|
第五章 參考文獻 [1]M.H.V. Mulder, Basic Principles of Membrane Technology, Kluer Academic Publisher, The Netherlands (1996). [2]S.T. Hwang, K. Kammermeyer, Membrane in Separation, John Wiley &; Sons, New York (1975). [3]R.W. Baker, Membrane Technology and Applications, McGraw-Hill, New York (2004). [4]R.Y.M. Huang, R. Pal, G.Y. Moon, Pervaporation dehydration of aqueous ethanol and isopropanol mixtures through alginate/chitosan two ply composite membranes supported by poly(vinylidene fluoride) porous membrane, J. Membr. Sci., 167 (2000) 275-289. [5]M.Y. Teng, K.R. Lee, D.J. Liaw, J.Y. Lai, Preparation and pervaporation performance of poly(3-alkylthiophene) membrane, Polymer, 41 (2000) 2047-2052. [6]C.D. Jones, M. Fidalgo, M.R. Wiesner, A.R. Barron, Alumina ultrafiltration membranes derived from carboxylate–alumoxane nanoparticles, J. Membr. Sci., 193 (2001) 175-184. [7]T. Van Gestel, C. Vandecasteele, A. Buekenhoudt, C. Dotremont, J. Luyten, R. Leysen, B. Van der Bruggen, G. Maes, Salt retention in nanofiltration with multilayer ceramic TiO2 membranes, J. Membr. Sci., 209 (2002) 379-389. [8]Y. Yampolskii, Polymeric gas separation membranes , Macromolecules, 45 (2012) 3298-3311. [9]L.M. Robeson, Correlation of separation factor versus permeability for polymeric Membranes, J. Membr. Sci., 62 (1991) 165-185. [10]Z. Wang, T. Chen, J. Xu, Gas transport properties of novel cardo poly(aryl ether ketone)s with pendant alkyl groups , Macromolecules, 33 (2000) 5672-5679. [11]Z. Wang, T. Chen, J. Xu, Novel poly(aryl ether ketone)s containing various pendant groups. II. Gas-Transport Properties, J. Appl. Polym. Sci., 64 (1997) 1725-1732. [12]J. Zhang, X. Hou, The gas permeation property in trimethylsilyl-substituted PPO and triphenylsilyl-substituted PPO, J. Membr. Sci., 97 (1994) 275-282. [13]J.H. Kim, S.B. Lee, S.Y. Kim, Incorporation effects of fluorinated side groups into polyimide membranes on their physical and gas permeation properties, J. Appl. Polym. Sci., 77 (2000) 2756-2767. [14]S. Takahashi, M. Yoshida, M. Asano, T. Tanaka, T. Nakagawa, Effect of heavy-Ion irradiation on the gas permeability of poly(ethylene terephthalate) (PET) membranes, J. Appl. Polym. Sci., 82 (2001) 206-216. [15]J. Won, M.H. Kim, Y.S. Kang, H.C. Park, U.Y. Kim, S.C. Choi, S.K. Koh, Surface modification of polyimide and polysulfone membranes by ion beam for 68 gas separation, J. Appl. Polym. Sci., 75 (2000) 1554-1560. [16]C.T. Wright, D.R. Paul, Gas sorption and transport in UV-Irradiated poly(2,6-dimethyl-1,4-phenylene oxide) films, J. Appl. Polym. Sci., 67 (1998) 875-883. [17]M.H. Kim, J.H. Kim, C.K.Kim, Y.S. Kang, H.C. Park, J.O. Won, Control of phase separation behavior of PC/PMMA blends and their application to the gas separation membranes, J. Polym. Sci., Polym. Phys., 37 (1999) 2950-2959. [18]F.A. Ruiz-Trevino, D.R. Paul, Gas permselectivity properties of high free volume polymers modified by a low molecular weight additive, J. Appl, Polym. Sci., 68 (1998) 403-415. [19]S.H. Chen, S.S. Lin, D.J. Chang, J.S. Chang, Gas transport properties of CoAlPO4-5/PC Membranes, J. Appl. Polym. Sci., 77 (2000) 