跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.59) 您好!臺灣時間:2025/10/17 06:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳宣妤
研究生(外文):HSUAN-YU CHEN
論文名稱:細胞內排酸調控蛋白及乳酸對於人類脂肪幹細胞棕色脂肪新生所扮演的角色
論文名稱(外文):The role of acid extruders and lactate on brown adipogenesis in human adipose tissue-derived stem cells
指導教授:羅時鴻羅時鴻引用關係
指導教授(外文):Shih-Hurng Loh
口試委員:戴念梓鄭志鴻
口試委員(外文):Nian-Tzyy DaiCHENG, TZU-HURNG
口試日期:2019-05-21
學位類別:碩士
校院名稱:國防醫學院
系所名稱:藥理學研究所
學門:醫藥衛生學門
學類:藥學學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:112
中文關鍵詞:肥胖人類脂肪幹細胞脂肪細胞棕色化酸鹼調控
外文關鍵詞:ObesityHuman adipose tissue derived stem cellph regulation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:305
  • 評分評分:
  • 下載下載:16
  • 收藏至我的研究室書目清單書目收藏:0
肥胖是全球性的重要議題,台灣人口十大死因也與肥胖直接或間接相關。間葉幹細胞 (Mesenchymal stem cells; MSCs)透過體外培養形成棕色(brown)或米色(beige)脂肪細胞後,移植回人體是具潛力的肥胖治療。研究顯示,MSC會維持細胞內pH值較鹼,但未有human adipose tissue derived stem cells (hADSC)其分化過程其細胞內部pHi改變的研究。此外小鼠不論是棕色或白色脂肪細胞分化的過程monocarboxylate transporters (MCT)和Na+/HCO3- cotransporters (NBC) mRNA皆有上調的趨勢,這說明pHi regulators在脂肪分化的過程扮演重要角色。乳酸(Lactate)會與細胞外的氫離子透過MCT同向運輸進入細胞,降低胞內氧化壓力,進而提升粒線體非偶合蛋白 (UCP1:uncoupling protein 1) 的蛋白表現,同時增加培養液乳酸濃度或酸化細胞外液,都可促進兔子間葉幹細胞白色脂肪新生並增加其分化的潛力,然而卻没有研究觀察細胞外液酸鹼變化對於棕色脂肪新生之影響。
因此本研究目的為: (1)了解hADSC pHi,排酸蛋白的蛋白表現及功能性。(2)了解hADSC其分化成脂肪細胞過程pHi,排酸蛋白的蛋白表現及功能性之變化。探討hADSC脂肪分化過程加入乳酸或細胞外液酸鹼變化對於brown adipocyte脂肪新生及UCP1, PPARγ, FABP4等蛋白表現量的影響。
材料與方法
實驗材料取自於三軍總醫院抽脂手術之病人脂肪組織純化而來的脂肪幹細胞,hADSCs (標本取得符合臨床實驗規範並經核准 IRB: No. 100-05-251),以貼片法進行培養並以免疫螢光染色法(Immunocytochemistry)及流式細胞技術(Flow cytometry)鑑定細胞,運用西方墨點法(Western blot)進行排酸蛋白的蛋白質含量、其isoform測定及脂肪新生路徑相關蛋白之測定,利用顯為螢光技術 (Microspectrofluorimetry)配合氫離子敏感性螢光染劑2',7'-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein, acetoxymethyl Ester (BCECF-AM),透過氯化銨預灌流技術(Ammonium chloride NH4Cl pre-pulse technique)及乳酸灌流技術(Lactate pulse technique)誘導細胞內酸化後,觀察pHi值恢復的變化情形及幹細胞脂肪分化過程中各排酸蛋白之活性,最後以油紅染色法(Oil Red O staining)探討細胞外酸鹼環境及乳酸對於棕色脂肪新生的影響。
實驗結果
1. 首先以免疫螢光染色成功染出間葉幹細胞的positive markers,如:CD90 及CD73 。
2. 同時以流式細胞技術測定帶有positive markers及negative markers的細胞所占比例,其中表現出positive marker染色抗原CD73、CD105、CD90之細胞表現量分別為99.33%、95.41%、97.74%,表現出negative marker染色抗原CD45為9.95%,證明取的實驗材料實為脂肪來源的間葉幹細胞。
3. 首次證明hADSC上有NHE1, NBCe1, MCT1, MCT2及MCT4分生性蛋白表現。
4. hADSC在HEPES緩衝系統中穩定態pHi 約為6.97, 在Bicarbonate緩衝系統中穩定態pHi 約為7.17,不同於其他幹細胞/癌細胞的在HEPES下較鹼(~7.4)及一般成體細胞的pHi (~7.2)。
5. 在HEPES緩衝系統中,NH4Cl誘導酸化後替換為無鈉溶液,pHi值回復速率完全抑制,這證明了hADSCs細胞排酸機制為鈉依賴性。
6. 在HEPES緩衝系統中,NH4Cl誘導酸化後替換為含有30 μM Hoe 694溶液,其回復速率也幾乎抑制,這證明了NHE1參與hADSCs細胞排酸機制。
7. 在HCO3-/CO2緩衝系統中,NH4Cl誘導酸化後分別替換為含有30 μM S0859溶液及30 μM Hoe694溶液,其回復速率分別為抑制30%及70%,這證明了NBC及NHE共同參與hADSCs細胞排酸機制30%及70%。
8. 在HEPES緩衝系統中,透過灌注而後去除15mM乳酸後使細胞內快速酸化和鹼化證明MCT在hADSCs中功能性存在。另外以添加3μM ARC-155858(MCT1 / 2抑制劑)抑制乳酸轉運蛋白,藥理性證明hADSCs中MCT的存在。
9. hADSC分化成棕色脂肪細胞過程第14、21天出現CD36 marker的表現及Oil Red O明顯呈色,證明成功分化出脂肪細胞。
10. hADSC分化成棕色脂肪細胞過程,NHE1的蛋白表現量漸增而第14天最高,此外 NBCe1及MCT1的蛋白表現量於不同時間點表現一致;然而,MCT4蛋白表現量則呈biphasic現象於第0及14天蛋白表現量最高。
11. 在HEPES-buffer系統,hADSC分化成棕色脂肪細胞過程pHi上升0.2個pH單位,而在Bicarbonate-buffer系統下整體pHi也有增加的趨勢約增加0.1個pH單位。
12. hADSC分化成棕色脂肪細胞第7, 21天過程中,NHE活性於第14及21天顯著提升,NBC活性隨天數增加有增加趨勢,而MCT influx活性維持一定而efflux活性則顯著提升。
13. 由Oil Red O染色發現分化第14天,hADSC在弱鹼環境(pH 7.8)脂肪新生情形較佳;相較弱酸組(pH 6.8)抑制脂肪新生,額外投與lactate則沒有影響。

結論
本研究成功由人類脂肪幹細胞分化形成棕色脂肪細胞,首次證實到脂肪組織來源的間葉幹細胞其存在著鈉依賴性排酸蛋白:NHE、NBC及雙向調控蛋白MCT,此外我們首次證明在HEPES緩衝系統下人類脂肪幹細胞內穩定態pH值為6.97而在Bicarbonate緩衝系統下人類脂肪幹細胞內穩定態pH值為7.17,且隨著分化天數拉長細胞內穩定態pH值會增加,NHE、NBC及MCT efflux隨分化天數增加,其功能性活性也隨之增加,同時在較鹼性的培養環境有利幹細胞棕色脂肪新生,本研究揭示著細胞內外pH值調節對於棕色或米色脂肪新生是十分重要的且具有未來臨床應用之潛力。

Abstract
Backgrounds
Obesity is an important global issue, and the top ten causes of death in Taiwan are directly or indirectly related to obesity. The thermogenic capacity of brown or beige adipocyte makes it an attractive therapeutic target for inducing weight loss through energy expenditure. Nowadays, mesenchymal stem cells (MSCs) have gained interests on cell-based therapy by forming brown or beige adipocytes for transplantation to against obesity. Studies showed that keeping higher intracellular pH is important for MSCs to keep the stemness and proliferation; however, there is no study about changes of pHi in human adipose tissue derived stem cells (hADSCs) during its differentiation process. Besides, upregulation of net acid/lactate flux and the expression of intracellular acid-extruders, such as Na+/H+ exchanger, monocarboxylate transporters (MCTs) and Na+/HCO3− cotransporters (NBC), play important roles during adipocyte differentiation in animal model. Increasing of intracellular lactate concentration has been found to induces the expression of thermogenic protein, i.e. uncoupling protein 1 (UCP1). Moreover, decreasing extracellular pH promotes the potential of white adipocyte adipogenesis of rabbit MSCs. However, there is no report about the correlation among intracellular lactate concentration, extracellular pH, and activity of intracellular acid-extruders during brown adipocyte adipogenesis and UCP1 expression in human MSCs.

