跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.169) 您好!臺灣時間:2025/10/30 10:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蘇宜瑒
研究生(外文):Iyan Subiyanto
論文名稱:對在電洞傳輸層中加入金奈米粒子以增強有機發光二極體發光的調查研究
論文名稱(外文):Investigation of Luminescence Enhancement of Polymer Light Emitting Diodes by Introducing Gold Nanoparticles into Hole Transport Layer
指導教授:劉國辰畑中耕治
指導教授(外文):K. C. LiuHatanaka Koji
學位類別:碩士
校院名稱:長庚大學
系所名稱:電子工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:77
中文關鍵詞:有機發光二極管金納米粒子局部表面等離子體共振亮度增強空穴傳輸層
外文關鍵詞:organic light-emitting diodegold nanoparticlesluminance enhancementhole transport layer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:193
  • 評分評分:
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
Localized surface plasmon resonance generated by gold nanoparticles have been doped into the hole transport layer to enhance the luminance of the organic light emitting diode device. However, the mechanism of luminance enhancement and device properties are still under debate. Some research reported that the luminance enhancement comes from electrical characteristics improvement, but another report that it comes from localized surface plasmon resonance effect induced by gold nanoparticles. In this work, we synthesize 12 nm of gold nanoparticles incorporated into hole transport layer in the organic light-emitting device by mixing solutions directly with volume percent concentration variations. The luminance and efficiency reach 35% and 28% optimum enhancement, respectively, at 15 volume percent doping concentration. Interestingly, the electrical characteristics are also showing improvement that influences the charge balance properties of the device. By combining both of mechanism, the enhancement in both luminance and efficiency explained clearly. This evidence brings the improvement of device performance with the easiest method to incorporate gold nanoparticles.
Recommendation letter from the thesis advisor
Oral defense committee certification
Preface and Acknowledgements iii
English Abstract v
Table of Contents vi
List of Figures viii
List of Tables xi
Chapter 1 Introduction 1
1.1. Background 1
1.2. History 3
1.3. State-of-the-art 4
1.4. Motivation 9
1.5. Thesis framework 10
Chapter 2 Theoretical and Literature Review 11
2.1. Fundamental principle of OLED 11
2.1.1. OLED device structure 11
2.1.2. Carrier injection 13
2.1.3. Carrier transport 15
2.1.4. Recombination process 17
2.2. Localized Surface Plasmon Resonance (LSPR) 17
2.3. Metal nanoparticles enhanced fluorescence 23
2.3.1. Fluorescence process 23
2.3.2. Electronic transition process 23
2.3.3. Energy transfers mechanism 26
Chapter 3 Experimental and Measurement Details 29
3.1. Materials 29
3.1.1. Substrate and anode layer 29
3.1.2. Hole transport layer (HTL) 29
3.1.3. Emitting layer (EML) 30
3.1.4. Electron injection layer (EIL) 30
3.1.5. Cathode layer 31
3.1.6. Passivation 31
3.2. Device fabrication 31
3.2.1. Anode patterning 32
3.2.2. Device fabrication processes 33
3.3. Device Measurement 38
Chapter 4 Result and Discussion 40
4.1. Gold Nanoparticles Characteristics 40
4.2. OLED Device Characteristics 43
4.2.1. Electrical characteristics 43
4.2.2. Luminance characteristics 45
4.2.3. Devices efficiency 47
4.3. The Proposed Mechanism 48
4.3.1. Current injection 48
4.3.2. Localized surface plasmon resonance 53
Chapter V Conclusion 56
Bibliography 57


List of Figures
Figure 1.1. The latest breakthrough from OLED technology:
OLED77W7P©
flexible wallpaper TV from LG Display and
Lenovo Cplus© wearable smartphone have been released to
the market ................................................................................. 3
Figure 2.1. A simply OLED device structure............................................ 12
Figure 2.2. Two kinds of charges injection processes (a) thermionic
emission, and (b) tunneling process ............................................ 14
Figure 2.3. Fowler-Nordheim tunneling analysis for different energy
barrier height............................................................................... 14
Figure 2.4. Log J - log V curve of SCLC transport properties on the
organic layer. ............................................................................... 16
Figure 2.5. Collective oscillation of electrons in metal nanoparticles
influenced by applied external electric field ............................... 18
Figure 2.6. Optical properties of metal nanoparticles as response to
external electric field (a) scattering cross-section and (b)