89-95. [20]P.W. Morgan, S.L Kwolek, Interfacial polycondensation. II. Fundamentals of polymer formation at liquid interfaces, J. Polym. Sci., 40 (1959) 299-327. [21]L.T. Rozelle, J.E. Cadotte, K.E. Cobian, C.V. Kopp, Jr., Nonpolysaccharide membranes for reverse osmosis: NS-100 membranes, in S. Sourirajan (Ed.), Reverse Osmosis and Synthetic Membranes, National Research Council Canada, Ottawa (1977) 249. [22]Y. Zhou, S. Yu, M. Liu, C. Gao, Polyamide thin film composite membrane prepared from m-phenylenediamine and m-phenylenediamine-5-sulfonic acid, J. Membr. Sci., 270 (2006) 162-168. [23]P.R. Buch, D.J. Mohan, A.V.R. Reddy, Preparation, characterization and chlorine stability of aromatic-cycloaliphatic polyamide thin film composite membranes, J. Membr. Sci., 309 (2008) 36-44. [24]Y. Zhou, S. Yu, M. Liu, C. Gao, Preparation and characterization of polyamide-urethane thin-film composite membranes, Desalination, 180 (2005) 189-196. [25]Y. Zhou, S. Yu, M. Liu, H. Chen, C. Gao, Effect of mixed crosslinking agents on performance of thin-film-composite membranes, Desalination, 192 (2006) 182-189. [26]L. Li, S. Zhang, X. Zhang, G. Zheng, Polyamide thin film composite membranes prepared from 3,4,5-biphenyl triacyl chloride, 3,3’,5,5’- biphenyl tetraacyl chloride and m-phenylenediamine, J. Membr. Sci., 289 (2007) 258-267. [27]J.H. Kim, K.H. Lee, S.Y. Kim, Pervaporation separation of water from ethanol through polyimide composite membranes, J. Membr. Sci., 169 (2000) 81-93. [28]P.S. Singh, S.V. Joshi, J.J. Trivedi, C.V. Devmurari, A.P. Rao, P.K. Ghosh, Probing the structural variations of thin film composite RO membranes obtained by coating polyamide over polysulfone membranes of different pore dimensions, J. Membr. Sci., 278 (2006) 19-25. [29]P.B. Kosaraju, K.K. Sirkar, Interfacially polymerized thin film composite membranes on microporous polypropylene supports for solvent-resistant nanofiltration, J. Membr. Sci., 321 (2008) 155-161. [30]H.I. Kim, S.S. Kim, Plasma treatment of polypropylene and polysulfone supports for thin film composite reverse osmosis membrane, J. Membr. Sci., 286 (2006) 193-201. [31]E.S. Kim, Y.J. Kim, Q. Yu, B. Deng, Preparation and characterization of polyamide thin-film composite (TFC) membranes on plasma-modified polyvinylidene fluoride (PVDF), J. Membr. Sci., 344 (2009) 71-81. [32]K. Yoon, B.S. Hsiao, B. Chu, High flux nanofiltration membranes based on interfacially polymerized polyamide barrier layer on polyacrylonitrile nanofibrous scaffolds, J. Membr. Sci., 326 (2009) 484-492. [33]N.W. Oh, J. Jegal, K.H. Lee, Preparation and characterization of nanofiltration composite membranes using polyacrylonitrile (PAN). II. Preparation and characterization of polyamide composite membranes, J. Appl. Polym. Sci., 80 (2001) 2729-2736. [34]J.W. Lim, J.M. Lee, S.M. Yun, B.J. Park, Y.S. Lee, Hydrophilic modification of polyacrylonitrile membranes by oxyfluorination, J. Ind. Eng. Chem., 15 (2009) 876-882. [35]G. Zhang, H. Meng, S. Ji, Hydrolysis differences of polyacrylonitrile support membrane and its influences on polyacrylonitrile-based membrane performance, Desalination, 