Materials and Methods
The human adipose tissue and human derived stem cells (hADSCs) were derived from human liposuction surgery with the approval of the institutional review committee (IRB number: No 100-05-251) that provided by Dr. NT Dai in Tri-Service general hospital, National Defense Medical Center, Taipei, Taiwan. The identification of mesenchymal stem cells was examined by immunocytochemistry and flow cytometry. The protein expression of acid-extruders and adipogenesis related proteins were examined by Western blot. The change of pHi and activities of acid extruders during brown adipogenetic differentiation in stem cells were detected by microspectrofluorometry method with a pH sensitive fluorescent dye, BCECF. Oil Red O technique was used to determine the production of lipid droplets.

Results
1. In the identification experiments, positive markers of mesenchymal stem cells, such as CD90 and CD73, were successfully stained in hADSCs by using immunofluorescence staining technique.
2. In hADSCs, the percentage of positive markers of staining antigens CD73, CD105, and CD90 was 99.33%, 95.41%, and 97.74%, respectively, and the negative marker of staining antigen CD45 was 9.95%, by using flow cytometry, which proved that the hADSCs used in my study is human adipose tissue derived stem cells.
3. We demonstrated the co-existence of protein expression of NHE1 (SLC9A1), NBCe1 (SLC4A4), MCT1 (SLC16A1), MCT2 (SLC16A17) and MCT4 (SLC16A3) in hADSCs by using the molecular biologically method of Western blot.
4. In HEPES-buffered system, the resting pHi of hADSCs was found to be 6.86 and 7.17 under bicarbonate-buffered system which is different from that of other stem cells/cancer cells (~7.4) and many mature cells (~7.2).
5. In HEPES buffered system, the pHi recovery following NH4Cl induced-acidosis was entirely block by removing extracellular Na+, which physicological demonstrates the involvement of Na+-dependent acid-extruding mechanism in hADSCs.
6. In the HEPES-buffered system, the pHi recovery following NH4Cl induced-acidosis was almost inhibited by adding 30 μM Hoe694, which pharmacological demonstrates the existence of NHE1 in hADSCs.
7. In the HCO3-/CO2-buffered system, the pHi recovery following NH4Cl induced-acidosis was inhibited up 30% and 70% by adding 30 μM S0859 (a specific NBC inhibitor) and 30 μM Hoe694 (a specific NHE inhibitor), respectively, which pharmacological demonstrates the co-exist of NHE and NBC in acid extruding mechanism in hADSCs.
8. In the HEPES-buffered system, rapidly intracellular acidification and alkalization were induced following superfusion and removal of 15mM lactate, respectively, which physicological demonstrates that MCT functionally exist in hADSCs. Adding 3μM ARC-155858 (MCT1/2 inhibitor) inhibited the lactate transporter either in the direction of influx and exflus that pharmacological demonstrates the existence of MCT1 in hADSCs.
9. The appearance of CD36 marker has been demonstrated during the process of differentiation into brown adipocytes from hADSCs, detecting by the method of immunocytochemistry. Moreover, by using method of Oil Red O, the lipid accumulation was increased significantly on the 14th and 21st day, indicates that the adipocytes were successfully differentiated into brown adipocytes.
10. In the HEPES-buffer system, the value of pHi was increased (+0.3 pH units) during process of differentiation into brown adipocytes from hADSCs. The similar change on pHi also found under the bicarbonate-buffer system.
11. During the differentiation into brown adipocytes from hADSCs, the protein expression of NHE1 increased gradually and was the highest on the 14th day ; besides, the protein expressions of NBCe1 and MCT1 were consistent at different time points; however, the MCT4 protein expression was biphasic and the protein expression was the highest on the 0 and the 14 th day.
12. During the differentiation into brown adipocytes from hADSCs, the NHE activity promoted obviously on the 14th and 21st day and the activity of NBC gradually increased. Besides, the influx activity of MCT didn’t change significantly while efflux activity enhanced markedly.
13. On the 14th day of brown adipogenetic differentiation, detecting by Oil Red O staining, hADSCs increased fat regeneration in a weak alkaline environment (~pH 7.8), while inhibited fat regeneration in a weak acid condition (~pH 6.8). Moreover, the addition of lactate had no effect on the fat regeneration.

Conclusion
In conclusion, we have, for the first time, demonstrated that the protein expression and functional activity of sodiumdependent acid-extruding proteins, i.e. NHE and NBC, and bidirectional regulatory protein MCT in human adipose tissue-derived mesenchymal stem cells. In addition, we have demonstrated, under the HEPES-buffer system, the steady state pHi value of hADSCs is as low as 6.97, and 7.17 under bicarbonate-buffer system. Moreover, the pHi value is getting increased during the brown adipogenetic progress of differentiation . Besides, the functional activity of NHE、NBC and MCT efflux is also increased following the adipogenetic differentiation. In addition, the alkaline culture environment is favorable for stem cell brown or beige adipogenetic differentiation. Our present study demonstrated that pHi regulation is important to brown adipogenesis of hADSCs, and it implies that the pHi regulators are potential targets for clinical application on obesity-related diseases.

目錄

第一章、緒論
第一節、肥胖簡介與脂肪組織相關研究
壹、肥胖的定義及流行病學
貳、現今肥胖治療
參、脂肪組織分類
肆、脂肪細胞的發展與調控
第二節、 細胞內酸鹼恆定之重要性
壹、細胞內 pH 值之恆定
貳、被動緩衝能力(Buffering power, β)
參、主動調控蛋白(active pHi regulators)
第三節、 幹細胞與細胞內pH值的關聯
壹、幹細胞
貳、人類間葉幹細胞 (Human mesenchymal stem cell)
參、人類脂肪幹細胞 (Human adipose tissue derived stem cell, hADSC)
肆、幹細胞中pH值的特性
伍、幹細胞分化與細胞內pH值的相關性
陸、細胞內外pH值調節對於間葉幹細胞脂肪新生及分化之影響
第四節、 研究目的
第二章、材料與方法
第一節、 實驗材料
第二節、 實驗藥品、試劑及溶液
壹、藥品
貳、抗體
參、溶液
第三節、實驗裝置
壹、細胞培養及鑑定裝置
貳、細胞活性實驗裝置
參、顯微螢光技術實驗裝置
肆、西方點墨法實驗裝置
伍、流式細胞儀實驗裝置
第四節、實驗方法
壹、細胞培養
貳、間葉幹細胞之鑑定(Identification)
參、顯微螢光技術(Microspectrofluorimetry)
肆、西方點墨法(Western blot)
伍、油紅染色法 (Oil Red O staining assay)
第五節、統計方法
第三章、結果
第一節、脂肪來源成體幹細胞之鑑定
第二節、細胞內 pH 值校正
第三節、人類脂肪幹細胞內pH值平衡狀態
壹、HEPES緩衝系統下之細胞內pH值平衡狀態
貳、HCO3-/CO2緩衝系統下之細胞內pH值平衡狀態
第四節、排酸蛋白分生性及功能性之證實
壹、pH值調控蛋白之異構體證實
貳、NHE (Na+-H+ exchanger)之生理與藥理性之證實
參、NBC (Na+-HCO3- cotransporter)藥理性證實以及NHE 與NBC在排酸機制中的協同作用
肆、MCT (Monocarboxylate transporter)之生理與藥理性之證實
第五節、幹細胞棕色脂肪分化之鑑定
第六節、幹細胞棕色脂肪分化過程細胞內pH值平衡狀態之變化
壹、HEPES緩衝系統下幹細胞棕色脂肪分化過程之細胞內pH值平衡狀態
貳、Bicarbonate緩衝系統下幹細胞棕色脂肪分化過程細胞內pH值平衡狀態
第七節、幹細胞棕色脂肪分化過程各排酸蛋白活性改變
壹、 幹細胞棕色脂肪分化過程pH值調控蛋白之變化
貳、排酸蛋白NHE在分化時序中功能活性之改變
參、排酸蛋白NBC在分化時序中功能活性之改變
肆、雙向控蛋白MCT在分化時序中功能活性之改變
第八節、細胞外微環境對棕色脂肪新生之影響
第四章、討論
第一節、成體幹細胞之鑑定
第二節、人類脂肪幹細胞及棕色脂肪分化過程之細胞內 pH值平衡調節
第三節、人類脂肪幹細胞之細胞內主動排酸機制
第四節、細胞外微環境對棕色脂肪新生之影響
第五節、臨床應用
第五章、結論

Table 1. The definition of adult obesity
Table 2. SLC9 family
Table 3. SLC4 Family
Table 4、SLC16 family

Figure 1. Distribution of global obesity prevalence rate in 2014
Figure 2. The top 10 causes of death in Taiwan in 2017
Figure 3. The prevalence of overweight and obesity in adults over 19 years old in 82-85, 94-97 and 102-105 years of the Republic of China.
