跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.35) 您好!臺灣時間:2025/12/17 12:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林勝平
研究生(外文):Sheng-Ping Lin
論文名稱:界面聚合-旋轉塗佈技術製備促進傳輸複合膜應用於二氧化碳捕獲程序
論文名稱(外文):Facilitated transport composite membranes prepared by interfacial polymerization-spin coating technique for CO2 capture process
指導教授:李魁然黃書賢
指導教授(外文):Kueir-Rarn LeeShu-Hsien Huang
學位類別:碩士
校院名稱:中原大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:134
中文關鍵詞:界面聚合旋轉塗佈促進傳輸
外文關鍵詞:carbamate ioninterfacial polymerizationfacilitated transportspin coatingbicarbonate ion
相關次數:
  • 被引用被引用:1
  • 點閱點閱:246
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要
本研究藉由界面聚合程序製備高效能二氧化碳促進傳輸薄膜。並使用界面活性劑改質基材膜之表面親水性,最後藉由塗佈Pebax以填補聚合層之缺陷並改善複合膜之親水性與二氧化碳親和性。
本實驗使用ethylenediamine (EDA)、triethylenetetramine (TETA)以及 pentaethylenehexamine (PEHA)作為水相單體,trimesoyl chloride (TMC)作為有機相單體,並使用非對稱結構polysulfone (PSf)作為基材,再由Ethylenediamine tetrakis (propoxylate-B-ethoxylate)改善基材膜之親水性,製備改質PSf基材膜(mPSf),藉由界面聚合方式製備固定載體式的二氧化碳促進傳輸超薄複合薄膜。再以旋轉塗佈方式將Pebax1657®塗佈於界面聚合層之上以改善薄膜分離效能。並探討界面聚合條件(水相及有機相濃度、水相浸泡時間、有機相反應時間以及水相單體結構變化)以及進料氣體壓力變化對於分離效能影響,進而探討水氣引入薄膜結構內對於促進傳輸機制之影響以及混和氣體操作下分離效能之變化。
本研究使用衰減式全反射(ATR-FTIR)傅立葉紅外光譜儀、場發射掃描式電子顯微鏡(FESEM)、水接觸角量測儀、可變單一能量慢速正電子束分析儀 (VMSPB)以及氣體吸附測試來瞭解薄膜結構特性以及表面親疏水性。
經由氣體分離效能實驗結果顯示,界面聚合條件變化主要影響聚合層厚度以及胺官能基含量,而在浸泡0.1M 水相單體1分鐘並與0.001M 有機相單體反應1分鐘時有最佳的氣體分離效能。在最佳的界面聚合條件下所製備之Pebax/EDA-TMC/mPSf複合薄膜於進料壓力為1bar操作溫度為50℃的濕潤環境下,有最佳二氧化碳透過係數為52.98GPU,而二氧化碳/氮氣選擇性為157.7;相較之下,使用含有六胺的PEHA製備複合薄膜,Pebax/PEHA-TMC/mPSf,並於相同操作條件下則具有二氧化碳透過係數為134.2GPU,而二氧化碳/氮氣選擇性為113.5。當進料壓力下降至0.1bar,並於50℃的濕潤環境下進行氣體分離測試,Pebax/PEHA-TMC/mPSf複合薄膜之二氧化碳透過係數可提升為728.9GPU,而二氧化碳/氮氣選擇性則會上升為273.2,其原因在於高壓操作下造成載體飽和而降低了二氧化碳分離效能。在混和氣體操作環境下,會因為競爭吸附而使分離效能明顯下降。


Abstract
In this study, the CO2-selective PA TFC membranes with fixed-site carrier were prepared via the interfacial polymerization of water-soluble amine monomers including ethylenediamine (EDA), triethylenetetramine (TETA) and pentaethylenehexamine (PEHA) with acyl chloride monomer trimesoyl chloride (TMC) on the surface of asymmetric modified polysulfone (mPSf) membranes. The mPSf is prepared by immersed PSf support membrane into the ethylenediamine tetrakis (propoxylate-B-ethoxylate) surfactant solution to enhanced the hydrophilicity and filled the small pore on the surface to form a smooth surface. And then the Pebax1657® a block copolymer composed of flexible polyether and rigid polyamide, was coated on the PA TFC membranes via the spin-coating method to improve the separation performance. These TFC membranes were applied to CO2/N2 separation process. The effects of monomer structure, concentration of aqueous and organic solutions, feed pressure and water content on the gas transport properties including CO2 permeability, N2 permeability and CO2/N2 selectivity were investigated.
Attentuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, Field-Emission scanning electron microscope (FESEM) observation, Variable monoenergy slow positron beam (VMSPB), Microbalance and water contact angle measurement were used to characterize the chemical structure, morphology and hydrophilicity of the TFC membrane.