242 (2009) 313-324. [36]N.W. Oh, J. Jegal, K.H. Lee, Preparation and characterization of nanofiltration composite membranes using polyacrylonitrile (PAN). I. Preparation and modification of PAN supports, J. Appl. Polym. Sci., 80 (2001) 1854-1862. [37]I.J. Roh, S.Y. Park, J.J. Kim, C.K. Kim, Effects of the polyamide molecular structure on the performance of reverse osmosis membranes, J. Polym. Sci. Part B: Polym. Phys., 36 (1998) 1821-1830. [38]L. Li, S. Zhang, X. Zhang, G. Zheng, Polyamide thin film composite membranes prepared from isomeric biphenyl tetraacyl chloride and m-phenylenediamine, J. Membr. Sci., 315 (2008) 20-27. [39]M. Liu, D. Wu, S. Yu, C. Gao, Influence of the polyacyl chloride structure on the reverse osmosis performance, surface properties and chlorine stability of the thin-film composite polyamide membranes, J. Membr. Sci., 326 (2009) 205-214. [40]S.H. Huang, C.J. Hsu, D.J. Liaw, C.C. Hu, K.R. Lee, J.Y. Lai, Effect of chemical structures of amines on physicochemical properties of active layers and dehydration of isopropanol through interfacially polymerized thin-film composite membranes, J. Membr. Sci., 307 (2008) 73-81. [41]S.H. Huang, W.L. Lin, D.J. Liaw, C.L. Li, S.T. Kao, D.M. Wang, K.R. Lee, J.Y. Lai, Characterization, transport and sorption properties of poly(thiol ester amide) thin-film composite pervaporation membranes, J. Membr. Sci., 322 (2008) 139-145. [42]C.L. Lai, S.H. Huang, W.L. Lin, C.L. Li, K.R. Lee, Influence of the aminothiol structure on pervaporation dehydration of poly(thiol ester amide) composite membranes, J. Membr. Sci., 361 (2010) 206-212. [43]G.Y. Chai, W.B. Krantz, Formation and characterization of polyamide membranes via interfacial polymerization, J. Membr. Sci., 93 (1994) 175-192. [44]A.L. Ahmad, B.S. Ooi, Properties-performance of thin film composites membrane: study on trimesoyl chloride content and polymerization time, J. Membr. Sci., 255 (2005) 67-77. [45]C. Wu, S. Zhang, D. Yang, J. Wei, C. Yan, X. Jian, Preparation, characterization and application in wastewater treatment of a novel thermal stable composite membrane, J. Membr. Sci., 279 (2006) 238-245. [46]C. Wu, S. Zhang, D. Yang, X. Jian, Preparation, characterization and application of a novel thermal stable composite nanofiltration membrane, J. Membr. Sci., 326 (2009) 429-434. [47]F. Yang, S. Zhang, D. Yang, X. Jian, Preparation and characterization of polypiperazine amide/PPESK hollow fiber composite nanofiltration membrane, J. Membr. Sci., 301 (2007) 85-92. [48]L. Hu, S. Zhang, R. Han, X. Jian, Preparation and performance of novel thermally stable polyamide/PPENK composite nanofiltration membranes, Appl. Surf. Sci., 258 (2012) 9047-9053. [49]C.L. Li, S.H. Huang, D.J. Liaw, K.R. Lee, J.Y. Lai, Interfacial polymerized thin-film composite membranes for pervaporation separation of aqueous isopropanol solution, Sep. Purif. Technol., 62 (2008) 694-701. [50]S.H. Huang, G.J. Jiang, D.J. Liaw, C.L. Li, C.C. Hu, K.R. Lee, J.Y. Lai, Effects of the polymerization and pervaporation operating conditions on the dehydration performance of interfacially polymerized thin-film