Figure 4. Three types of adipose tissue
Figure 5. A model of intracellular pH regulators on the guinea pig myocardium.
Figure 6. Autologous cell therapy and its clinical application
Figure 7. Stem cell adipogenetic differentiation pathway
Figure 8. Energy metabolism pattern of stem cell differentiation
Figure 9. The consent form of Institutional Review Board (the IRB number is 100-05-251)
Figure 10. BCECF Fluorescent Dye has pH-dependent excitation spectroscopy.
Figure 11. Schematic diagram of equipment
Figure 12. The principle of loading BCECF fluorescent dye into cells
Figure 13. The mechanism of the weak base, NH4Cl pre-pulse technique.
Figure 14. The mechanism of lactate superfusion technique.
Figure 15. Immunocytochemistry staining of adipose-tissue derived stem cells.
Figure 16. Flow cytometry analysis of cell markers on hADSC
Figure 17. Intracellular pH calibration curve in cultured hADSCs
Figure 18. Physiological intracellular pH experiment of hADSCs under HEPES-buffered system and Bicarbonate-buffered system.
Figure 19. Molecular expression of pH regulators on adipose-tissue derived stem cells.
Figure 20. Effects of 30μM Hoe694 and Na+-free on pHi recovery in hADSCs superfused with HEPES-buffered Tyrode solution.
Figure 21. Effects of 30μM S0859 and 30μM Hoe694 on pHi recovery in hADSCs superfused with Bicarbonate-buffered Tyrode solution.
Figure 22. Effects of 15mM lactate and 3μM ARC-155858 on pHi recovery in hADSCs superfused with MCT-buffered solution.
Figure 23. Identification of hADSCs during adipogenetic differentiation
Figure 24. The change of resting pHi of hADSC during adipogenetic differentiation under HEPES.
Figure 25. The change of resting pHi of hADSC during adipogenic differentiation under Bicarbonate-buffered system.
Figure 26. The molecular expression of pH regulators on hADSC during adipogenetic differentiation.
Figure 27. The change of functional NHE activity during adipogenetic differentiation in hADSC.
Figure 28. The change of functional NBC activity during adipogenic differentiation in hADSC
Figure 29. The change of functional MCT influx activity during adipogenetic differentiation in hADSC
Figure 30. The change of functional MCT efflux activity during adipogenetic differentiation in hADSC
Figure 31. Oil Red O staining during brown adipogenetic differentiation under different culture conditions in hADSC
參考文獻


Aickin, C. C., & Thomas, R. C. (1977). The effect of external Na and amiloride on pHi recovery in mouse soleus muscle [proceedings]. J Physiol, 269(1), 80P-81P.
Akimzhanov, A. M., & Boehning, D. (2011). Monitoring dynamic changes in mitochondrial calcium levels during apoptosis using a genetically encoded calcium sensor. J Vis Exp(50). doi:10.3791/2579
Algire, C., Medrikova, D., & Herzig, S. (2013). White and brown adipose stem cells: from signaling to clinical implications. Biochim Biophys Acta, 1831(5), 896-904. doi:10.1016/j.bbalip.2012.10.001
Ament, Z., West, J. A., Stanley, E., Ashmore, T., Roberts, L. D., Wright, J., . . . Griffin, J. L. (2016). PPAR-pan activation induces hepatic oxidative stress and lipidomic remodelling. Free Radic Biol Med, 95, 357-368. doi:10.1016/j.freeradbiomed.2015.11.033
Arien-Zakay, H., Lazarovici, P., & Nagler, A. (2010). Tissue regeneration potential in human umbilical cord blood. Best Pract Res Clin Haematol, 23(2), 291-303. doi:10.1016/j.beha.2010.04.001
Aune, U. L., Ruiz, L., & Kajimura, S. (2013). Isolation and differentiation of stromal vascular cells to beige/brite cells. J Vis Exp(73). doi:10.3791/50191
Baba, M., Inoue, M., Itoh, K., & Nishizawa, Y. (2008). Blocking CD147 induces cell death in cancer cells through impairment of glycolytic energy metabolism. Biochem Biophys Res Commun, 374(1), 111-116. doi:10.1016/j.bbrc.2008.06.122
Balmaceda-Aguilera, C., Cortes-Campos, C., Cifuentes, M., Peruzzo, B., Mack, L., Tapia, J. C., . . . Nualart, F. (2012). Glucose transporter 1 and monocarboxylate transporters 1, 2, and 4 localization within the glial cells of shark blood-brain-barriers. PLoS One, 7(2), e32409. doi:10.1371/journal.pone.0032409
Barot, M., Gokulgandhi, M. R., Agrahari, V., Pal, D., & Mitra, A. K. (2014). Monocarboxylate transporter mediated uptake of moxifloxacin on human retinal pigmented epithelium cells. J Pharm Pharmacol, 66(4), 574-583. doi:10.1111/jphp.12139
Basen-Engquist, K., & Chang, M. (2011). Obesity and cancer risk: recent review and evidence. Curr Oncol Rep, 13(1), 71-76. doi:10.1007/s11912-010-0139-7
Becker, H. M., Mohebbi, N., Perna, A., Ganapathy, V., Capasso, G., & Wagner, C. A. (2010). Localization of members of MCT monocarboxylate transporter family Slc16 in the kidney and regulation during metabolic acidosis. Am J Physiol Renal Physiol, 299(1), F141-154. doi:10.1152/ajprenal.00488.2009
Bellemer, A., Hirata, T., Romero, M. F., & Koelle, M. R. (2011). Two types of chloride transporters are required for GABA(A) receptor-mediated inhibition in C. elegans. EMBO J, 30(9), 1852-1863. doi:10.1038/emboj.2011.83
Beranger, G. E., Karbiener, M., Barquissau, V., Pisani, D. F., Scheideler, M., Langin, D., & Amri, E. Z. (2013). In vitro brown and "brite"/"beige" adipogenesis: human cellular models and molecular aspects. Biochim Biophys Acta, 1831(5), 905-914. doi:10.1016/j.bbalip.2012.11.001
Bernardino, R. L., Martins, A. D., Jesus, T. T., Sa, R., Sousa, M., Alves, M. G., & Oliveira, P. F. (2015). Estrogenic regulation of bicarbonate transporters from SLC4 family in rat Sertoli cells. Mol Cell Biochem, 408(1-2), 47-54. doi:10.1007/s11010-015-2481-4
Betz, A. L. (1983). Sodium transport in capillaries isolated from rat brain. J Neurochem, 41(4), 1150-1157.
Bobulescu, I. A., Di Sole, F., & Moe, O. W. (2005). Na+/H+ exchangers: physiology and link to hypertension and organ ischemia. Curr Opin Nephrol Hypertens, 14(5), 485-494.
Bok, D., Schibler, M. J., Pushkin, A., Sassani, P., Abuladze, N., Naser, Z., & Kurtz, I. (2001). Immunolocalization of electrogenic sodium-bicarbonate cotransporters pNBC1 and kNBC1 in the rat eye. Am J Physiol Renal Physiol, 281(5), F920-935. doi:10.1152/ajprenal.2001.281.5.F920
Bora, P., & Majumdar, A. S. (2017). Adipose tissue-derived stromal vascular fraction in regenerative medicine: a brief review on biology and translation. Stem Cell Res Ther, 8(1), 145. doi:10.1186/s13287-017-0598-y
Boron, W. F., & Boulpaep, E. L. (1983). Intracellular pH regulation in the renal proximal tubule of the salamander. Basolateral HCO3- transport. J Gen Physiol, 81(1), 53-94.