From the results, the better interfacial polymerization condition is 0.1M aqueous solution immersion and 0.001M organic solution contact. In this interfacial polymerization condition, the Pebax/EDA-TMC/mPSf membrane was prepared by EDA and TMC, its CO2 permeance and CO2/N2 selectivity is 52.98GPU and 157.7, respectively. Compared with EDA monomer, PEHA is more appropriate for the TFC membrane preparation. Because the facilitated transport mechanism is increase linear as the amine group content. Thus Pebax/PEHA-TMC/mPSf membrane CO2 permeance and CO2/N2 selectivity is 134.2GPU and 113.5, respectively. Under the low feed pressure (0.1bar) test, the facilitated transport mechanism efficiency can be increase, and then enhanced the CO2 permeance to 728.9 GPU and CO2/N2 selectivity to 273.2 for Pebax/PEHA-TMC/mPSf membrane. Because the competitive adsorption, the separation performance is decrease significantly for 15%CO2/85%N2 mixing gas test.


摘要 I
Abstract III
致謝 V
目錄 VII
圖目錄 X
表目錄 XIII
第一章 緒論 1
1.1 前言 1
1.2 薄膜的定義 3
1.3 薄膜分離程序 5
1.4 薄膜結構型態 7
1.4.1多孔性薄膜 (Porous Membrane) 7
1.4.2緻密性薄膜 (Dense Membrane) 7
1.4.3 無機薄膜 (Inorganic Membrane) 8
1.4.4 有機/無機混成薄膜 (Organic/Inorganic Hybrid Membrane) 8
1.5 氣體分離膜 10
1.6 複合膜之製備 12
1.6.1 基材膜之製備 13
1.6.2 緻密層之製備 14
1.7 界面聚合法 15
1.7.1 基材膜性質 17
1.7.2 聚合反應條件 19
1.7.3 新型單體運用 23
1.7.4 添加劑影響 26
1.8 旋轉塗佈技術 29
1.9 促進傳輸機制 31
1.10 文獻回顧 35
1.11 動機與目的 42
第二章 實驗 43
2.1 實驗藥品 43
2.2 實驗儀器 45
2.3 薄膜製備 46
2.3.1 聚醯胺複合膜之製備 46
2.3.2 旋轉塗佈層之製備 49
2.4 薄膜鑑定 50
2.4.1全反射式傅立葉轉換紅外線光譜儀(Attenuated Total Reflectance Fourier Transform Infrared spectroscopy, ATR-FTIR) 50
2.4.2 場發射掃描式電子顯微鏡 (Field-Emission Scanning Electron Microscope, FE-SEM) 51
2.4.3 薄膜表面親水性測試 51
2.4.4 X射線光電子能譜儀 (X-ray Photoelectron spectroscopy, XPS) 52
2.4.5 可變單一能量慢速正電子束分析儀 (Variable monoenergy slow positron beam, VMSPB) 52
2.4.6 氣體分離測試 57
2.4.7 氣體吸附測試 59
2.5 實驗流程 61
第三章 結果與討論 62
3.1 前言 62
3.2 界面活性劑對界面聚合層之製備的影響 63
3.2.1 界面活性劑對基材膜表面改質之影響 63
3.2.2 界面活性劑改質對氣體分離效能之影響 68
3.3 Pebax旋轉塗佈層對氣體分離效能之影響 70
3.4 界面聚合條件對氣體分離效能之影響 77
3.4.1 水相單體溶液浸泡時間之影響 77
3.4.2 有機相單體溶液接觸時間之影響 82
3.4.3 水相單體濃度之影響 86
3.4.4 有機相單體濃度之影響 91
3.5 操作條件對氣體分離之影響 103
3.5.1 進料壓力對氣體分離效能之影響 103
3.5.2 混和氣體分離效能測試 105
第四章 結論 107
第五章 參考文獻 109



圖目錄
Figure 1-1 Schematic representation of various membrane cross-sectional morphologies. 4
Figure 1-2 Model of gas separation with a polymer membrane. 11
Figure 1-3 Schematic diagram of thin-film composite membrane [2]. 12
Figure 1-4 Diagrams of polymer film growth at liquid interfaces [20]. 15
Figure 1-5 Schematic of spin coating process [74]. 30
Figure 1-6 Facilitated transport mechanism. 31
Figure 1-7 Schematic mechanism of facilitated transport of CO2 by monoprotonated ethylendiamine used as carrier [84]. 38
Figure 2-1 Schematic representation of interfacial polymerization procedure. 48
Figure 2-2 Schematic diagram of chemical reaction and structures for synthesized polyamide. 48
Figure 2-3 Variable monoenergy slow positron beam spectroscopy. (A) 50 Ci 22Na positron source, (B) W-mesh moderator, (C) magnetic field (70G) coils, (D) ExB filter, (E) positron accelerator, (F) correcting magnets, (G) gas inlet, (H) positron lifetime detector (MCP) for PAL, (I) turbo molecular pump, (J) samples, (K) sample manipulator, (L) ion pump, (M) Ge solid state detector, (N) lifetime detector (BaF2). 55
Figure 2-4 Doppler broadening energy spectrum and definitions of S, W, and R (3γ/2γ ratio) parameters from DBES [94]. 56
Figure 2-5 Schematic representation of gas permeation apparatus. 58
Figure 2-6 Apparatus of gas sorption. 60
Figure 3-1 ATR-FTIR spectra of (a) PSf support and (b) EDA-TMC/PSf membrane. 64
Figure 3-2 SEM images of PSf support membrane (a, b) and EDA-TMC/PSf membrane (c, d). 64
Figure 3-3 SEM images of PSf membrane (a, b) and mPSf membrane (c, d). 67
Figure 3-4 SEM images of mPSf support membrane (a, b) and EDA-TMC/mPSf membrane (c, d). 69
Figure 3-5 SEM images of EDA-TMC/mPSf membrane (a, b), PEBAX/mPSf membrane (c, d), Pebax/EDA-TMC/mPSf membrane (e, f). 72
Figure 3-6 S parameters as a function of positron incident energy for mPSf, EDA-TMC/mPSf, Pebax/mPSf, and Pebax/EDA-TMC/mPSf membranes. 73
Figure 3-7 ATR-FTIR spectra of (a) mPSf support, (b) EDA-TMC/mPSf and (c) Pebax/EDA-TMC/mPSf membrane. 73