composite membranes, J. Appl. Polym. Sci., 114 (2009) 1511-1522. [51]A.P. Rao, N.V. Desai, R. Rangarajan, Interfacially synthesized thin film composite RO membranes for seawater desalination, J. Membr. Sci., 124 (1997) 263-272. [52]S.H. Huang, W.S. Hung, D.J. Liaw, C.H. Lo, W.C. Chao, C.C. Hu, C.L. Li, K.R. Lee, J.Y. Lai, Interfacially polymerized thin-film composite polyamide membranes: Effects of annealing processes on pervaporative dehydration of aqueous alcohol solutions, Sep. Purif. Technol., 72 (2010) 40-47. [53]L. Li, S. Zhang, X. Zhang, Preparation and characterization of poly(piperazineamide) composite nanofiltration membrane by interfacial polymerization of 3,3’,5,5’-biphenyl tetraacyl chloride and piperazine, J. Membr. Sci., 335 (2009) 133-139. [54]Y. Liu, B. He, J. Li, R. D. Sanderson, L. Li, S. Zhang, Formation and structural evolution of biphenyl polyamide thin film on hollow fiber membrane during interfacial polymerization, J. Membr. Sci., 373 (2011) 98-106. [55]H. Wang, Q. Zhang, S. Zhang, Positively charged nanofiltration membrane formed by interfacial polymerization of 3,3’,5,5’-biphenyl tetraacyl chloride and piperazine on a poly(acrylonitrile) (PAN) support, J. Membr. Sci., 378 (2011) 243-249. [56]L.F. Liu, S.C. Yu, Y. Zhou, C.J. Gao, Study on a novel polyamide-urea reverse osmosis composite membrane (ICIC-MPD) I. Preparation and characterization of ICIC-MPD membrane, J. Membr. Sci., 281 (2006) 88-94. [57]S. Yu, M. Liu, X. Liu, C. Gao, Performance enhancement in interfacially synthesized thin-film composite polyamide-urethane reverse osmosis membrane for seawater desalination, J. Membr. Sci., 342 (2009) 313-320. [58]M. Liu, S. Yu, M. Qi, Q. Pan, C. Gao, Impact of manufacture technique on seawater desalination performance of thin-film composite polyamide-urethane reverse osmosis membranes and their spiral wound elements, J. Membr. Sci., 348 (2010) 268-276. [59]X.Z. Wei, L.P. Zhu, H.Y. Deng, Y.Y. Xu, B.K. Zhu, Z.M. Huang, New type of nanofiltration membrane based on crosslinked hyperbranched polymers, J. Membr. Sci., 323 (2008) 278-287. [60]L. Li, B. Wang, H. Tan, T. Chen, J. Xu, A novel nanofiltration membrane prepared with PAMAM and TMC by in situ interfacial polymerization on PEK-C ultrafiltration membrane, J. Membr. Sci., 269 (2006) 84-93. [61]S. Yu, M. Liu, Z. Lü, Y. Zhou, C. Gao, Aromatic-cycloaliphatic polyamide thin-film composite membrane with improved chlorine resistance prepared from m-phenylenediamine-4-methyl and cyclohexane-1,3,5-tricarbonyl chloride, J. Membr. Sci., 344 (2009) 155-164. [62]Y.H. La, R. Sooriyakumaran, D.C. Miller, M. Fujiwara, Y. Terui, K. Yamanaka, B.D. McCloskey, B.D. Freema, R.D. Allen, Novel thin film composite membrane containing ionizable hydrophobes: pH-dependent reverse osmosis behavior and improved chlorine resistance, J. Mater. Chem., 20 (2010) 4615-4620. [63]S.Y. Kwak, S.G. Jung, S.H. Kim, Structure-motion-performance relationship of flux-enhanced reverse osmosis (RO) membranes composed of aromatic polyamide thin films, Environ. Sci. Technol., 35 (2001) 4334-4340. [64]S.H. Kim, S.Y. Kwak, T. Suzuki, Positron