跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.59) 您好!臺灣時間:2025/10/15 06:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳冠中
研究生(外文):Kuan-Chung CHEN
論文名稱:具電量回收之可攜式在線電池診斷平台
論文名稱(外文):Portable Online Battery Diagnostic Platform with Energy Recycling
指導教授:林長華林長華引用關係
指導教授(外文):Chang-Hua Lin
口試委員:陳堃峯王永宜黃仲欽林長華
口試日期:2019-07-24
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:電機工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:149
中文關鍵詞:電量估測演算法諧振負載電量回收
外文關鍵詞:SOC estimation algorithmresonant loadenergy recovery
相關次數:
  • 被引用被引用:4
  • 點閱點閱:150
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文研製具電量回收之可攜式在線電池診斷平台。所提系統利用LC串聯諧振電路搭配功率開關建構諧振負載,對電池模組進行高頻交流抽載,使電池模組操作時呈現電感特性,並藉此獲得電池模組之動態特性。其次,所提之電量估測演算法不需等待電池的電化學反應穩定,除了可即時估測電池模組電量於離線模式時,不同負載條件下之電量;亦可於在線模式時,即時計算電池模組之電量,且於估測的過程中,同時具備電量回收之功能。此外,本文也實現了一套電池管理系統,能夠偵測電池模組內各個電池的訊號,並且對電池模組提供各式保護功能。最後,加入人機介面與電量估測平台進行雙向溝通,除了可利用偵測電路蒐集主電路及電池模組之相關參數與資料傳送至人機介面顯示,亦可直接由人機介面對系統進行控制;另外,可將所蒐集之資訊以Excel形式進行儲存,以利使用者進行後續分析。
This thesis develops a portable online battery diagnostic platform with energy recycling. The system uses an LC series resonant circuit with a power switch to construct a resonant load, and performs high-frequency AC loading on the battery module, so that the battery module exhibits an inductive characteristic when operating, and thereby obtains dynamic characteristics of the battery module. Secondly, the proposed SOC estimation algorithm does not need to wait for the electrochemical reaction of the battery to be stable, except that the battery module can be estimated in real time under different load conditions. In the online mode, the battery module can be calculated in real time, and the power recovery function is also available in the estimation process. In addition, this thesis implements a battery management system that can detect various battery signals in the battery module and provide various protection functions for the battery module. Finally, the human-machine interface(HMI) is added to the SOC estimation platform for bidirectional communication. In addition to using the detection circuit to collect the relevant parameters and data of the main circuit and the battery module and transmit it to the display of the HMI, the proposed approach can also be directly controlled by the HMI. In addition, the collected information can be stored in Excel format for the user to conduct subsequent analysis.
摘要 I
Abstract II
誌謝 III
目錄 IV
圖目錄 VIII
表目錄 XV
第一章 緒論 1
1.1 研究背景 1
1.2 文獻探討 3
1.3 論文架構 5
第二章 鋰離子電池之簡介 7
2.1 二次電池之介紹 7
2.2 常見之鋰等效模型 10
2.2.1 理想模型 10
2.2.2 線性模型 11
2.2.3 戴維寧等效模型 11
2.2.4 等效電容模型 12
2.2.5 二階RC等效模型 13
2.3 電量估測法 14
2.3.1 開路電壓法 15
2.3.2 庫倫積分法 16
2.3.3 混合法 17
2.3.4 類神經網路 17
2.4 本文所提之電量估測法 19
2.4.1 所採用之鋰電池模型 21
2.4.2 所提電量估測之相關數學模型 23
2.4.3 所提電量估測之演算法流程 27
第三章 具電量回收之可攜電池診斷平台 34
3.1 常見電池測試平台簡介 34
3.1.1 直流電源(DC/DC)測試系統 34