Figure 3-8 Cross-sectional SEM images of polyamide TFC membranes prepared with different immersion time of aqueous EDA solution, (a) 0.5, (b) 1.0, (c) 1.5, (d) 2.0, (e) 3.0 min. (Polyamide layer was prepared as follow: mPSf was immersed into 0.1M EDA for various time then contacted with 0.01M TMC for 1min.) 80
Figure 3-9 The effect of immersion time of aqueous EDA solution on (a) permeance and (b) CO2/N2 selectivity at 50 ℃ and 1 bar. (Polyamide layer was prepared as follow: mPSf was immersed into 0.1M EDA for various time then contacted with 0.01M TMC for 1min.) 81
Figure 3-10 Cross-sectional SEM images of polyamide TFC membranes prepared with different contact time of organic TMC solution, (a) 0.5, (b) 1.0, (c) 1.5, (d) 2.0, (e) 3.0 min. (Polyamide layer was prepared as follow: mPSf was immersed into 0.1M EDA for 1 time then contacted with 0.01M TMC for various min.) 84
Figure 3-11 The effect of contact time of organic TMC solution on (a) permeance and (b) CO2/N2 selectivity at 50 oC and 1 bar. (Polyamide layer was prepared as follow: mPSf was immersed into 0.1M EDA for 1 time then contacted with 0.01M TMC for various min.) 85
Figure 3-12 Cross-sectional SEM images of polyamide TFC membranes prepared with different concentration of aqueous EDA solution, (a) 0.05, (b) 0.07, (c) 0.10, (d) 0.15, (e) 0.20 M. 88
Figure 3-13 The effect of concentration of aqueous EDA solution on (a) permeance and (b) CO2/N2 selectivity at 50 oC and 1 bar. (Polyamide layer was prepared as follow: mPSf was immersed in EDA solution of various concentration for 1 min then contacted with 0.01M TMC for 1 min.) 90
Figure 3-14 Cross-sectional SEM images of polyamide TFC membranes prepared with different concentration of organic TMC solution, (a) 0.0005, (b) 0.001, (c) 0.005, (d) 0.01, (e) 0.02 , (f) 0.03 , (g) 0.05 M. 94
Figure 3-15 The effect of concentration of organic TMC solution on (a) permeance and (b) CO2/N2 selectivity at 50 oC and 1 bar. (Polyamide layer was prepared as follow: mPSf was immersed in 0.1M EDA for 1 min then contacted with TMC solution of various concentration for 1 min.) 96
Figure 3-16 SEM images of polyamide TFC membranes prepared with different amine monomers, (a, b) EDA, (c, d) TETA, (e, f) PEHA. 100
Figure 3-17 S parameter as a function of positron incident energy for polyamide TFC membranes prepared with different amine monomers. 101
Figure 3-18 The effect of feed pressure on (a) gas permeance and (b) CO2/N2 selectivity at 50oC. 104


表目錄
Table 1-1 Develop of (technical) membrane processes [1]. 5
Table 1-2 Driving force and the two-phase systems separated by membranes for different membrane process[1] 6
Table 3-1 Gas separation performance of PSf support and polyamide TFC membranes under dry and wet conditions. 66
Table 3-2 The water contact angle values of PSf and mPSf support membranes. 67
Table 3-3 Gas separation performance of mPSf support and polyamide TFC membranes under dry and wet conditions. 69
Table 3-4 The water contact angle values of mPSf support, EDA-TMC/mPSf and Pebax/EDA-TMC/mPSf membranes. 76
Table 3-5 Gas separation performance of polyamide, Pebax, and Pebax/ polyamide TFC membranes under dry and wet conditions. 76
Table 3-6 Surface atomic carbon composition from C1s x-ray photoelectron spectra for polyamide TFC membranes with different EDA concentration. 89
Table 3-7 Surface atomic carbon composition from C1s x-ray photoelectron spectra for polyamide TFC membranes prepared with different TMC concentration. 95
Table 3-8 Surface atomic carbon composition from C1s x-ray photoelectron spectra for polyamide TFC membranes prepared with different amine monomers. 101
Table 3-9 Gas separation performance of Pebax/polyamide TFC membranes prepared with various amine monomers under dry and wet conditions. 102
Table 3-10 Mixing gas separation performance of Pebax/polyamide TFC membranes prepared with 0.1M PEHA for immersion time of 1min and 0.001M TMC for contact time of 1min. 106
Table 3-11 Gas adsorption capacity of PEHA-TMC layer at 50 oC and 1 bar. 106


第五章 參考文獻
[1]M.H.V. Mulder, Basic Principles of Membrane Technology, Kluer Academic Publisher, The Netherlands (1996).