absorption cross-section spectra ................................................. 20
Figure 2.7. Finite-difference time-domain (FDTD) simulation of 100 nm
Ag-sphere with incident electric field along x-axis..................... 21
Figure 2.8. Various local–electric–fields produced around metal
nanoparticles due to plasmonic effect (a) near–field (b) far–field,
(the incident applied electric field is along the z-axis). .............. 22
Figure 2.9. An example of Jablonski diagram of a molecule with their
electronic states and vibrational states, also the transition related
to the absorption and emission.................................................... 24
Figure 2.10. The enhancement of electron transition rate on the
fluorescence under the metal nanoparticles influences............... 26
Figure 3.1 Chemical structure of PEDOT:PSS. ....................................... 30
Figure 3.2 Chemical structure of PFO:F8BT........................................... 31
Figure 3.3 (a) the metal mask used for patterning the ITO anode,.......... 33
Figure 3.4 sample devices inside the chamber while O2 plasma treatment.
..................................................................................................... 34
Figure 3.5 (a) the PEDOT:PSS and Au nanoparticles solutions (b) the
mixing process in the ultrasonic bath.......................................... 34
Figure 3.6 the process while spin-coating (a) before and (b) after put the
filter to the injector (c) when dropping the solution onto the
surface of the sample. .................................................................. 35
Figure 3.7 the thermal evaporation machine to do cathode film
deposition..................................................................................... 36
Figure 3.8 the full device structure of OLED. .......................................... 38
Figure 3.9 the electrical and optical measurement machine ................... 39
Figure 3.10 field emission transmission electron microscope ................. 39
Figure 4.1. (a) Transmission electron microscopy (TEM) picture of selfsynthesized
gold nanoparticles by modified Frens method (the
scale bar is 20 nm), the inset of the picture is the size distribution
of gold nanoparticles calculated from TEM picture.................... 41
Figure 4.2. The absorption spectrum of 12 nm gold nanoparticles......... 42
Figure 4.3. J – V curves, the linear current density characteristics depend
on the applied voltage.................................................................. 43
Figure 4.4. Semi- log scales of J – V curves, the log scale of current
density depends on the linear scale of applied voltage. .............. 44
Figure 4.5. The luminance characteristic of gold nanoparticles doped
devices.......................................................................................... 46
Figure 4.6. The efficiency of light emitted related to the current injected
into the devices ............................................................................ 47
Figure 4.7. The energy level diagram of undoped OLED device used as
reference....................................................................................... 49
Figure 4.8. Potential barrier height analysis by fitting with Fowler -
Nordheim formula in “hole-only” device.................................... 51
Figure 4.9. The spectra match between absorption of 12 nm Au
nanoparticles with the electroluminescence of PFO in the OLEDs
device. .......................................................................................... 53
Figure 4.10. The mechanism of luminance enhancement induced by local
near-field generated from LSPR effect. ....................................... 55


List of Tables
Table 1.1. Several works have done by the methods which incorporated of
gold nanoparticles dispersed on the top of ITO anode. ............. 5
Table 1.2. Several works have done by the methods which incorporated
gold nanoparticles blend with the hole transport compound in hole
transport layer inside the OLED device. ........................................ 9
[1] T. A.Edison, “Electric lamp,” US 223898 A, 27-Jan-1880.
[2] E.Germer, F.Meyer, andH.-J.Spanner, “Metal vapor lamp,” US 2182732 A, 1939.
[3] J. R.Biard andG. E.Pittman, “Semiconductor radiant diode,” US 3293513 A, 20-Dec-1966.
[4] P.Flesch, Light and Light Sources. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006.
[5] Y.-S.Tyan, “Organic light-emitting-diode lighting overview,” J. Photonics Energy, vol. 1, no. 1, p. 11009, Jan.2011.