annihilation spectroscopic evidence to demonstrate the flux-enhancement mechanism in morphology-controlled thin-film-composite (TFC) membrane, Environ. Sci. Technol., 39 (2005) 1764-1770. [65]J. Jegal, S.G. Min, K.H.F Lee, Factors affecting the interfacial polymerization of polyamide active layers for the formation of polyamide composite membranes, J. Appl. Polym. Sci., 86 (2002) 2781-2787. [66]S. Qiu, L. Wu, L. Zhang, H. Chen, C. Gao, Preparation of reverse osmosis composite membrane with high flux by interfacial polymerization of MPD and TMC, J. Appl. Polym. Sci., 112 (2009) 2066-2072. [67]G.L. Jadav, P.S. Singh, Synthesis of novel silica-polyamide nanocomposite membrane with enhanced properties, J. Membr. Sci., 328 (2009) 257-267. [68]D. Hu, Z.L. Xu, C. Chen, Polypiperazine-amide nanofiltration membrane containing silica nanoparticles prepared by interfacial polymerization, Desalination, 301 (2012) 75-81. [69]M.L. Lind, D.E. Suk, T.V. Nguyen, E.M.V. Hoek, Tailoring the structure of thin film nanocomposite membranes to achieve seawater RO membrane performance, Environ. Sci. Technol., 44 (2010) 8230-8235. [70]M. Fathizadeh, A. Aroujalian, A. Raisi, Effect of added NaX nano-zeolite into polyamide as a top thin layer of membrane on water flux and salt rejection in a reverse osmosis process, J. Membr. Sci., 375 (2011) 88-95. [71]H. Wu, B. Tang, P. Wu, MWNTs/polyester thin film nanocomposite membrane: An approach to overcome the trade-off effect between permeability and selectivity, J. Phys. Chem. C, 114 (2010) 16395-16400. [72]S.Y. Lee, H.J. Kim, R. Patel, S.J. Im, J.H. Kim, B.R. Min, Silver nanoparticles immobilized on thin film composite polyamide membrane: Characterization, nanofiltration, antifouling properties, Polym. Advan. Technol., 18 (2007) 562-568. [73]E.S. Kim, G. Hwang, M.G. El-Din, Y. Liu, Development of nanosilver and multi-walled carbon nanotubes thin-film nanocomposite membrane for enhanced water treatment, J. Membr. Sci., 394-395 (2012) 37-48. [74]B.D. Washo, Rheology and modeling of the spin coating process, IBM. J. Res. Dev., 21 (1997) 190-198. [75]G. Sartori, W.S.W Ho, D.W. Savage, G.R. Chludzinski, S. Wlechert, Sterically-hindered amines for acid-gas absorption, Sep. Puri. Reviews, 16 (1987) 171-200. [76]A. Brunetti, F. Scura, G. Barbieri, E. Drioli, Membrane technologies for CO2 separation, J. Membr. Sci., 359 (2010) 115-125. [77]談駿嵩, 鄭旭翔, Current Reserch on CO2 Recovery and utilization in Taiwan, 石化燃燒排放二氧化碳之捕捉儲存與利用技術研討會 (2006) 1-19. [78]C.A. Scholes, G.W. Stevens, S.E. Kentish, Membrane gas separation applications in natural gas processing, Fuel, 96 (2012) 15-28. [79]R. Xinga, W.S.W. Ho, Synthesis and characterization of crosslinked polyvinylalcohol/polyethyleneglycol blend membranes for CO2/CH4 separation, J. Taiwan Inst. Chem. Eng., 40 (2009) 654-662. [80]J. Zou, W.S.W. Ho, CO2-selective polymeric membranes containing amines in crosslinked poly(vinyl alcohol), J. Membr. Sci., 286 (2006) 310-321 [81]W.J. Ward III, W.L. Robb, Carbon dioxide-oxygen separation : facilitated transport of carbon dioxide across a liquid film, Science, 156 (1967) 1481-1484 [82]J.H. Meldon, K.A. Smith, C.K. Colton, The effect of weak acids upon the transport of carbon dioxide in alkaline solutions, Chem. Eng. Sci., 32 (1977) 939-950. [83]O.H. LeBlanc, W.J. Ward, S.L. Matson, S.G. Kimura, Facilitated transport in ion-exchange membranes, J. Membr. Sci., 6 (1980) 339-343. [84]H. Matsuyama, M. Teramoto, K. Iwai, Development of a new functional cation-exchange membrane and its application to facilitated transport of CO2, J. Membr. Sci., 93 (1994) 237-244. [85]H. Matsuyama, M. Teramoto, H. Sakakura, K. Iwai, Facilitated transport of CO2 through various ion exchange membranes prepared by plasma graft polymerization, J. Membr. Sci., 117 (1996) 251-260. [86]M. Yoshikawa, T. Ezaki, K. Sanui, N. Ogata, Selective permeation of carbon dioxide through synthetic polymer membranes having pyridine moiety as a fixed carrier, J. Appl. Polym. Sci., 35 (1988) 145-154. [87]H. Matsuyama, M.T eramoto, H. Sakakura, Selective permeation of CO2 through poly 2-(N,N-dimethyl) aminoethyl methacrylate membrane preparedby plasma-graft polymerization technique, J. Membr. Sci., 114 (1996) 193-200. [88]H. Matsuyama, A. Terada, T. Nakagawara, Y. Kitamura, M. Teramoto, Facilitated transport of CO2 through polyethylenimine/poly(vinyl alcohol) blend membrane, J. Membr. Sci., 163 (1999) 221-227. [89]T.J. Kim, B.Li, M.B. Hagg, Novel fixed-site-carrier polyvinylamine membrane for carbon dioxide capture, J. Polym. Sci., Part B: Polym. Phys., 42 (2004) 4326-4336. [90]Y.H. Tee, J. Zou, W.S.W. Ho, CO2-selective membranes containing dimethylglycine mobile carriers and polyethylenimine fixed carrier, J. Chin. Inst. Chem. Eng., 37 (2006) 37-47. [91]F. Yuan, Z. Wang, S. Li, J. Wang, S.Wang, Formation–structure–performance correlation of thin film composite membranes prepared by interfacial polymerization for gas separation, J. Membr. Sci., 421-422 (2012) 327-341 [92]J. Zhao, Z. Wang, J. Wang, S. Wang, Influence of heat-treatment on CO2 separation performance of novel fixed carrier composite membranes prepared by interfacial polymerization, J. Membr. Sci., 283 (2006) 346-356 [93]X. Yua, Z. Wang, Z. Wei, S. Yuan, J. Zhao, J. Wang, S. Wang, Novel tertiary amino containing thin film composite membranes prepared by interfacial polymerization for CO2 capture, J. Membr. Sci., 362 (2010) 265-278 [94]Y.C. Jean, P.E. Mallon, D.M. Schrader, Principles and Applications of Positron and Positronium Chemistry, Singapore World Scientific (2003). [95]J. Ji, J.M. Dickson, R.F. Childs, B.E. McCarry, Mathematical model for the formation of thin-film composite membranes by interfacial polymerization: porous and dense films, Macromolecules, 33 (2000) 624-633. [96]E.L. Cussler, D.R. Paul, Y.P. Yampol’skii (Eds.), Polymeric Gas Separation Membranes, CRC Press, Boca Raton (1993). [97]L.Y. Deng, T.J. Kim, M.B. Hägg, Facilitated transport of CO2 in novel PVAm/PVA blend membrane, J. Membr. Sci., 340 (2009) 154-163. [98]Y.J. Song, P. Sun, L.L. Henry, B.H. Sun, Mechanisms of structure and performance controlled thin film composite membrane formation via interfacial polymerization process, J. Membr. Sci., 25 (2005) 67-79.
|