[2]S.T. Hwang, K. Kammermeyer, Membrane in Separation, John Wiley &; Sons, New York (1975).
[3]R.W. Baker, Membrane Technology and Applications, McGraw-Hill, New York (2004).
[4]R.Y.M. Huang, R. Pal, G.Y. Moon, Pervaporation dehydration of aqueous ethanol and isopropanol mixtures through alginate/chitosan two ply composite membranes supported by poly(vinylidene fluoride) porous membrane, J. Membr. Sci., 167 (2000) 275-289.
[5]M.Y. Teng, K.R. Lee, D.J. Liaw, J.Y. Lai, Preparation and pervaporation performance of poly(3-alkylthiophene) membrane, Polymer, 41 (2000) 2047-2052.
[6]C.D. Jones, M. Fidalgo, M.R. Wiesner, A.R. Barron, Alumina ultrafiltration membranes derived from carboxylate–alumoxane nanoparticles, J. Membr. Sci., 193 (2001) 175-184.
[7]T. Van Gestel, C. Vandecasteele, A. Buekenhoudt, C. Dotremont, J. Luyten, R. Leysen, B. Van der Bruggen, G. Maes, Salt retention in nanofiltration with multilayer ceramic TiO2 membranes, J. Membr. Sci., 209 (2002) 379-389.
[8]Y. Yampolskii, Polymeric gas separation membranes , Macromolecules, 45 (2012) 3298-3311.
[9]L.M. Robeson, Correlation of separation factor versus permeability for polymeric Membranes, J. Membr. Sci., 62 (1991) 165-185.
[10]Z. Wang, T. Chen, J. Xu, Gas transport properties of novel cardo poly(aryl ether ketone)s with pendant alkyl groups , Macromolecules, 33 (2000) 5672-5679.
[11]Z. Wang, T. Chen, J. Xu, Novel poly(aryl ether ketone)s containing various pendant groups. II. Gas-Transport Properties, J. Appl. Polym. Sci., 64 (1997) 1725-1732.
[12]J. Zhang, X. Hou, The gas permeation property in trimethylsilyl-substituted PPO and triphenylsilyl-substituted PPO, J. Membr. Sci., 97 (1994) 275-282.
[13]J.H. Kim, S.B. Lee, S.Y. Kim, Incorporation effects of fluorinated side groups into polyimide membranes on their physical and gas permeation properties, J. Appl. Polym. Sci., 77 (2000) 2756-2767.
[14]S. Takahashi, M. Yoshida, M. Asano, T. Tanaka, T. Nakagawa, Effect of heavy-Ion irradiation on the gas permeability of poly(ethylene terephthalate) (PET) membranes, J. Appl. Polym. Sci., 82 (2001) 206-216.
[15]J. Won, M.H. Kim, Y.S. Kang, H.C. Park, U.Y. Kim, S.C. Choi, S.K. Koh, Surface modification of polyimide and polysulfone membranes by ion beam for 68 gas separation, J. Appl. Polym. Sci., 75 (2000) 1554-1560.
[16]C.T. Wright, D.R. Paul, Gas sorption and transport in UV-Irradiated poly(2,6-dimethyl-1,4-phenylene oxide) films, J. Appl. Polym. Sci., 67 (1998) 875-883.
[17]M.H. Kim, J.H. Kim, C.K.Kim, Y.S. Kang, H.C. Park, J.O. Won, Control of phase separation behavior of PC/PMMA blends and their application to the gas separation membranes, J. Polym. Sci., Polym. Phys., 37 (1999) 2950-2959.
[18]F.A. Ruiz-Trevino, D.R. Paul, Gas permselectivity properties of high free volume polymers modified by a low molecular weight additive, J. Appl, Polym. Sci., 68 (1998) 403-415.