[6] N.Ide, H.Tsuji, N.Ito, H.Sasaki, T.Nishimori, Y.Kuzuoka, K.Fujihara, T.Miyai, andT.Komoda, “High-performance OLEDs and their application to lighting,” 2008, p. 705119.
[7] M.Schwoerer andH. C.Wolf, Organic Molecular Solids. Weinheim: John Wiley & Sons, Inc., 2008.
[8] W. F.Passchier andB. F. M.Bosnjakovic, “Measurement of ultra-violet radiation from fluorescent lamps used for general lighting and other purposes in the UK,” in Human exposure to ultraviolet radiation, 1987, p. 580.
[9] A.Bernanose, “Electroluminescence of organic compounds,” Br. J. Appl. Phys., vol. 6, no. S4, pp. S54–S55, Jan.1955.
[10] M.Pope, H. P.Kallmann, andP.Magnante, “Electroluminescence in Organic Crystals,” J. Chem. Phys., vol. 38, no. 8, p. 2042, Jul.1963.
[11] C. W.Tang andS. A.VanSlyke, “Organic electroluminescent diodes,” Appl. Phys. Lett., vol. 51, no. 12, p. 913, Sep.1987.
[12] J. H.Burroughes, D. D. C.Bradley, A. R.Brown, R. N.Marks, K.Mackay, R. H.Friend, P. L.Burns, andA. B.Holmes, “Light-emitting diodes based on conjugated polymers,” Nature, vol. 347, no. 6293, pp. 539–541, Oct.1990.
[13] S. R.Forrest, D. D. C.Bradley, andM. E.Thompson, “Measuring the Efficiency of Organic Light-Emitting Devices,” Adv. Mater., vol. 15, no. 13, pp. 1043–1048, Jul.2003.
[14] P. J.Jesuraj, K.Jeganathan, M.Navaneethan, andY.Hayakawa, “Far-field and hole injection enhancement by noble metal nanoparticles in organic light emitting devices,” Synth. Met., vol. 211, pp. 155–160, 2016.
[15] P. J.Jesuraj andK.Jeganathan, “Improved hole injection in organic light emitting devices by gold nanoparticles,” RSC Adv., vol. 5, no. 1, pp. 684–689, Dec.2015.
[16] X.Wu, L.Liu, Z.Deng, L.Nian, W.Zhang, D.Hu, Z.Xie, Y.Mo, andY.Ma, “Efficiency Improvement in Polymer Light-Emitting Diodes by ‘Far-Field’ Effect of Gold Nanoparticles,” Part. Part. Syst. Charact., vol. 32, no. 6, pp. 686–692, Jun.2015.
[17] W.Ji, H.Zhao, H.Yang, andF.Zhu, “Effect of coupling between excitons and gold nanoparticle surface plasmons on emission behavior of phosphorescent organic light-emitting diodes,” Org. Electron., vol. 22, pp. 154–159, 2015.
[18] X.Wu, L.Liu, W. C. H.Choy, T.Yu, P.Cai, Y.Gu, Z.Xie, Y.Zhang, L.Du, Y.Mo, S.Xu, andY.Ma, “Substantial performance improvement in inverted polymer light-emitting diodes via surface plasmon resonance induced electrode quenching control.,” ACS Appl. Mater. Interfaces, vol. 6, no. 14, pp. 11001–6, Jul.2014.
[19] X.Wu, L.Liu, T.Yu, L.Yu, Z.Xie, Y.Mo, S.Xu, andY.Ma, “Gold nanoparticles modified ITO anode for enhanced PLEDs brightness and efficiency,” J. Mater. Chem. C, vol. 1, no. 42, p. 7020, 2013.
[20] W.Ji, L.Zhang, andW.Xie, “Improving efficiency roll-off in phosphorescent OLEDs by modifying the exciton lifetime,” Opt. Lett., vol. 37, no. 11, p. 2019, Jun.2012.
[21] A. K.Yadav, “Localized Surface Plasmon Enhanced Organic Light-Emitting Diodes,” Plasmonics, vol. 9, no. 5, pp. 1071–1075, 2014.