3.1.2 交流電源(UPS)測試系統 35
3.1.3 動力電池測試系統 36
3.2 諧振負載測試平台簡介 37
3.3 諧振負載工作模式與數學分析 38
3.4 諧振負載電路之設計準則 50
3.5 具電量回收之可攜電池診斷平台回授控制設計與實現 58
3.5.1 電池模組電壓回授 59
3.5.2 電池模組溫度回授 64
3.5.3 諧振電感電流回授 66
3.5.4 諧振電感電壓回授 72
3.6 類比數位信號轉換器(ADC) 73
3.7 PWM之驅動電路設計 74
3.8 輔助電源應用與說明 77
3.9 電池管理系統 79
3.9.1 系統架構 79
3.9.2 保護功能 81
3.9.3 人機介面及通訊系統流程 82
3.9.4 具電量回收之可攜電池診斷平台控制流程 85
第四章 數位化控制器之設計 87
4.1 數位控制器之特性 87
4.2 數位控制器dsPIC33FJ64GS606 89
4.3 數位控制晶片與系統之整合 92
第五章 電路模擬與實測結果 95
5.1 實驗系統規格 95
5.2 PSIM模擬與實測波形 98
5.4 電量回收率 117
5.5 電量估測與實際電量比較 120
第六章 結論與未來展望 125
6.1 結論 125
6.2 未來展望 126
參考文獻 127
[1] M. Cacciato, G. Nobile, G. Scarcella and G. Scelba, "Real-Time Model-Based Estimation of SOC and SOH for Energy Storage Systems," IEEE Transactions on Power Electronics, vol. 32, no. 1, pp. 794-803, Jan. 2017.
[2] H. Chaoui, A. El Mejdoubi and H. Gualous, "Online Parameter Identification of Lithium-Ion Batteries With Surface Temperature Variations," IEEE Transactions on Vehicular Technology, vol. 66, no. 3, pp. 2000-2009, March 2017.
[3] R. Xiong, F. Sun, X. Gong and H. He, "Online Parameter Identification of Lithium-Ion Batteries With Surface Temperature Variations," Journal of Power Sources, vol. 242, pp. 699-713, May. 2013.
[4] A. T. Elsayed, C. R. Lashway and O. A. Mohammed, "Advanced Battery Management and Diagnostic System for Smart Grid Infrastructure," IEEE Transactions on Smart Grid, vol. 7, no. 2, pp. 897-905, March 2016.
[5] Q. Yu, R. Xiong, C. Lin, W. Shen and J. Deng, "Lithium-Ion Battery Parameters and State-of-Charge Joint Estimation Based on H-Infinity and Unscented Kalman Filters," IEEE Transactions on Vehicular Technology, vol. 66, no. 10, pp. 8693-8701, Oct. 2017.
[6] D. Andre, C. Appel, T. Soczka-Guth, D. Sauer, “Advanced mathematical methods of SOC and SOH estimation for lithium-ion batteries,” Journal of Power Sources, vol. 224, pp. 20-27, Oct. 2012.
[7] M. A. Hannan, M. S. H. Lipu, A. Hussain, and A. Mohamed, “A review of lithium-ion battery state of charge estimation and management system in electric vehicle applications: Challenges and recommendations,”Renewable Sustain. Energy, vol. 78, pp. 834–854, Oct. 2017.
[8] M. K. Hossain and S. M. R. Islam, "Battery Impedance Measurement Using Electrochemical Impedance Spectroscopy Board," 2017 2nd International Conference on Electrical & Electronic Engineering (ICEEE), Rajshahi, 2017, pp. 1-4.
[9] G. Wu, R. Lu, C. Zhu, and C. C. Chan, “State of charge estimation for NiMH Battery based on electromotive force method,” Proc. IEEE Veh. Power Propulsion Conf., Harbin, China, 2008, pp. 1–5.
[10] B. S. Bhangu, P. Bentley, D. A. Stone and C. M. Bingham, "Nonlinear observers for predicting state-of-charge and state-of-health of lead-acid batteries for hybrid-electric vehicles," IEEE Transactions on Vehicular Technology, vol. 54, no. 3, pp. 783-794, May 2005.