[19]S.H. Chen, S.S. Lin, D.J. Chang, J.S. Chang, Gas transport properties of CoAlPO4-5/PC Membranes, J. Appl. Polym. Sci., 77 (2000) 89-95.
[20]P.W. Morgan, S.L Kwolek, Interfacial polycondensation. II. Fundamentals of polymer formation at liquid interfaces, J. Polym. Sci., 40 (1959) 299-327.
[21]L.T. Rozelle, J.E. Cadotte, K.E. Cobian, C.V. Kopp, Jr., Nonpolysaccharide membranes for reverse osmosis: NS-100 membranes, in S. Sourirajan (Ed.), Reverse Osmosis and Synthetic Membranes, National Research Council Canada, Ottawa (1977) 249.
[22]Y. Zhou, S. Yu, M. Liu, C. Gao, Polyamide thin film composite membrane prepared from m-phenylenediamine and m-phenylenediamine-5-sulfonic acid, J. Membr. Sci., 270 (2006) 162-168.
[23]P.R. Buch, D.J. Mohan, A.V.R. Reddy, Preparation, characterization and chlorine stability of aromatic-cycloaliphatic polyamide thin film composite membranes, J. Membr. Sci., 309 (2008) 36-44.
[24]Y. Zhou, S. Yu, M. Liu, C. Gao, Preparation and characterization of polyamide-urethane thin-film composite membranes, Desalination, 180 (2005) 189-196.
[25]Y. Zhou, S. Yu, M. Liu, H. Chen, C. Gao, Effect of mixed crosslinking agents on performance of thin-film-composite membranes, Desalination, 192 (2006) 182-189.
[26]L. Li, S. Zhang, X. Zhang, G. Zheng, Polyamide thin film composite membranes prepared from 3,4,5-biphenyl triacyl chloride, 3,3’,5,5’- biphenyl tetraacyl chloride and m-phenylenediamine, J. Membr. Sci., 289 (2007) 258-267.
[27]J.H. Kim, K.H. Lee, S.Y. Kim, Pervaporation separation of water from ethanol through polyimide composite membranes, J. Membr. Sci., 169 (2000) 81-93.
[28]P.S. Singh, S.V. Joshi, J.J. Trivedi, C.V. Devmurari, A.P. Rao, P.K. Ghosh, Probing the structural variations of thin film composite RO membranes obtained by coating polyamide over polysulfone membranes of different pore dimensions, J. Membr. Sci., 278 (2006) 19-25.
[29]P.B. Kosaraju, K.K. Sirkar, Interfacially polymerized thin film composite membranes on microporous polypropylene supports for solvent-resistant nanofiltration, J. Membr. Sci., 321 (2008) 155-161.
[30]H.I. Kim, S.S. Kim, Plasma treatment of polypropylene and polysulfone supports for thin film composite reverse osmosis membrane, J. Membr. Sci., 286 (2006) 193-201.
[31]E.S. Kim, Y.J. Kim, Q. Yu, B. Deng, Preparation and characterization of polyamide thin-film composite (TFC) membranes on plasma-modified polyvinylidene fluoride (PVDF), J. Membr. Sci., 344 (2009) 71-81.
[32]K. Yoon, B.S. Hsiao, B. Chu, High flux nanofiltration membranes based on interfacially polymerized polyamide barrier layer on polyacrylonitrile nanofibrous scaffolds, J. Membr. Sci., 326 (2009) 484-492.
[33]N.W. Oh, J. Jegal, K.H. Lee, Preparation and characterization of nanofiltration composite membranes using polyacrylonitrile (PAN). II. Preparation and characterization of polyamide composite membranes, J. Appl. Polym. Sci., 80 (2001) 2729-2736.
[34]J.W. Lim, J.M. Lee, S.M. Yun, B.J. Park, Y.S. Lee, Hydrophilic modification of polyacrylonitrile membranes by oxyfluorination, J. Ind. Eng. Chem., 15 (2009) 876-882.
[35]G. Zhang, H. Meng, S. Ji, Hydrolysis differences of polyacrylonitrile support membrane and its influences on polyacrylonitrile-based membrane performance, Desalination, 242 (2009) 313-324.
[36]N.W. Oh, J. Jegal, K.H. Lee, Preparation and characterization of nanofiltration composite membranes using polyacrylonitrile (PAN). I. Preparation and modification of PAN supports, J. Appl. Polym. Sci., 80 (2001) 1854-1862.
[37]I.J. Roh, S.Y. Park, J.J. Kim, C.K. Kim, Effects of the polyamide molecular structure on the performance of reverse osmosis membranes, J. Polym. Sci. Part B: Polym. Phys., 36 (1998) 1821-1830.
[38]L. Li, S. Zhang, X. Zhang, G. Zheng, Polyamide thin film composite membranes prepared from isomeric biphenyl tetraacyl chloride and m-phenylenediamine, J. Membr. Sci., 315 (2008) 20-27.