[22] M.Jung, D.Mo Yoon, M.Kim, C.Kim, T.Lee, J.Hun Kim, S.Lee, S.-H.Lim, andD.Woo, “Enhancement of hole injection and electroluminescence by ordered Ag nanodot array on indium tin oxide anode in organic light emitting diode,” Appl. Phys. Lett., vol. 105, no. 1, p. 13306, Jul.2014.
[23] Y.Xiao, J. P.Yang, P. P.Cheng, J. J.Zhu, Z. Q.Xu, Y. H.Deng, S. T.Lee, Y. Q.Li, andJ. X.Tang, “Surface plasmon-enhanced electroluminescence in organic light-emitting diodes incorporating Au nanoparticles,” Appl. Phys. Lett., vol. 100, no. 1, p. 13308, Jan.2012.
[24] G.-P.Kim, B.-M.Park, andH.-J.Chang, “Effect of Au nano-particles in PEDOT:PSS hole injection layer on the properties of green polymer light-emitting diodes,” Electron. Mater. Lett., vol. 10, no. 2, pp. 491–495, Mar.2014.
[25] D.-D.Zhang, R.Wang, Y.-Y.Ma, H.-X.Wei, Q.-D.Ou, Q.-K.Wang, L.Zhou, S.-T.Lee, Y.-Q.Li, andJ.-X.Tang, “Realizing both improved luminance and stability in organic light-emitting devices based on a solution-processed inter-layer composed of MoOX and Au nanoparticles mixture,” Org. Electron., vol. 15, no. 4, pp. 961–967, Apr.2014.
[26] B. M.Park, G. P.Kim, S. C.Mun, andH. J.Chang, “Electrical and Optical Properties of Green Polymer Light Emitting Diodes with Various Structures of Au Nanoparticles,” J. Nanosci. Nanotechnol., vol. 15, no. 10, pp. 7693–7698, Oct.2015.
[27] C.-Y.Gao, Y.-C.Chen, K.-L.Chen, andC.-J.Huang, “Surface plasmon enhanced organic light emitting diodes by gold nanoparticles with different sizes,” Appl. Surf. Sci., vol. 356, pp. 791–794, 2015.
[28] S. H.Kim, T.-S.Bae, W.Heo, T.Joo, K.-D.Song, H.-G.Park, andS. yoonRyu, “Effects of Gold-Nanoparticle Surface and Vertical Coverage by Conducting Polymer between Indium Tin Oxide and the Hole Transport Layer on Organic Light-Emitting Diodes.,” ACS Appl. Mater. Interfaces, vol. 7, no. 27, pp. 15031–41, Jul.2015.
[29] J. C.Scott, “Metal–organic interface and charge injection in organic electronic devices,” J. Vac. Sci. Technol. A Vacuum, Surfaces, Film., vol. 21, no. 3, p. 521, 2003.
[30] R. H.Fowler andL.Nordheim, “Electron Emission in Intense Electric Fields,” in Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 1928, pp. 173–181.
[31] C.Adachi andT.Tsutsui, “Molecular LED: Design Concept of Molecular Materials for High-Performance OLED,” in Organic Light-Emitting Devices, J.Shinar, Ed.New York, NY: Springer New York, 2004, p. 309.
[32] V. I.Arkhipov, E.V.Emelianova, Y. H.Tak, andH.Bässler, “Charge injection into light-emitting diodes: Theory and experiment,” J. Appl. Phys., vol. 84, no. 2, p. 848, 1998.
[33] I. D.Parker, “Carrier tunneling and device characteristics in polymer light-emitting diodes,” in SPIE 2144, Advanced Photonics Materials for Information Technology, 1994, pp. 51–64.
[34] K. K.Ng, Complete Guide to Semiconductor Devices, Second Edi. New York, NY: John Wiley & Sons, Inc., 2010.
[35] N. F.Mott andR. W.Gurney, Electronic Processes in Ionic Crystals. London: Oxford University Press, 1940.