[11] W. He, N. Williard, C. Chen, and M. Pecht, “State of charge estimation for Li-ion batteries using neural network modeling and unscented Kalman filter-based error cancellation,” Int. J. Elect. Power Energy Syst, vol. 62, pp. 783–791, Nov. 2014.
[12] G. L. Plett, “Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs,” Journal of Power Sources, vol. 134, pp. 252–261, Aug. 2004.
[13] J. Shen, J. Shen, Y. He and Z. Ma, "Accurate State of Charge Estimation With Model Mismatch for Li-Ion Batteries: A Joint Moving Horizon Estimation Approach," IEEE Transactions on Power Electronics, vol. 34, no. 5, pp. 4329-4342, May 2019.
[14] B. Molnar, "Basic limitations on waveforms achievable in single-ended switching-mode tuned (Class E) power amplifiers," IEEE Journal of Solid-State Circuits, vol. 19, no. 1, pp. 144-146, Feb. 1984.
[15] H. Ma, Q. Guo, X. Han and L. Chen, "Energy recycling load system with a high gain DC-DC converter for ultra low voltage power supplies," 2013 IEEE International Symposium on Industrial Electronics, Taipei, 2013, pp. 1-6.
[16] C. A. Ayres and I. Barbi, "A family of converters for UPS production burn-in energy recovery," in IEEE Transactions on Power Electronics, vol. 12, no. 4, pp. 615-622, July 1997.
[17] Chroma, Model 17020 Datasheet[Online]. Available:
http://www.chroma.com.tw/product/17020_Regenerative_Battery_Pack.htm
[18] 陳明正,”圖騰柱無橋式功率因數修正器之電流諧波與電磁干擾抑制策略”,國立台灣科技大學電子工程系博士論文,
[19] 張瓊仁,”鎳氫電池容量管理之研究”,國立中山大學電機工程系碩士論文,
西元2005年七月
[20] Battery University, BU-216 [Online]. Available:
https://is.gd/qxgGlv
[21] Sanyo/Panasonic, UR18650NSX Datasheet [Online].Available:
https://is.gd/LJTqur
[22] H. L. Chan, "A new battery model for use with battery energy storage systems and electric vehicles power systems," 2000 IEEE Power Engineering Society Winter Meeting. Conference Proceedings (Cat. No.00CH37077), Singapore, 2000, pp. 470-475 vol.1.
[23] 洪裕桓,”智慧型鋰電池管理系統之研製”,國立中山大學電機工程系碩士論文,西元2005年六月
[24] 梁耿儒,”以微控制器為基礎具有電量估測之鋰鈷電池充電器”, 大同大學電機工程研究所碩士論文,西元2012年七月
[25] 王世繁,”二階Thevenin鋰電池等效模型參數離線辨識”,電子設計工程, vol.26, no. 9, pp. 46-54, May. 2018.
[26] Q. Xu, J. Xiao, P. Wang, X. Pan and C. Wen, "A Decentralized Control Strategy for Autonomous Transient Power Sharing and State-of-Charge Recovery in Hybrid Energy Storage Systems," IEEE Transactions on Sustainable Energy, vol. 8, no. 4, pp. 1443-1452, Oct. 2017.
[27] 石力維,” 基於微控制器之鋰離子電池即時診斷系統”, 大同大學電機工程研究所碩士論文,西元2016年七月
[28] C. Weng, J. Sun and H. Peng “A unified open-circuit-voltage model of lithium-ion batteries for state-of-charge estimation and state-of-health monitoring,” Journal of Power Sources, vol. 258, pp.228-237, Jul, 2014.
[29] J. H. Aylor, A. Thieme and B. W. Johnso, "A battery state-of-charge indicator for electric wheelchairs," IEEE Transactions on Industrial Electronics, vol. 39, no. 5, pp. 398-409, Oct. 1992.
[30] Lygte, Sanyo/Panasonic UR18650NSX 2600mAh (Red) [Online]. Available:
http://t.cn/EKatwXO
[31] W. Li, L. Liang, W. Liu and X. Wu, "State of Charge Estimation of Lithium-Ion Batteries Using a Discrete-Time Nonlinear Observer," IEEE Transactions on Industrial Electronics, vol. 64, no. 11, pp. 8557-8565, Nov. 2017.