Boron, W. F., Chen, L., & Parker, M. D. (2009). Modular structure of sodium-coupled bicarbonate transporters. J Exp Biol, 212(Pt 11), 1697-1706. doi:10.1242/jeb.028563
Boussouf, A., & Gaillard, S. (2000). Intracellular pH changes during oligodendrocyte differentiation in primary culture. J Neurosci Res, 59(6), 731-739. doi:10.1002/(SICI)1097-4547(20000315)59:6<731::AID-JNR5>3.0.CO;2-G
Brett, C. L., Donowitz, M., & Rao, R. (2005). Evolutionary origins of eukaryotic sodium/proton exchangers. Am J Physiol Cell Physiol, 288(2), C223-239. doi:10.1152/ajpcell.00360.2004
Brown, C. D., Dunk, C. R., & Turnberg, L. A. (1989). Cl-HCO3 exchange and anion conductance in rat duodenal apical membrane vesicles. Am J Physiol, 257(4 Pt 1), G661-667. doi:10.1152/ajpgi.1989.257.4.G661
Carriere, A., Jeanson, Y., Berger-Muller, S., Andre, M., Chenouard, V., Arnaud, E., . . . Casteilla, L. (2014). Browning of white adipose cells by intermediate metabolites: an adaptive mechanism to alleviate redox pressure. Diabetes, 63(10), 3253-3265. doi:10.2337/db13-1885
Casey, J. R., Grinstein, S., & Orlowski, J. (2010). Sensors and regulators of intracellular pH. Nat Rev Mol Cell Biol, 11(1), 50-61. doi:10.1038/nrm2820
Chambrey, R., St John, P. L., Eladari, D., Quentin, F., Warnock, D. G., Abrahamson, D. R., . . . Paillard, M. (2001). Localization and functional characterization of Na+/H+ exchanger isoform NHE4 in rat thick ascending limbs. Am J Physiol Renal Physiol, 281(4), F707-717. doi:10.1152/ajprenal.2001.281.4.F707
Chen, G. S., Lee, S. P., Huang, S. F., Chao, S. C., Chang, C. Y., Wu, G. J., . . . Loh, S. H. (2018). Functional and molecular characterization of transmembrane intracellular pH regulators in human dental pulp stem cells. Arch Oral Biol, 90, 19-26. doi:10.1016/j.archoralbio.2018.02.018
Chen, T., Zhou, Y., & Tan, W. S. (2009). Influence of lactic acid on the proliferation, metabolism, and differentiation of rabbit mesenchymal stem cells. Cell Biol Toxicol, 25(6), 573-586. doi:10.1007/s10565-008-9113-7
Chen, Y. C., & Yu, Y. H. (2018). The Potential of Brown Adipogenesis and Browning in Porcine Bone Marrow-derived Mesenchymal Stem Cells. J Anim Sci. doi:10.1093/jas/sky230
Choi, C. H., Webb, B. A., Chimenti, M. S., Jacobson, M. P., & Barber, D. L. (2013). pH sensing by FAK-His58 regulates focal adhesion remodeling. J Cell Biol, 202(6), 849-859. doi:10.1083/jcb.201302131
Ciapaite, J., Bakker, S. J., Diamant, M., van Eikenhorst, G., Heine, R. J., Westerhoff, H. V., & Krab, K. (2006). Metabolic control of mitochondrial properties by adenine nucleotide translocator determines palmitoyl-CoA effects. Implications for a mechanism linking obesity and type 2 diabetes. FEBS J, 273(23), 5288-5302. doi:10.1111/j.1742-4658.2006.05523.x
Civelek, V. N., Hamilton, J. A., Tornheim, K., Kelly, K. L., & Corkey, B. E. (1996). Intracellular pH in adipocytes: effects of free fatty acid diffusion across the plasma membrane, lipolytic agonists, and insulin. Proc Natl Acad Sci U S A, 93(19), 10139-10144.
Coelho, M., Oliveira, T., & Fernandes, R. (2013). Biochemistry of adipose tissue: an endocrine organ. Arch Med Sci, 9(2), 191-200. doi:10.5114/aoms.2013.33181
Collins, J. F., Honda, T., Knobel, S., Bulus, N. M., Conary, J., DuBois, R., & Ghishan, F. K. (1993). Molecular cloning, sequencing, tissue distribution, and functional expression of a Na+/H+ exchanger (NHE-2). Proc Natl Acad Sci U S A, 90(9), 3938-3942.
Curci, S., Debellis, L., & Fromter, E. (1987). Evidence for rheogenic sodium bicarbonate cotransport in the basolateral membrane of oxyntic cells of frog gastric fundus. Pflugers Arch, 408(5), 497-504.
Cypess, A. M., & Kahn, C. R. (2010). Brown fat as a therapy for obesity and diabetes. Curr Opin Endocrinol Diabetes Obes, 17(2), 143-149. doi:10.1097/MED.0b013e328337a81f
Cypess, A. M., Lehman, S., Williams, G., Tal, I., Rodman, D., Goldfine, A. B., . . . Kahn, C. R. (2009). Identification and importance of brown adipose tissue in adult humans. N Engl J Med, 360(15), 1509-1517. doi:10.1056/NEJMoa0810780
D'Souza, S., Garcia-Cabado, A., Yu, F., Teter, K., Lukacs, G., Skorecki, K., . . . Grinstein, S. (1998). The epithelial sodium-hydrogen antiporter Na+/H+ exchanger 3 accumulates and is functional in recycling endosomes. J Biol Chem, 273(4), 2035-2043.
Damkier, H. H., Nielsen, S., & Praetorius, J. (2007). Molecular expression of SLC4-derived Na+-dependent anion transporters in selected human tissues. Am J Physiol Regul Integr Comp Physiol, 293(5), R2136-2146. doi:10.1152/ajpregu.00356.2007
Dantas, W. S., Marcondes, J. A., Shinjo, S. K., Perandini, L. A., Zambelli, V. O., Neves, W. D., . . . Gualano, B. (2015). GLUT4 translocation is not impaired after acute exercise in skeletal muscle of women with obesity and polycystic ovary syndrome. Obesity (Silver Spring), 23(11), 2207-2215. doi:10.1002/oby.21217
Dart, C., & Vaughan-Jones, R. D. (1992). Na(+)-HCO3- symport in the sheep cardiac Purkinje fibre. J Physiol, 451, 365-385.
Deda, G., Ekim, M., Guven, A., Karagol, U., & Tumer, N. (2001). Hypopotassemic paralysis: a rare presentation of proximal renal tubular acidosis. J Child Neurol, 16(10), 770-771. doi:10.1177/088307380101601013
Demirci, F. Y., Chang, M. H., Mah, T. S., Romero, M. F., & Gorin, M. B. (2006). Proximal renal tubular acidosis and ocular pathology: a novel missense mutation in the gene (SLC4A4) for sodium bicarbonate cotransporter protein (NBCe1). Mol Vis, 12, 324-330.
Denker, S. P., Huang, D. C., Orlowski, J., Furthmayr, H., & Barber, D. L. (2000). Direct binding of the Na--H exchanger NHE1 to ERM proteins regulates the cortical cytoskeleton and cell shape independently of H(+) translocation. Mol Cell, 6(6), 1425-1436.
Denton, R. M., & Halestrap, A. P. (1979). Regulation of pyruvate metabolism in mammalian tissues. Essays Biochem, 15, 37-77.