[36] S.Takeshita, “Modeling Of Space-Charge-Limited Current Injection Incorporating An Advanced Model Of The Poole-Frenkel Effect,” Clemson University, 2008.
[37] F.-C.Chiu andF.-C.Chiu, “A Review on Conduction Mechanisms in Dielectric Films,” Adv. Mater. Sci. Eng., vol. 2014, pp. 1–18, 2014.
[38] P.Langevin, “Sur la loi de recombination des ions,” Ann Chim Phys, vol. 28, pp. 433–530, 1903.
[39] Z.Zalevsky andI.Abdulhalim, Integrated Nanophotonic Devices, Second. Oxford, UK: William Andrew publications, 2010.
[40] C. F.Bohren andD. R.Huffman, Absorption and Scattering of Light by Small Particles. John Wiley & Sons, Inc., 2007.
[41] J.Aizpurua andR.Hillenbrand, “Localized Surface Plasmons: Basics and Applications in Field-Enhanced Spectroscopy,” in Plasmonics: From Basics to Advanced Topics, S.Enoch andN.Bonod, Eds.Marseille, France: Springer Berlin Heidelberg, 2012.
[42] D. J.Griffiths, Introduction to Electrodynamics. New Jersey: Prentice Hall, 1999.
[43] K. L.Kelly, E.Coronado, L. L.Zhao, andG. C.Schatz, “The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment,” J. Phys. Chem. B, vol. 107, no. 3, pp. 668–677, Jan.2003.
[44] X.Lu, M.Rycenga, S. E.Skrabalak, B.Wiley, andY.Xia, “Chemical Synthesis of Novel Plasmonic Nanoparticles,” Annu. Rev. Phys. Chem., vol. 60, no. 1, pp. 167–192, May2009.
[45] L.Novotny andB.Hecht, Principles of Nano-Optics. Cambridge, UK.: Cambridge University Press, 2006.
[46] J. R.Lakowicz, Principles of Fluorescence Spectroscopy, 3rd editio. Springer New York, 2006.
[47] M.Seidel andR.Niessner, “Chemiluminescence microarrays in analytical chemistry: a critical review,” Anal. Bioanal. Chem., vol. 406, no. 23, pp. 5589–5612, Sep.2014.
[48] A.Kraft, A. C.Grimsdale, andA. B.Holmes, “Electroluminescent Conjugated Polymers—Seeing Polymers in a New Light,” Angew. Chemie Int. Ed., vol. 37, no. 4, pp. 402–428, Mar.1998.
[49] B. P.Chandra andA. S.Rathore, “Classification of Mechanoluminescence,” Cryst. Res. Technol., vol. 30, no. 7, pp. 885–896, 1995.
[50] M.Kumar, G.Chourasiya, R. K.Kher, B. C.Bhatt, andC. M.Sunta, “Theoretical investigations of localized, semi-localized and unified models of thermally stimulated luminescence: a review,” Indian J. Phys., vol. 85, no. 4, pp. 527–550, Apr.2011.
[51] H.-J.Park, D.Vak, Y.-Y.Noh, B.Lim, andD.-Y.Kim, “Surface plasmon enhanced photoluminescence of conjugated polymers,” Appl. Phys. Lett., vol. 90, no. 16, p. 161107, 2007.
[52] M.Slootsky, “Manipulating Light in Organic Thin-film Devices,” University of Michigan, 2014.
[53] J.Gersten andA.Nitzan, “Spectroscopic properties of molecules interacting with small dielectric particles,” J. Chem. Phys., vol. 75, no. 3, p. 1139, 1981.
[54] S. R.Bobbara, “Energy Transfer Between Molecules in the Vicinity of Metal Nanoparticle,” Queen’s University, 2011.
[55] Yeechi Chen, A.Keiko Munechika, andD. S.Ginger*, “Dependence of Fluorescence Intensity on the Spectral Overlap between Fluorophores and Plasmon Resonant Single Silver Nanoparticles,” Nano Lett., vol. 7, no. 3, pp. 690–696, 2007.