[39]M. Liu, D. Wu, S. Yu, C. Gao, Influence of the polyacyl chloride structure on the reverse osmosis performance, surface properties and chlorine stability of the thin-film composite polyamide membranes, J. Membr. Sci., 326 (2009) 205-214.
[40]S.H. Huang, C.J. Hsu, D.J. Liaw, C.C. Hu, K.R. Lee, J.Y. Lai, Effect of chemical structures of amines on physicochemical properties of active layers and dehydration of isopropanol through interfacially polymerized thin-film composite membranes, J. Membr. Sci., 307 (2008) 73-81.
[41]S.H. Huang, W.L. Lin, D.J. Liaw, C.L. Li, S.T. Kao, D.M. Wang, K.R. Lee, J.Y. Lai, Characterization, transport and sorption properties of poly(thiol ester amide) thin-film composite pervaporation membranes, J. Membr. Sci., 322 (2008) 139-145.
[42]C.L. Lai, S.H. Huang, W.L. Lin, C.L. Li, K.R. Lee, Influence of the aminothiol structure on pervaporation dehydration of poly(thiol ester amide) composite membranes, J. Membr. Sci., 361 (2010) 206-212.
[43]G.Y. Chai, W.B. Krantz, Formation and characterization of polyamide membranes via interfacial polymerization, J. Membr. Sci., 93 (1994) 175-192.
[44]A.L. Ahmad, B.S. Ooi, Properties-performance of thin film composites membrane: study on trimesoyl chloride content and polymerization time, J. Membr. Sci., 255 (2005) 67-77.
[45]C. Wu, S. Zhang, D. Yang, J. Wei, C. Yan, X. Jian, Preparation, characterization and application in wastewater treatment of a novel thermal stable composite membrane, J. Membr. Sci., 279 (2006) 238-245.
[46]C. Wu, S. Zhang, D. Yang, X. Jian, Preparation, characterization and application of a novel thermal stable composite nanofiltration membrane, J. Membr. Sci., 326 (2009) 429-434.
[47]F. Yang, S. Zhang, D. Yang, X. Jian, Preparation and characterization of polypiperazine amide/PPESK hollow fiber composite nanofiltration membrane, J. Membr. Sci., 301 (2007) 85-92.
[48]L. Hu, S. Zhang, R. Han, X. Jian, Preparation and performance of novel thermally stable polyamide/PPENK composite nanofiltration membranes, Appl. Surf. Sci., 258 (2012) 9047-9053.
[49]C.L. Li, S.H. Huang, D.J. Liaw, K.R. Lee, J.Y. Lai, Interfacial polymerized thin-film composite membranes for pervaporation separation of aqueous isopropanol solution, Sep. Purif. Technol., 62 (2008) 694-701.
[50]S.H. Huang, G.J. Jiang, D.J. Liaw, C.L. Li, C.C. Hu, K.R. Lee, J.Y. Lai, Effects of the polymerization and pervaporation operating conditions on the dehydration performance of interfacially polymerized thin-film composite membranes, J. Appl. Polym. Sci., 114 (2009) 1511-1522.
[51]A.P. Rao, N.V. Desai, R. Rangarajan, Interfacially synthesized thin film composite RO membranes for seawater desalination, J. Membr. Sci., 124 (1997) 263-272.
[52]S.H. Huang, W.S. Hung, D.J. Liaw, C.H. Lo, W.C. Chao, C.C. Hu, C.L. Li, K.R. Lee, J.Y. Lai, Interfacially polymerized thin-film composite polyamide membranes: Effects of annealing processes on pervaporative dehydration of aqueous alcohol solutions, Sep. Purif. Technol., 72 (2010) 40-47.
[53]L. Li, S. Zhang, X. Zhang, Preparation and characterization of poly(piperazineamide) composite nanofiltration membrane by interfacial polymerization of 3,3’,5,5’-biphenyl tetraacyl chloride and piperazine, J. Membr. Sci., 335 (2009) 133-139.
[54]Y. Liu, B. He, J. Li, R. D. Sanderson, L. Li, S. Zhang, Formation and structural evolution of biphenyl polyamide thin film on hollow fiber membrane during interfacial polymerization, J. Membr. Sci., 373 (2011) 98-106.
[55]H. Wang, Q. Zhang, S. Zhang, Positively charged nanofiltration membrane formed by interfacial polymerization of 3,3’,5,5’-biphenyl tetraacyl chloride and piperazine on a poly(acrylonitrile) (PAN) support, J. Membr. Sci., 378 (2011) 243-249.
[56]L.F. Liu, S.C. Yu, Y. Zhou, C.J. Gao, Study on a novel polyamide-urea reverse osmosis composite membrane (ICIC-MPD) I. Preparation and characterization of ICIC-MPD membrane, J. Membr. Sci., 281 (2006) 88-94.
[57]S. Yu, M. Liu, X. Liu, C. Gao, Performance enhancement in interfacially synthesized thin-film composite polyamide-urethane reverse osmosis membrane for seawater desalination, J. Membr. Sci., 342 (2009) 313-320.