Dorfman, R., Li, W., Sun, L., Lin, F., Wang, Y., Sandford, A., . . . Strug, L. J. (2009). Modifier gene study of meconium ileus in cystic fibrosis: statistical considerations and gene mapping results. Hum Genet, 126(6), 763-778. doi:10.1007/s00439-009-0724-8
Eichhorn, C., & Nagel, E. (2010). [Prevention of overweight and obesity--the role of government, the food industry and the individual]. Gesundheitswesen, 72(1), 10-16. doi:10.1055/s-0029-1237737
Elabd, C., Chiellini, C., Carmona, M., Galitzky, J., Cochet, O., Petersen, R., . . . Amri, E. Z. (2009). Human multipotent adipose-derived stem cells differentiate into functional brown adipocytes. Stem Cells, 27(11), 2753-2760. doi:10.1002/stem.200
Feisst, V., Meidinger, S., & Locke, M. B. (2015). From bench to bedside: use of human adipose-derived stem cells. Stem Cells Cloning, 8, 149-162. doi:10.2147/SCCAA.S64373
Festuccia, W. T., Blanchard, P. G., & Deshaies, Y. (2011). Control of Brown Adipose Tissue Glucose and Lipid Metabolism by PPARgamma. Front Endocrinol (Lausanne), 2, 84. doi:10.3389/fendo.2011.00084
Folmes, C. D., Dzeja, P. P., Nelson, T. J., & Terzic, A. (2012). Metabolic plasticity in stem cell homeostasis and differentiation. Cell Stem Cell, 11(5), 596-606. doi:10.1016/j.stem.2012.10.002
Fujii, W., Kawahito, Y., Nagahara, H., Kukida, Y., Seno, T., Yamamoto, A., . . . Ashihara, E. (2015). Monocarboxylate transporter 4, associated with the acidification of synovial fluid, is a novel therapeutic target for inflammatory arthritis. Arthritis Rheumatol, 67(11), 2888-2896. doi:10.1002/art.39270
Gabal, L. L., Goodman-Gruen, D., & Barrett-Connor, E. (1997). The effect of postmenopausal estrogen therapy on the risk of non-insulin-dependent diabetes mellitus. Am J Public Health, 87(3), 443-445.
Gao, W., Zhang, H., Chang, G., Xie, Z., Wang, H., Ma, L., . . . Pang, T. (2014). Decreased intracellular pH induced by cariporide differentially contributes to human umbilical cord-derived mesenchymal stem cells differentiation. Cell Physiol Biochem, 33(1), 185-194. doi:10.1159/000356661
Garcia, C. K., Brown, M. S., Pathak, R. K., & Goldstein, J. L. (1995). cDNA cloning of MCT2, a second monocarboxylate transporter expressed in different cells than MCT1. J Biol Chem, 270(4), 1843-1849.
Gekle, M., Volker, K., Mildenberger, S., Freudinger, R., Shull, G. E., & Wiemann, M. (2004). NHE3 Na+/H+ exchanger supports proximal tubular protein reabsorption in vivo. Am J Physiol Renal Physiol, 287(3), F469-473. doi:10.1152/ajprenal.00059.2004
Giatromanolaki, A., Balaska, K., Kalamida, D., Kakouratos, C., Sivridis, E., & Koukourakis, M. I. (2017). Thermogenic protein UCP1 and UCP3 expression in non-small cell lung cancer: relation with glycolysis and anaerobic metabolism. Cancer Biol Med, 14(4), 396-404. doi:10.20892/j.issn.2095-3941.2017.0089
Giralt, M., & Villarroya, F. (2013). White, brown, beige/brite: different adipose cells for different functions? Endocrinology, 154(9), 2992-3000. doi:10.1210/en.2013-1403
Good, D. W., George, T., & Watts, B. A., 3rd. (1995). Basolateral membrane Na+/H+ exchange enhances HCO3- absorption in rat medullary thick ascending limb: evidence for functional coupling between basolateral and apical membrane Na+/H+ exchangers. Proc Natl Acad Sci U S A, 92(26), 12525-12529.
Gronthos, S., Brahim, J., Li, W., Fisher, L. W., Cherman, N., Boyde, A., . . . Shi, S. (2002). Stem cell properties of human dental pulp stem cells. J Dent Res, 81(8), 531-535. doi:10.1177/154405910208100806
Gu, W., Gaeta, X., Sahakyan, A., Chan, A. B., Hong, C. S., Kim, R., . . . Christofk, H. R. (2016). Glycolytic Metabolism Plays a Functional Role in Regulating Human Pluripotent Stem Cell State. Cell Stem Cell, 19(4), 476-490. doi:10.1016/j.stem.2016.08.008
Guo, L., Liu, F., Chen, S., Yang, X., Huang, J., He, J., . . . Gu, D. (2016). Common variants in the Na(+)-coupled bicarbonate transporter genes and salt sensitivity of blood pressure: the GenSalt study. J Hum Hypertens, 30(9), 543-548. doi:10.1038/jhh.2015.113
Halestrap, A. P. (2012). The monocarboxylate transporter family--Structure and functional characterization. IUBMB Life, 64(1), 1-9. doi:10.1002/iub.573
Hao, J., Chen, H., Madigan, M. C., Cozzi, P. J., Beretov, J., Xiao, W., . . . Li, Y. (2010). Co-expression of CD147 (EMMPRIN), CD44v3-10, MDR1 and monocarboxylate transporters is associated with prostate cancer drug resistance and progression. Br J Cancer, 103(7), 1008-1018. doi:10.1038/sj.bjc.6605839
Hemmat, S., Lieberman, D. M., & Most, S. P. (2010). An introduction to stem cell biology. Facial Plast Surg, 26(5), 343-349. doi:10.1055/s-0030-1265015
Higgins, C. F. (1992). ABC transporters: from microorganisms to man. Annu Rev Cell Biol, 8, 67-113. doi:10.1146/annurev.cb.08.110192.000435
Hill, A. V. (1955). The influence of the external medium on the internal pH of muscle. Proc R Soc Lond B Biol Sci, 144(914), 1-22.
Hoppela, E., Gronroos, T. J., Saarikko, A. M., Tervala, T. V., Kauhanen, S., Nuutila, P., . . . Hartiala, P. (2018). Fat Grafting Can Induce Browning of White Adipose Tissue. Plast Reconstr Surg Glob Open, 6(6), e1804. doi:10.1097/GOX.0000000000001804
Hu, L., Yin, C., Zhao, F., Ali, A., Ma, J., & Qian, A. (2018). Mesenchymal Stem Cells: Cell Fate Decision to Osteoblast or Adipocyte and Application in Osteoporosis Treatment. Int J Mol Sci, 19(2). doi:10.3390/ijms19020360
Huang, S., Zhu, B., Cheon, I. S., Goplen, N. P., Jiang, L., Zhang, R., . . . Sun, J. (2019). PPAR-gamma in macrophages limits pulmonary inflammation and promotes host recovery following respiratory viral infection. J Virol. doi:10.1128/JVI.00030-19
Izzi-Engbeaya, C., Salem, V., Atkar, R. S., & Dhillo, W. S. (2015). Insights into Brown Adipose Tissue Physiology as Revealed by Imaging Studies. Adipocyte, 4(1), 1-12. doi:10.4161/21623945.2014.965609
Jacobs, S., Ruusuvuori, E., Sipila, S. T., Haapanen, A., Damkier, H. H., Kurth, I., . . . Hubner, C. A. (2008). Mice with targeted Slc4a10 gene disruption have small brain ventricles and show reduced neuronal excitability. Proc Natl Acad Sci U S A, 105(1), 311-316. doi:10.1073/pnas.0705487105
Jamali, S., Klier, M., Ames, S., Barros, L. F., McKenna, R., Deitmer, J. W., & Becker, H. M. (2015). Hypoxia-induced carbonic anhydrase IX facilitates lactate flux in human breast cancer cells by non-catalytic function. Sci Rep, 5, 13605. doi:10.1038/srep13605
Jensen, L. J., Schmitt, B. M., Berger, U. V., Nsumu, N. N., Boron, W. F., Hediger, M. A., . . . Breton, S. (1999). Localization of sodium bicarbonate cotransporter (NBC) protein and messenger ribonucleic acid in rat epididymis. Biol Reprod, 60(3), 573-579.
Jentsch, T. J., Keller, S. K., Koch, M., & Wiederholt, M. (1984). Evidence for coupled transport of bicarbonate and sodium in cultured bovine corneal endothelial cells. J Membr Biol, 81(3), 189-204.
Johnson, J. D., & Epel, D. (1976). Intracellular pH and activation of sea urchin eggs after fertilisation. Nature, 262(5570), 661-664.
