "Insight into the growth of multiple branched MnOOH nanorods," Crystal Growth & Design, vol. 10, pp. 2969-2976, 2010.
[52] K. A. M. Ahmed, H. A. Abbood, and K. Huang, "Hydrothermal synthesis of Mn (OH) O nanowires and their thermal conversion to (1D)-manganese oxides nanostructures," Journal of Crystal Growth, vol. 358, pp. 33-37, 2012.
[53] L. Qi, "Colloidal chemical approaches to inorganic micro-and nanostructures with controlled morphologies and patterns," Coordination Chemistry Reviews, vol. 254, pp. 1054-1071, 2010.
[54] L. Espinal, S. L. Suib, and J. F. Rusling, "Electrochemical catalysis of styrene epoxidation with films of MnO2 nanoparticles and H2O2," Journal of the American Chemical Society, vol. 126, pp. 7676-7682, 2004.
[55] R. Chitrakar, H. Kanoh, Y.-S. Kim, Y. Miyai, and K. Ooi, "Synthesis of layered-type hydrous manganese oxides from monoclinic-type LiMnO2," Journal of Solid State Chemistry, vol. 160, pp. 69-76, 2001.
[56] Y. Chabre and J. Pannetier, "Structural and electrochemical properties of the proton/γ-MnO2 system," Progress in Solid State Chemistry, vol. 23, pp. 1-130, 1995.
[57] A. R. Armstrong and P. G. Bruce, "Synthesis of layered LiMnO2 as an electrode for rechargeable lithium batteries," Nature, vol. 381, p. 499, 1996.
[58] K. Chen, Y. Dong Noh, K. Li, S. Komarneni, and D. Xue, "Microwave–hydrothermal crystallization of polymorphic MnO2 for electrochemical energy storage," The Journal of Physical Chemistry C, vol. 117, pp. 10770-10779, 2013.
[59] S. D. Škapin, Š. Kunej, and D. Suvorov, "Phase relations and electrical properties in the pseudo-ternary La2O3–TiO2–Mn2O3 system in air," Journal of the European Ceramic Society, vol. 28, pp. 3119-3124, 2008.
[60] Y. Liu, Y. Qian, Y. Zhang, M. Zhang, Z. Chen, L. Yang, et al., "Preparation of nanocrystalline manganic oxide Mn2O3 powders by use of γ-ray radiation," Materials Letters, vol. 28, pp. 357-359, 1996.
[61] Z.-W. Chen, S.-Y. Zhang, S. Tan, J. Wang, and S.-Z. Jin, "Different aspects of the microstructure of nanometer-sized Mn2O3," Materials research bulletin, vol. 34, pp. 1583-1587, 1999.
[62] M. Salavati-Niasari, F. Mohandes, F. Davar, and K. Saberyan, "Fabrication of chain-like Mn2O3 nanostructures via thermal decomposition of manganese phthalate coordination polymers," Applied Surface Science, vol. 256, pp. 1476-1480, 2009.
[63] P. K. Sharma and M. Whittingham, "The role of tetraethyl ammonium hydroxide on the phase determination and electrical properties of γ-MnOOH synthesized by hydrothermal," Materials Letters, vol. 48, pp. 319-323, 2001.
[64] Z. Gui, R. Fan, X.-H. Chen, and Y.-C. Wu, "A simple direct preparation of nanocrystalline γ-Mn2O3 at ambient temperature," Inorganic Chemistry Communications, vol. 4, pp. 294-296, 2001.
[65] J. Cao, Y. Zhu, L. Shi, L. Zhu, K. Bao, S. Liu, et al., "Double‐Shelled Mn2O3 Hollow Spheres and Their Application in Water Treatment," European Journal of Inorganic Chemistry, vol. 2010, pp. 1172-1176, 2010.
[66] J. Cao, Y. Zhu, K. Bao, L. Shi, S. Liu, and Y. Qian, "Microscale Mn2O3 hollow structures: sphere, cube, ellipsoid, dumbbell, and their phenol adsorption properties," The Journal of Physical Chemistry C, vol. 113, pp. 17755-17760, 2009.
[67] Y. C. Zhang, T. Qiao, and X. Y. Hu, "Preparation of Mn3O4 nanocrystallites by low-temperature solvothermal treatment of γ-MnOOH nanowires," Journal of Solid State Chemistry, vol. 177, pp. 4093-4097, 2004.
[68] B. Yang, H. Hu, C. Li, X. Yang, Q. Li, and Y. Qian, "One-step route to single-crystal γ-Mn3O4 nanorods in alcohol–water system," Chemistry letters, vol. 33, pp. 804-805, 2004.
[69] J. Du, Y. Gao, L. Chai, G. Zou, Y. Li, and Y. Qian, "Hausmannite Mn3O4 nanorods: synthesis, characterization and magnetic properties," Nanotechnology, vol. 17, p. 4923, 2006.
[70] F. Al Sagheer, M. Hasan, L. Pasupulety, and M. Zaki, "Low-temperature synthesis of Hausmannite Mn3O4," Journal of materials science letters, vol. 18, pp. 209-211, 1999.
[71] P. Gibot and L. Laffont, "Hydrophilic and hydrophobic nano-sized Mn3O4 particles," Journal of Solid State Chemistry, vol. 180, pp. 695-701, 2007.
[72] Y. Z.-H. Z. Chen-Xu, S. X.-M. Z. Wei-Xin, and N. ZHANG, "Synthesis of Various Nanostructured Manganese Oxides via Facile Hydrothermal Reaction [J]," Chinese Journal of Inorganic Chemistry, vol. 10, p. 026, 2008.
[73] Y. Liu, Z.-F. Gao, Q. Sun, and Y.-P. Zeng, "Template-assisted synthesis of single-crystalline Mn3O4 nanoframes and hollow octahedra," Solid State Sciences, vol. 14, pp. 1462-1466, 2012.
[74] T. Chen and L. Dai, "Flexible supercapacitors based on carbon nanomaterials," Journal of Materials Chemistry A, vol. 2, p. 10756, 2014.