|
1.Al'Aref, S.J., K. Anchouche, G. Singh, P.J. Slomka, K.K. Kolli, A. Kumar, M. Pandey, G. Maliakal, A.R. van Rosendael, A.N. Beecy, D.S. Berman, J. Leipsic, K. Nieman, D. Andreini, G. Pontone, U.J. Schoepf, L.J. Shaw, H.J. Chang, J. Narula, J.J. Bax, Y. Guan, and J.K. Min, Clinical applications of machine learning in cardiovascular disease and its relevance to cardiac imaging. Eur Heart J, 2019. 40(24): p. 1975-1986. 2.黃瑞仁, 冠狀動脈心臟病的診斷與治療. 警政署日新雜誌, vol, 2004(3): p. 208-215. 3.Mendis, S., P. Puska, B. Norrving, and W.H. Organization, Global atlas on cardiovascular disease prevention and control. 2011: Geneva: World Health Organization. 4.Fares, A., Winter cardiovascular diseases phenomenon. North American journal of medical sciences, 2013. 5(4): p. 266-279. 5.Vilcant, V. and R. Zeltser, Treadmill Stress Testing, in StatPearls. 2019: Treasure Island (FL). 6.Fihn, S.D., J.C. Blankenship, K.P. Alexander, J.A. Bittl, J.G. Byrne, B.J. Fletcher, G.C. Fonarow, R.A. Lange, G.N. Levine, T.M. Maddox, S.S. Naidu, E.M. Ohman, and P.K. Smith, 2014 ACC/AHA/AATS/PCNA/SCAI/STS focused update of the guideline for the diagnosis and management of patients with stable ischemic heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines, and the American Association for Thoracic Surgery, Preventive Cardiovascular Nurses Association, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. J Am Coll Cardiol, 2014. 64(18): p. 1929-49. 7.Turing, A.M., Computing machinery and intelligence, in Parsing the Turing Test. 2009, Springer. p. 23-65. 8.Ramalingam, V.V., A. Dandapath, and M. Karthik Raja, Heart disease prediction using machine learning techniques: A survey. Vol. 7. 2018. 684. 9.陳志華, 楊子緯, 張訓楨, and 賴永崧, 特徵分析和機器學習方法應用於肝臟疾病檢測. 福祉科技與服務管理學刊, 2016. 4(3): p. 417-429. 10.Swaminathan, S., K. Qirko, T. Smith, E. Corcoran, N.G. Wysham, G. Bazaz, G. Kappel, and A.N. Gerber, A machine learning approach to triaging patients with chronic obstructive pulmonary disease. PloS one, 2017. 12(11): p. e0188532-e0188532. 11.Ali, E.E.E. and W.Z. Feng, Breast Cancer Classification using Support Vector Machine and Neural Network. International Journal of Science and Research, 2016. 5(3): p. 1-6. 12.Okfalisa, I. Gazalba, Mustakim, and N.G.I. Reza. Comparative analysis of k-nearest neighbor and modified k-nearest neighbor algorithm for data classification. in 2017 2nd International conferences on Information Technology, Information Systems and Electrical Engineering (ICITISEE). 2017. 13.Gavankar, S.S. and S.D. Sawarkar. Eager decision tree. in 2017 2nd International Conference for Convergence in Technology (I2CT). 2017. 14.Sakr, S., R. Elshawi, A.M. Ahmed, W.T. Qureshi, C.A. Brawner, S.J. Keteyian, M.J. Blaha, and M.H. Al-Mallah, Comparison of machine learning techniques to predict all-cause mortality using fitness data: the Henry ford exercIse testing (FIT) project. BMC Med Inform Decis Mak, 2017. 17(1): p. 174. 15.An, G., K. Omodaka, S. Tsuda, Y. Shiga, N. Takada, T. Kikawa, T. Nakazawa, H. Yokota, and M. Akiba, Comparison of Machine-Learning Classification Models for Glaucoma Management. J Healthc Eng, 2018. 2018: p. 6874765. 16.Chen, T. and C. Guestrin, XGBoost. 2016: p. 785-794. 17.Zaman, M.u., N. Fatima, U. Zaman, and D.J. Baloch, High negative predictive value of workload ≥7 METS on exercise testing in patients with normal gated myocardial perfusion imaging: Was imaging really required? Iranian Journal of Nuclear Medicine, 2014. 22(2): p. 70-76. 18.Sharif, S. and S. Alway, The diagnostic value of exercise stress testing for cardiovascular disease is more than just st segment changes: a review. J. Integr. Cardiol, 2016. 2(4): p. 41-55. 19.Yi-Min, H. and D. Shu-Xin. Weighted support vector machine for classification with uneven training class sizes. in 2005 International Conference on Machine Learning and Cybernetics. 2005. 20.Li, J., C. Zhang, and Z. Li. Battlefield Target Identification Based on Improved Grid-Search SVM Classifier. in 2009 International Conference on Computational Intelligence and Software Engineering. 2009. 21.Gao, X., S. Fan, X. Li, Z. Guo, H. Zhang, Y. Peng, and X. Diao. An improved XGBoost based on weighted column subsampling for object classification. in 2017 4th International Conference on Systems and Informatics (ICSAI). 2017. 22.Sanders, S. and C. Giraud-Carrier, Informing the Use of Hyperparameter Optimization Through Metalearning. 2017: p. 1051-1056. 23.Duan, G. and X. Ma. A Coupon Usage Prediction Algorithm Based On XGBoost. in 2018 14th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD). 2018. 24.Elaidi, H., Y. Elhaddar, Z. Benabbou, and H. Abbar. An idea of a clustering algorithm using support vector machines based on binary decision tree. in 2018 International Conference on Intelligent Systems and Computer Vision (ISCV). 2018. 25.Pławiak, P., Novel genetic ensembles of classifiers applied to myocardium dysfunction recognition based on ECG signals. Swarm and Evolutionary Computation, 2018. 39: p. 192-208. 26.Zhang, X., Y. Yang, and Z. Zhou. A novel credit scoring model based on optimized random forest. in 2018 IEEE 8th Annual Computing and Communication Workshop and Conference (CCWC). 2018. 27.Shi, H., H. Wang, Y. Huang, L. Zhao, C. Qin, and C. Liu, A hierarchical method based on weighted extreme gradient boosting in ECG heartbeat classification. Comput Methods Programs Biomed, 2019. 171: p. 1-10. 28.Bergstra, J. and Y. Bengio, Random search for hyper-parameter optimization. J. Mach. Learn. Res., 2012. 13: p. 281-305. 29.Yadav, S. and S. Shukla. Analysis of k-Fold Cross-Validation over Hold-Out Validation on Colossal Datasets for Quality Classification. in 2016 IEEE 6th International Conference on Advanced Computing (IACC). 2016.
|