Jones, N. P., & Schulze, A. (2012). Targeting cancer metabolism--aiming at a tumour's sweet-spot. Drug Discov Today, 17(5-6), 232-241. doi:10.1016/j.drudis.2011.12.017
Jung, Y. W., Choi, I. J., & Kwon, T. H. (2007). Altered expression of sodium transporters in ischemic penumbra after focal cerebral ischemia in rats. Neurosci Res, 59(2), 152-159. doi:10.1016/j.neures.2007.06.1470
Khouri, R. K., Jr., & Khouri, R. K. (2017). Current Clinical Applications of Fat Grafting. Plast Reconstr Surg, 140(3), 466e-486e. doi:10.1097/PRS.0000000000003648
Kim, H. K., Lee, I., Bang, H., Kim, H. C., Lee, W. Y., Yun, S. H., . . . Kang, W. K. (2018). MCT4 Expression Is a Potential Therapeutic Target in Colorectal Cancer with Peritoneal Carcinomatosis. Mol Cancer Ther, 17(4), 838-848. doi:10.1158/1535-7163.MCT-17-0535
Kim, L., King, T., & Agulnik, M. (2010). Head and neck cancer: changing epidemiology and public health implications. Oncology (Williston Park), 24(10), 915-919, 924.
Kim, N., Minami, N., Yamada, M., & Imai, H. (2017). Immobilized pH in culture reveals an optimal condition for somatic cell reprogramming and differentiation of pluripotent stem cells. Reprod Med Biol, 16(1), 58-66. doi:10.1002/rmb2.12011
Koivusalo, M., Welch, C., Hayashi, H., Scott, C. C., Kim, M., Alexander, T., . . . Grinstein, S. (2010). Amiloride inhibits macropinocytosis by lowering submembranous pH and preventing Rac1 and Cdc42 signaling. J Cell Biol, 188(4), 547-563. doi:10.1083/jcb.200908086
Krepischi, A. C., Knijnenburg, J., Bertola, D. R., Kim, C. A., Pearson, P. L., Bijlsma, E., . . . Rosenberg, C. (2010). Two distinct regions in 2q24.2-q24.3 associated with idiopathic epilepsy. Epilepsia, 51(12), 2457-2460. doi:10.1111/j.1528-1167.2010.02742.x
Kubo, H., Shimizu, M., Taya, Y., Kawamoto, T., Michida, M., Kaneko, E., . . . Kato, Y. (2009). Identification of mesenchymal stem cell (MSC)-transcription factors by microarray and knockdown analyses, and signature molecule-marked MSC in bone marrow by immunohistochemistry. Genes Cells, 14(3), 407-424. doi:10.1111/j.1365-2443.2009.01281.x
Lagadic-Gossmann, D., Buckler, K. J., & Vaughan-Jones, R. D. (1992). Role of bicarbonate in pH recovery from intracellular acidosis in the guinea-pig ventricular myocyte. J Physiol, 458, 361-384.
Lagadic-Gossmann, D., Huc, L., & Lecureur, V. (2004). Alterations of intracellular pH homeostasis in apoptosis: origins and roles. Cell Death Differ, 11(9), 953-961. doi:10.1038/sj.cdd.4401466
Laing, A. G., Fanelli, G., Ramirez-Valdez, A., Lechler, R. I., Lombardi, G., & Sharpe, P. T. (2019). Mesenchymal stem cells inhibit T-cell function through conserved induction of cellular stress. PLoS One, 14(3), e0213170. doi:10.1371/journal.pone.0213170
Lauritzen, F., de Lanerolle, N. C., Lee, T. S., Spencer, D. D., Kim, J. H., Bergersen, L. H., & Eid, T. (2011). Monocarboxylate transporter 1 is deficient on microvessels in the human epileptogenic hippocampus. Neurobiol Dis, 41(2), 577-584. doi:10.1016/j.nbd.2010.11.005
Lee, C. Y., Tsai, Y. T., Chang, C. Y., Chang, Y. Y., Cheng, T. H., Tsai, C. S., & Loh, S. H. (2014). Functional characterization of intracellular pH regulators responsible for acid extrusion in human radial artery smooth muscle cells. Chin J Physiol, 57(5), 238-248. doi:10.4077/CJP.2014.BAD269
Lee, J. Y., Lee, I., Chang, W. J., Ahn, S. M., Lim, S. H., Kim, H. S., . . . Kang, W. K. (2016). MCT4 as a potential therapeutic target for metastatic gastric cancer with peritoneal carcinomatosis. Oncotarget, 7(28), 43492-43503. doi:10.18632/oncotarget.9523
Lee, S. H. (2018). The advantages and limitations of mesenchymal stem cells in clinical application for treating human diseases. Osteoporos Sarcopenia, 4(4), 150. doi:10.1016/j.afos.2018.11.083
Leem, C. H., Lagadic-Gossmann, D., & Vaughan-Jones, R. D. (1999). Characterization of intracellular pH regulation in the guinea-pig ventricular myocyte. J Physiol, 517 ( Pt 1), 159-180.
Leviel, F., Hubner, C. A., Houillier, P., Morla, L., El Moghrabi, S., Brideau, G., . . . Eladari, D. (2010). The Na+-dependent chloride-bicarbonate exchanger SLC4A8 mediates an electroneutral Na+ reabsorption process in the renal cortical collecting ducts of mice. J Clin Invest, 120(5), 1627-1635. doi:10.1172/JCI40145
Liao, C., Hu, B., Arno, M. J., & Panaretou, B. (2007). Genomic screening in vivo reveals the role played by vacuolar H+ ATPase and cytosolic acidification in sensitivity to DNA-damaging agents such as cisplatin. Mol Pharmacol, 71(2), 416-425. doi:10.1124/mol.106.030494
Lo, C., Ferrier, J., Tenenbaum, H. C., & McCulloch, C. A. (1995). Regulation of cell volume and intracellular pH in hyposmotically swollen rat osteosarcoma cells. Biochem Cell Biol, 73(7-8), 535-544.
Loh, S. H., Chen, W. H., Chiang, C. H., Tsai, C. S., Lee, G. C., Jin, J. S., . . . Chen, J. J. (2002). Intracellular pH regulatory mechanism in human atrial myocardium: functional evidence for Na(+)/H(+) exchanger and Na(+)/HCO(3)(-) symporter. J Biomed Sci, 9(3), 198-205. doi:10.1159/000059420
Loh, S. H., Lee, C. Y., Tsai, Y. T., Shih, S. J., Chen, L. W., Cheng, T. H., . . . Tsai, C. S. (2014). Intracellular Acid-extruding regulators and the effect of lipopolysaccharide in cultured human renal artery smooth muscle cells. PLoS One, 9(2), e90273. doi:10.1371/journal.pone.0090273
Loh, S. H., Sun, B., & Vaughan-Jones, R. D. (1996). Effect of Hoe 694, a novel Na(+)-H+ exchange inhibitor, on intracellular pH regulation in the guinea-pig ventricular myocyte. Br J Pharmacol, 118(8), 1905-1912.
Marino, C. R., Jeanes, V., Boron, W. F., & Schmitt, B. M. (1999). Expression and distribution of the Na(+)-HCO(-)(3) cotransporter in human pancreas. Am J Physiol, 277(2), G487-494. doi:10.1152/ajpgi.1999.277.2.G487
Matsushita, K., & Dzau, V. J. (2017). Mesenchymal stem cells in obesity: insights for translational applications. Lab Invest, 97(10), 1158-1166. doi:10.1038/labinvest.2017.42
Matsuyama, S., Llopis, J., Deveraux, Q. L., Tsien, R. Y., & Reed, J. C. (2000). Changes in intramitochondrial and cytosolic pH: early events that modulate caspase activation during apoptosis. Nat Cell Biol, 2(6), 318-325. doi:10.1038/35014006
McCrindle, B. W. (2007). Cardiovascular consequences of paediatric obesity: Will there be a future epidemic of premature cardiovascular disease? Paediatr Child Health, 12(3), 175-177.
Millat, T., Janssen, H., Bahl, H., Fischer, R. J., & Wolkenhauer, O. (2013). Integrative modelling of pH-dependent enzyme activity and transcriptomic regulation of the acetone-butanol-ethanol fermentation of Clostridium acetobutylicum in continuous culture. Microb Biotechnol, 6(5), 526-539. doi:10.1111/1751-7915.12033
Missner, A., Kugler, P., Saparov, S. M., Sommer, K., Mathai, J. C., Zeidel, M. L., & Pohl, P. (2008). Carbon dioxide transport through membranes. J Biol Chem, 283(37), 25340-25347. doi:10.1074/jbc.M800096200
Mitchell, P. (1961). Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature, 191, 144-148.