[32] 林頂立,”類神經網路於鉛酸電池殘電量偵測之應用.” 國立高雄應用科技大學電機工程系碩士論文,西元2007年六月。
[33] Y. Lee, S. Park and S. Han, "Online Embedded Impedance Measurement Using High-Power Battery Charger," IEEE Transactions on Industry Applications, vol. 51, no. 1, pp. 498-508, Jan.-Feb. 2015.
[34] M. Cacciato, G. Nobile, G. Scarcella and G. Scelba, "Real-time model-based estimation of SOC and SOH for energy storage systems," 2015 IEEE 6th International Symposium on Power Electronics for Distributed Generation Systems (PEDG), Aachen, 2015, pp. 1-8.
[35] L. Sun, J. D. Castagno, J. D. Hedengren and R. W. Beard, "Parameter estimation for towed cable systems using moving horizon estimation," IEEE Transactions on Aerospace and Electronic Systems, vol. 51, no. 2, pp. 1432-1446, April 2015.
[36] H. Ma, Q. Guo, X. Han and L. Chen, "Energy recycling load system with a high gain DC-DC converter for ultra low voltage power supplies," 2013 IEEE International Symposium on Industrial Electronics, Taipei, 2013, pp. 1-6.
[37] H. Ma, Q. Guo, X. Han and L. Chen, “Energy Recycling Load System with a High Gain DC-DC Converter for Ultra Low Voltage Power Supplies,” Conf. Rec. IEEE ISIE’13, pp. 1001-1006, 2013.
[38] Ming-Tsung Tsai and C. Tsai, "Energy recycling for electrical AC power source burn-in test," IEEE Transactions on Industrial Electronics, vol. 47, no. 4, pp. 974-976, Aug. 2000.
[39] Hyunsik Jo, Byung-Moon Han and Hanju Cha, "Grid-connected Battery Test System with AC regenerating capability," 2014 IEEE International Energy Conference (ENERGYCON), Cavtat, 2014, pp. 82-86.
[40] Chroma Model 17020 Datasheet [Online]. Available:
http://www.chroma.com.tw/product/17020_Regenerative_Battery_Pack.htm
[41] C. H. Yang, H. S. Lo and H. P. Chui, "Switching-Mode Battery Test System," 2014 International Symposium on Computer, Consumer and Control, Taichung, 2014, pp. 605-608.
[42] Texas Instruments, OPA2227, “HIGH PRECISION, LOW NOISE OPERATIONAL AMPLIFIER,” 2012.
[43] Analog Devices, ADA4807-2, “Rail-to-Rail Input/Output Amplifiers,” 2014-2015.
[44] Allegro Micro Systems, ACS712ELCTR-05B-T, “Fully Integrated, Hall Effect-Based Linear Current Sensor,” 2006-2007.
[45] Analog Devices, ADR03, “Ultracompact, Precision 10.0 V/5.0 V/2.5 V/3.0 V Voltage References,” 2012..
[46] Toshiba, TLP250H, “TLP250H,TLP250HF,” 2015.
[47] Silicon Labs, Si8271, “Si827x Data Sheet,” 2016.
[48] Eric Din, Christopher Schaef, Keith Moffat, Jason T. Stauth,“A Scalable Active Battery Management System With Embedded Real-Time Electrochemical Impedance Spectroscopy,” IEEE Transactions on Power Electronics, vol. 32, pp. 5688 – 5698, Jul. 2017.
[49] 簡聰富,“數位控制系統 VS 類比控制系統”,南台科技大學電機工程系。
[50] 程緯軒,“具數位化之可調式電流饋入型高壓電源供應器”,大同大學電機工程研究所碩士論文,西元2017年七月。
[51] Microchip, “Assembler/Linker/Librarian User's Guide,” 2005.
[52] Microchip, “MPLAB C30 C Compiler User's Guide,” 2007.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