[58]M. Liu, S. Yu, M. Qi, Q. Pan, C. Gao, Impact of manufacture technique on seawater desalination performance of thin-film composite polyamide-urethane reverse osmosis membranes and their spiral wound elements, J. Membr. Sci., 348 (2010) 268-276.
[59]X.Z. Wei, L.P. Zhu, H.Y. Deng, Y.Y. Xu, B.K. Zhu, Z.M. Huang, New type of nanofiltration membrane based on crosslinked hyperbranched polymers, J. Membr. Sci., 323 (2008) 278-287.
[60]L. Li, B. Wang, H. Tan, T. Chen, J. Xu, A novel nanofiltration membrane prepared with PAMAM and TMC by in situ interfacial polymerization on PEK-C ultrafiltration membrane, J. Membr. Sci., 269 (2006) 84-93.
[61]S. Yu, M. Liu, Z. Lü, Y. Zhou, C. Gao, Aromatic-cycloaliphatic polyamide thin-film composite membrane with improved chlorine resistance prepared from m-phenylenediamine-4-methyl and cyclohexane-1,3,5-tricarbonyl chloride, J. Membr. Sci., 344 (2009) 155-164.
[62]Y.H. La, R. Sooriyakumaran, D.C. Miller, M. Fujiwara, Y. Terui, K. Yamanaka, B.D. McCloskey, B.D. Freema, R.D. Allen, Novel thin film composite membrane containing ionizable hydrophobes: pH-dependent reverse osmosis behavior and improved chlorine resistance, J. Mater. Chem., 20 (2010) 4615-4620.
[63]S.Y. Kwak, S.G. Jung, S.H. Kim, Structure-motion-performance relationship of flux-enhanced reverse osmosis (RO) membranes composed of aromatic polyamide thin films, Environ. Sci. Technol., 35 (2001) 4334-4340.
[64]S.H. Kim, S.Y. Kwak, T. Suzuki, Positron annihilation spectroscopic evidence to demonstrate the flux-enhancement mechanism in morphology-controlled thin-film-composite (TFC) membrane, Environ. Sci. Technol., 39 (2005) 1764-1770.
[65]J. Jegal, S.G. Min, K.H.F Lee, Factors affecting the interfacial polymerization of polyamide active layers for the formation of polyamide composite membranes, J. Appl. Polym. Sci., 86 (2002) 2781-2787.
[66]S. Qiu, L. Wu, L. Zhang, H. Chen, C. Gao, Preparation of reverse osmosis composite membrane with high flux by interfacial polymerization of MPD and TMC, J. Appl. Polym. Sci., 112 (2009) 2066-2072.
[67]G.L. Jadav, P.S. Singh, Synthesis of novel silica-polyamide nanocomposite membrane with enhanced properties, J. Membr. Sci., 328 (2009) 257-267.
[68]D. Hu, Z.L. Xu, C. Chen, Polypiperazine-amide nanofiltration membrane containing silica nanoparticles prepared by interfacial polymerization, Desalination, 301 (2012) 75-81.
[69]M.L. Lind, D.E. Suk, T.V. Nguyen, E.M.V. Hoek, Tailoring the structure of thin film nanocomposite membranes to achieve seawater RO membrane performance, Environ. Sci. Technol., 44 (2010) 8230-8235.
[70]M. Fathizadeh, A. Aroujalian, A. Raisi, Effect of added NaX nano-zeolite into polyamide as a top thin layer of membrane on water flux and salt rejection in a reverse osmosis process, J. Membr. Sci., 375 (2011) 88-95.
[71]H. Wu, B. Tang, P. Wu, MWNTs/polyester thin film nanocomposite membrane: An approach to overcome the trade-off effect between permeability and selectivity, J. Phys. Chem. C, 114 (2010) 16395-16400.
[72]S.Y. Lee, H.J. Kim, R. Patel, S.J. Im, J.H. Kim, B.R. Min, Silver nanoparticles immobilized on thin film composite polyamide membrane: Characterization, nanofiltration, antifouling properties, Polym. Advan. Technol., 18 (2007) 562-568.
[73]E.S. Kim, G. Hwang, M.G. El-Din, Y. Liu, Development of nanosilver and multi-walled carbon nanotubes thin-film nanocomposite membrane for enhanced water treatment, J. Membr. Sci., 394-395 (2012) 37-48.
[74]B.D. Washo, Rheology and modeling of the spin coating process, IBM. J. Res. Dev., 21 (1997) 190-198.
[75]G. Sartori, W.S.W Ho, D.W. Savage, G.R. Chludzinski, S. Wlechert, Sterically-hindered amines for acid-gas absorption, Sep. Puri. Reviews, 16 (1987) 171-200.
[76]A. Brunetti, F. Scura, G. Barbieri, E. Drioli, Membrane technologies for CO2 separation, J. Membr. Sci., 359 (2010) 115-125.