Moolenaar, W. H. (1986). Effects of growth factors on intracellular pH regulation. Annu Rev Physiol, 48, 363-376. doi:10.1146/annurev.ph.48.030186.002051
Muller, F., Huber, K., Pfannkuche, H., Aschenbach, J. R., Breves, G., & Gabel, G. (2002). Transport of ketone bodies and lactate in the sheep ruminal epithelium by monocarboxylate transporter 1. Am J Physiol Gastrointest Liver Physiol, 283(5), G1139-1146. doi:10.1152/ajpgi.00268.2001
Narayanaswami, V., & Dwoskin, L. P. (2017). Obesity: Current and potential pharmacotherapeutics and targets. Pharmacol Ther, 170, 116-147. doi:10.1016/j.pharmthera.2016.10.015
Narumi, K., Kobayashi, M., Otake, S., Furugen, A., Takahashi, N., Ogura, J., . . . Iseki, K. (2012). Regulation of human monocarboxylate transporter 4 in skeletal muscle cells: the role of protein kinase C (PKC). Int J Pharm, 428(1-2), 25-32. doi:10.1016/j.ijpharm.2012.02.021
Nasti, A., Sakai, Y., Seki, A., Buffa, G. B., Komura, T., Mochida, H., . . . Kaneko, S. (2017). The CD45(+) fraction in murine adipose tissue derived stromal cells harbors immune-inhibitory inflammatory cells. Eur J Immunol, 47(12), 2163-2174. doi:10.1002/eji.201646835
Park, K., Evans, R. L., Watson, G. E., Nehrke, K., Richardson, L., Bell, S. M., . . . Melvin, J. E. (2001). Defective fluid secretion and NaCl absorption in the parotid glands of Na+/H+ exchanger-deficient mice. J Biol Chem, 276(29), 27042-27050. doi:10.1074/jbc.M102901200
Parker, M. D., & Boron, W. F. (2013). The divergence, actions, roles, and relatives of sodium-coupled bicarbonate transporters. Physiol Rev, 93(2), 803-959. doi:10.1152/physrev.00023.2012
Parker, M. D., Musa-Aziz, R., Rojas, J. D., Choi, I., Daly, C. M., & Boron, W. F. (2008). Characterization of human SLC4A10 as an electroneutral Na/HCO3 cotransporter (NBCn2) with Cl- self-exchange activity. J Biol Chem, 283(19), 12777-12788. doi:10.1074/jbc.M707829200
Peirce, V., Carobbio, S., & Vidal-Puig, A. (2014). The different shades of fat. Nature, 510(7503), 76-83. doi:10.1038/nature13477
Petersen, C., Nielsen, M. D., Andersen, E. S., Basse, A. L., Isidor, M. S., Markussen, L. K., . . . Pedersen, S. F. (2017). MCT1 and MCT4 Expression and Lactate Flux Activity Increase During White and Brown Adipogenesis and Impact Adipocyte Metabolism. Sci Rep, 7(1), 13101. doi:10.1038/s41598-017-13298-z
Poher, A. L., Altirriba, J., Veyrat-Durebex, C., & Rohner-Jeanrenaud, F. (2015). Brown adipose tissue activity as a target for the treatment of obesity/insulin resistance. Front Physiol, 6, 4. doi:10.3389/fphys.2015.00004
Pouyssegur, J., Franchi, A., L'Allemain, G., & Paris, S. (1985). Cytoplasmic pH, a key determinant of growth factor-induced DNA synthesis in quiescent fibroblasts. FEBS Lett, 190(1), 115-119.
Praetorius, J., & Nielsen, S. (2006). Distribution of sodium transporters and aquaporin-1 in the human choroid plexus. Am J Physiol Cell Physiol, 291(1), C59-67. doi:10.1152/ajpcell.00433.2005
Putney, L. K., & Barber, D. L. (2003). Na-H exchange-dependent increase in intracellular pH times G2/M entry and transition. J Biol Chem, 278(45), 44645-44649. doi:10.1074/jbc.M308099200
Rademakers, S. E., Lok, J., van der Kogel, A. J., Bussink, J., & Kaanders, J. H. (2011). Metabolic markers in relation to hypoxia; staining patterns and colocalization of pimonidazole, HIF-1alpha, CAIX, LDH-5, GLUT-1, MCT1 and MCT4. BMC Cancer, 11, 167. doi:10.1186/1471-2407-11-167
Riihonen, R., Nielsen, S., Vaananen, H. K., Laitala-Leinonen, T., & Kwon, T. H. (2010). Degradation of hydroxyapatite in vivo and in vitro requires osteoclastic sodium-bicarbonate co-transporter NBCn1. Matrix Biol, 29(4), 287-294. doi:10.1016/j.matbio.2010.01.003
Romero, M. F., Chen, A. P., Parker, M. D., & Boron, W. F. (2013). The SLC4 family of bicarbonate (HCO(3)(-)) transporters. Mol Aspects Med, 34(2-3), 159-182. doi:10.1016/j.mam.2012.10.008
Roos, A., & Boron, W. F. (1980). The buffer value of weak acids and bases: origin of the concept, and first mathematical derivation and application to physico-chemical systems. The work of M. Koppel and K. Spiro (1914). Respir Physiol, 40(1), 1-32.
Roos, K. P., & Baskin, R. J. (1981). On-line recording of diffraction pattern changes from single muscle fibers subjected to quick stretch and release. Comput Programs Biomed, 13(1-2), 33-42.
Rosenberg, S. O., Fadil, T., & Schuster, V. L. (1993). A basolateral lactate/H+ co-transporter in Madin-Darby Canine Kidney (MDCK) cells. Biochem J, 289 ( Pt 1), 263-268.
Ruffin, V. A., Salameh, A. I., Boron, W. F., & Parker, M. D. (2014). Intracellular pH regulation by acid-base transporters in mammalian neurons. Front Physiol, 5, 43. doi:10.3389/fphys.2014.00043
Ruiz, O. S., Arruda, J. A., & Talor, Z. (1989). Na-HCO3 cotransport and Na-H antiporter in chronic respiratory acidosis and alkalosis. Am J Physiol, 256(3 Pt 2), F414-420. doi:10.1152/ajprenal.1989.256.3.F414
Ruminot, I., Gutierrez, R., Pena-Munzenmayer, G., Anazco, C., Sotelo-Hitschfeld, T., Lerchundi, R., . . . Barros, L. F. (2011). NBCe1 mediates the acute stimulation of astrocytic glycolysis by extracellular K+. J Neurosci, 31(40), 14264-14271. doi:10.1523/JNEUROSCI.2310-11.2011
Sachinidis, A., Seul, C., Ko, Y., Dusing, R., & Vetter, H. (1996). Effect of the Na+/H+ antiport inhibitor Hoe 694 on the angiotensin II-induced vascular smooth muscle cell growth. Br J Pharmacol, 119(5), 787-796.
Sardet, C., Franchi, A., & Pouyssegur, J. (1989). Molecular cloning, primary structure, and expression of the human growth factor-activatable Na+/H+ antiporter. Cell, 56(2), 271-280.
Schmitt, B. M., Biemesderfer, D., Romero, M. F., Boulpaep, E. L., & Boron, W. F. (1999). Immunolocalization of the electrogenic Na+-HCO-3 cotransporter in mammalian and amphibian kidney. Am J Physiol, 276(1), F27-38. doi:10.1152/ajprenal.1999.276.1.F27
Schonichen, A., Webb, B. A., Jacobson, M. P., & Barber, D. L. (2013). Considering protonation as a posttranslational modification regulating protein structure and function. Annu Rev Biophys, 42, 289-314. doi:10.1146/annurev-biophys-050511-102349
Schulz, T. J., & Tseng, Y. H. (2009). Emerging role of bone morphogenetic proteins in adipogenesis and energy metabolism. Cytokine Growth Factor Rev, 20(5-6), 523-531. doi:10.1016/j.cytogfr.2009.10.019
Seale, P., & Lazar, M. A. (2009). Brown fat in humans: turning up the heat on obesity. Diabetes, 58(7), 1482-1484. doi:10.2337/db09-0622
Sherer, D. M., Kopelman, J. N., Rawlings, J. S., Degnan, J. E., & Schaller, R. T. (1994). Congenital cystic adenomatoid malformation of the lung with prolonged marked lung compression and neonatal survival. J Clin Ultrasound, 22(8), 515-518.
Stephens, J. M. (2012). The fat controller: adipocyte development. PLoS Biol, 10(11), e1001436. doi:10.1371/journal.pbio.1001436
Sun, B., Leem, C. H., & Vaughan-Jones, R. D. (1996). Novel chloride-dependent acid loader in the guinea-pig ventricular myocyte: part of a dual acid-loading mechanism. J Physiol, 495 ( Pt 1), 65-82.
T, L. R., Sanchez-Abarca, L. I., Muntion, S., Preciado, S., Puig, N., Lopez-Ruano, G., . . . del Canizo, C. (2016). MSC surface markers (CD44, CD73, and CD90) can identify human MSC-derived extracellular vesicles by conventional flow cytometry. Cell Commun Signal, 14, 2. doi:10.1186/s12964-015-0124-8
Tada, S., Era, T., Furusawa, C., Sakurai, H., Nishikawa, S., Kinoshita, M., . . . Nishikawa, S. (2005). Characterization of mesendoderm: a diverging point of the definitive endoderm and mesoderm in embryonic stem cell differentiation culture. Development, 132(19), 4363-4374. doi:10.1242/dev.02005
Takada, I., Kouzmenko, A. P., & Kato, S. (2009). Wnt and PPARgamma signaling in osteoblastogenesis and adipogenesis. Nat Rev Rheumatol, 5(8), 442-447. doi:10.1038/nrrheum.2009.137
Teo, A., Mantalaris, A., & Lim, M. (2014). Influence of culture pH on proliferation and cardiac differentiation of murine embryonic stem cells. Biochemical Engineering Journal, 90, 8-15. doi:10.1016/j.bej.2014.05.005
Theparambil, S. M., Naoshin, Z., Thyssen, A., & Deitmer, J. W. (2015). Reversed electrogenic sodium bicarbonate cotransporter 1 is the major acid loader during recovery from cytosolic alkalosis in mouse cortical astrocytes. J Physiol, 593(16), 3533-3547. doi:10.1113/JP270086
Tontonoz, P., Hu, E., & Spiegelman, B. M. (1994). Stimulation of adipogenesis in fibroblasts by PPAR gamma 2, a lipid-activated transcription factor. Cell, 79(7), 1147-1156.
Tsai, Y. T., Liu, J. Y., Lee, C. Y., Tsai, C. S., Chen, M. H., Ou, C. C., . . . Loh, S. H. (2011). Functional characterization of transmembrane intracellular pH regulators and mechanism of alcohol-induced intracellular acidosis in human umbilical cord blood stem cell-like cells. J Cardiovasc Pharmacol, 58(6), 589-601. doi:10.1097/FJC.0b013e3182300228
Tseng, H. Y., Chen, Y. A., Jen, J., Shen, P. C., Chen, L. M., Lin, T. D., . . . Hsu, H. L. (2017). Oncogenic MCT-1 activation promotes YY1-EGFR-MnSOD signaling and tumor progression. Oncogenesis, 6(4), e313. doi:10.1038/oncsis.2017.13
Ulmschneider, B., Grillo-Hill, B. K., Benitez, M., Azimova, D. R., Barber, D. L., & Nystul, T. G. (2016). Increased intracellular pH is necessary for adult epithelial and embryonic stem cell differentiation. J Cell Biol, 215(3), 345-355. doi:10.1083/jcb.201606042
Wang, D., King, S. M., Quill, T. A., Doolittle, L. K., & Garbers, D. L. (2003). A new sperm-specific Na+/H+ exchanger required for sperm motility and fertility. Nat Cell Biol, 5(12), 1117-1122. doi:10.1038/ncb1072
Wang, H., Singh, D., & Fliegel, L. (1997). The Na+/H+ antiporter potentiates growth and retinoic acid-induced differentiation of P19 embryonal carcinoma cells. J Biol Chem, 272(42), 26545-26549.
Wei, X., Yang, X., Han, Z. P., Qu, F. F., Shao, L., & Shi, Y. F. (2013). Mesenchymal stem cells: a new trend for cell therapy. Acta Pharmacol Sin, 34(6), 747-754. doi:10.1038/aps.2013.50
Westerblad, H., & Allen, D. G. (1993). The influence of intracellular pH on contraction, relaxation and [Ca2+]i in intact single fibres from mouse muscle. J Physiol, 466, 611-628.
Williams, A. C., Collard, T. J., & Paraskeva, C. (1999). An acidic environment leads to p53 dependent induction of apoptosis in human adenoma and carcinoma cell lines: implications for clonal selection during colorectal carcinogenesis. Oncogene, 18(21), 3199-3204. doi:10.1038/sj.onc.1202660
Wu, K. L., Khan, S., Lakhe-Reddy, S., Jarad, G., Mukherjee, A., Obejero-Paz, C. A., . . . Schelling, J. R. (2004). The NHE1 Na+/H+ exchanger recruits ezrin/radixin/moesin proteins to regulate Akt-dependent cell survival. J Biol Chem, 279(25), 26280-26286. doi:10.1074/jbc.M400814200
Yoon, D., Imran, K. M., & Kim, Y. S. (2018). Distinctive effects of licarin A on lipolysis mediated by PKA and on formation of brown adipocytes from C3H10T1/2 mesenchymal stem cells. Toxicol Appl Pharmacol, 340, 9-20. doi:10.1016/j.taap.2017.12.015
Zaniboni, M., Swietach, P., Rossini, A., Yamamoto, T., Spitzer, K. W., & Vaughan-Jones, R. D. (2003). Intracellular proton mobility and buffering power in cardiac ventricular myocytes from rat, rabbit, and guinea pig. Am J Physiol Heart Circ Physiol, 285(3), H1236-1246. doi:10.1152/ajpheart.00277.2003
Zhang, F., Vannucci, S. J., Philp, N. J., & Simpson, I. A. (2005). Monocarboxylate transporter expression in the spontaneous hypertensive rat: effect of stroke. J Neurosci Res, 79(1-2), 139-145. doi:10.1002/jnr.20312
Zhang, Y., Khan, D., Delling, J., & Tobiasch, E. (2012). Mechanisms underlying the osteo- and adipo-differentiation of human mesenchymal stem cells. ScientificWorldJournal, 2012, 793823. doi:10.1100/2012/793823
Zheng, M., Ishiguro-Oonuma, T., & Iwanaga, T. (2014). Expression of a monocarboxylate transporter in reticular cells of the mouse lymph node and its involvement in the uptake of exogenous particles. Biomed Res, 35(1), 85-90.
Zilberstein, D., Agmon, V., Schuldiner, S., & Padan, E. (1984). Escherichia coli intracellular pH, membrane potential, and cell growth. J Bacteriol, 158(1), 246-252.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
1. 大花紅景天透過下降酸鹼調節蛋白NHE及MCTs活性 抑制人類肺腺癌細胞增殖
2. 穿心蓮內酯對於人類子宮頸癌的細胞內 pH值調節、細胞遷移及凋亡之影響
3. 結合脂肪幹細胞誘導之神經球合併去細胞生物組織強化周邊神經修復
4. 探討抑癌基因Zac1潛在之促進腫瘤轉移機制
5. 乙型阻斷劑Carvedilol用於抑制NLRP3發炎體的新用途
6. 研究Cilostazol對於高糖誘發血管平滑肌細胞病變所扮演治療之角色
7. 敗血症引起大鼠血小板活性低下之調控機制
8. 合併使用α-lipoic acid及genistein改善卵巢切除鼠誘導肥胖之療效及機轉探討-細胞自噬調控脂肪棕色化扮演之角色
9. 熱休克蛋白90抑制劑 NVP-AUY922對內毒素血症引起的多重器官衰竭之療效評估
10. 細胞內酸鹼恆定機制調控人類幹細胞的多能性
11. 乙型利鈉胜肽透過活化基質金屬蛋白酶-2之表現情形增強小鼠心房組織及人類心房肌纖維母細胞之纖維化作用
12. 以超音波作用於裝載順鉑的微氣泡可顯著降低頭頸癌動物模式的腎臟毒性
13. 探討基因多形性、環境壓力及臨床特徵對物質使用疾患之影響
14. 連續缺氧和間歇性缺氧再灌氧皆會影響缺氧誘導因子、 幹細胞標記基因、第二型肺泡細胞標記蛋白SPC、以 及NOTCH和WNT訊號傳遞基因在人類小呼吸道上 皮細胞(SAEC)的表現量
15. 白細胞介素二十六號在缺氧條件下調節人類成骨細胞的分解代謝和 炎症與一號甲型缺氧誘導因子(HIF-1α)及 STAT1 路徑的關聯