[77]談駿嵩, 鄭旭翔, Current Reserch on CO2 Recovery and utilization in Taiwan, 石化燃燒排放二氧化碳之捕捉儲存與利用技術研討會 (2006) 1-19.
[78]C.A. Scholes, G.W. Stevens, S.E. Kentish, Membrane gas separation applications in natural gas processing, Fuel, 96 (2012) 15-28.
[79]R. Xinga, W.S.W. Ho, Synthesis and characterization of crosslinked polyvinylalcohol/polyethyleneglycol blend membranes for CO2/CH4 separation, J. Taiwan Inst. Chem. Eng., 40 (2009) 654-662.
[80]J. Zou, W.S.W. Ho, CO2-selective polymeric membranes containing amines in crosslinked poly(vinyl alcohol), J. Membr. Sci., 286 (2006) 310-321
[81]W.J. Ward III, W.L. Robb, Carbon dioxide-oxygen separation : facilitated transport of carbon dioxide across a liquid film, Science, 156 (1967) 1481-1484
[82]J.H. Meldon, K.A. Smith, C.K. Colton, The effect of weak acids upon the transport of carbon dioxide in alkaline solutions, Chem. Eng. Sci., 32 (1977) 939-950.
[83]O.H. LeBlanc, W.J. Ward, S.L. Matson, S.G. Kimura, Facilitated transport in ion-exchange membranes, J. Membr. Sci., 6 (1980) 339-343.
[84]H. Matsuyama, M. Teramoto, K. Iwai, Development of a new functional cation-exchange membrane and its application to facilitated transport of CO2, J. Membr. Sci., 93 (1994) 237-244.
[85]H. Matsuyama, M. Teramoto, H. Sakakura, K. Iwai, Facilitated transport of CO2 through various ion exchange membranes prepared by plasma graft polymerization, J. Membr. Sci., 117 (1996) 251-260.
[86]M. Yoshikawa, T. Ezaki, K. Sanui, N. Ogata, Selective permeation of carbon dioxide through synthetic polymer membranes having pyridine moiety as a fixed carrier, J. Appl. Polym. Sci., 35 (1988) 145-154.
[87]H. Matsuyama, M.T eramoto, H. Sakakura, Selective permeation of CO2 through poly 2-(N,N-dimethyl) aminoethyl methacrylate membrane preparedby plasma-graft polymerization technique, J. Membr. Sci., 114 (1996) 193-200.
[88]H. Matsuyama, A. Terada, T. Nakagawara, Y. Kitamura, M. Teramoto, Facilitated transport of CO2 through polyethylenimine/poly(vinyl alcohol) blend membrane, J. Membr. Sci., 163 (1999) 221-227.
[89]T.J. Kim, B.Li, M.B. Hagg, Novel fixed-site-carrier polyvinylamine membrane for carbon dioxide capture, J. Polym. Sci., Part B: Polym. Phys., 42 (2004) 4326-4336.
[90]Y.H. Tee, J. Zou, W.S.W. Ho, CO2-selective membranes containing dimethylglycine mobile carriers and polyethylenimine fixed carrier, J. Chin. Inst. Chem. Eng., 37 (2006) 37-47.
[91]F. Yuan, Z. Wang, S. Li, J. Wang, S.Wang, Formation–structure–performance correlation of thin film composite membranes prepared by interfacial polymerization for gas separation, J. Membr. Sci., 421-422 (2012) 327-341
[92]J. Zhao, Z. Wang, J. Wang, S. Wang, Influence of heat-treatment on CO2 separation performance of novel fixed carrier composite membranes prepared by interfacial polymerization, J. Membr. Sci., 283 (2006) 346-356
[93]X. Yua, Z. Wang, Z. Wei, S. Yuan, J. Zhao, J. Wang, S. Wang, Novel tertiary amino containing thin film composite membranes prepared by interfacial polymerization for CO2 capture, J. Membr. Sci., 362 (2010) 265-278
[94]Y.C. Jean, P.E. Mallon, D.M. Schrader, Principles and Applications of Positron and Positronium Chemistry, Singapore World Scientific (2003).
[95]J. Ji, J.M. Dickson, R.F. Childs, B.E. McCarry, Mathematical model for the formation of thin-film composite membranes by interfacial polymerization: porous and dense films, Macromolecules, 33 (2000) 624-633.
[96]E.L. Cussler, D.R. Paul, Y.P. Yampol’skii (Eds.), Polymeric Gas Separation Membranes, CRC Press, Boca Raton (1993).
[97]L.Y. Deng, T.J. Kim, M.B. Hägg, Facilitated transport of CO2 in novel PVAm/PVA blend membrane, J. Membr. Sci., 340 (2009) 154-163.
[98]Y.J. Song, P. Sun, L.L. Henry, B.H. Sun, Mechanisms of structure and performance controlled thin film composite membrane formation via interfacial polymerization process, J. Membr. Sci., 25 (2005) 67-79.


電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top