[56] K. F.Wong, B.Bagchi, andP. J.Rossky, “Distance and Orientation Dependence of Excitation Transfer Rates in Conjugated Systems: Beyond the Förster Theory,” J. Phys. Chem. A, vol. 108, no. 27, pp. 5752–5763, Jul.2004.
[57] Y.Lee, S. H.Lee, S.Park, C.Park, K.-S.Lee, J.Kim, andJ.Joo, “Luminescence enhancement by surface plasmon assisted Förster resonance energy transfer in quantum dots and light emitting polymer hybrids with Au nanoparticles,” Synth. Met., vol. 187, pp. 130–135, 2014.
[58] J.Peng, X.Xu, Y.Tian, J.Wang, F.Tang, andL.Li, “Improved efficiency in polymer light-emitting diodes using metal-enhanced fluorescence,” Appl. Phys. Lett., vol. 105, no. 17, p. 173301, Oct.2014.
[59] Q.Wei, M.Mukaida, Y.Naitoh, andT.Ishida, “Morphological change and mobility enhancement in PEDOT:PSS by adding co-solvents.,” Adv. Mater., vol. 25, no. 20, pp. 2831–6, May2013.
[60] J.Li, J.Liu, C.Gao, J.Zhang, andH.Sun, “Influence of MWCNTs Doping on the Structure and Properties of PEDOT:PSS Films,” Int. J. Photoenergy, vol. 2009, p. 650509, 2009.
[61] J.Chappell, D. G.Lidzey, P. C.Jukes, A. M.Higgins, R. L.Thompson, S.O’Connor, I.Grizzi, R.Fletcher, J.O’Brien, M.Geoghegan, andR. A. L.Jones, “Correlating structure with fluorescence emission in phase-separated conjugated-polymer blends.,” Nat. Mater., vol. 2, no. 9, pp. 616–21, Sep.2003.
[62] M. A.Hygum, “Characterisation of semiconducting polymers and fabrication of OLEDs,” Aalborg University, 2012.
[63] N. G.Bastús, J.Comenge, andV.Puntes, “Kinetically controlled seeded growth synthesis of citrate-stabilized gold nanoparticles of up to 200 nm: Size focusing versus ostwald ripening,” Langmuir, vol. 27, no. 17, pp. 11098–11105, 2011.
[64] B.Liu, “Luminance Enhancement in Green Polymer Light-Emitting Diodes by Incorporating Gold Nanoparticles,” Chang Gung Univeristy, 2015.
[65] H.Xia, Y.Xiahou, P.Zhang, W.Ding, andD.Wang, “Revitalizing the Frens Method To Synthesize Uniform, Quasi-Spherical Gold Nanoparticles with Deliberately Regulated Sizes from 2 to 330 nm,” Langmuir, vol. 32, no. 23, pp. 5870–5880, 2016.
[66] J.Piella, N. G.Bastús, andV.Puntes, “Size-Controlled Synthesis of Sub-10-nanometer Citrate-Stabilized Gold Nanoparticles and Related Optical Properties.,” Chem. Mater., vol. 28, no. 4, pp. 1066–1075, 2016.
[67] S. A.Choulis, M. K.Mathai, andV.-E.Choong, “Influence of metallic nanoparticles on the performance of organic electrophosphorescence devices,” Appl. Phys. Lett., vol. 88, no. 21, p. 213503, 2006.
[68] D. J.Milliron, I. G.Hill, C.Shen, A.Kahn, andJ.Schwartz, “Surface oxidation activates indium tin oxide for hole injection,” http://dx.doi.org/10.1063/1.371901, 1999.
[69] M.-R.Fathollahi andF.Akbari Boroumand, “Fabrication and simulation of polyfluorene-based organic light-emitting diodes,” in 20th Iranian Conference on Electrical Engineering (ICEE2012), 2012, pp. 77–81.
[70] H. B.Michaelson, “Relation Between an Atomic Electronegativity Scale and the Work Function,” IBM J. Res. Dev., vol. 22, no. 1, pp. 72–80, Jan.1978.
[71] I. D.Darker, “Carrier tunneling and device characteristics in polymer lightemitting diodes,” J. Appl. Phys., vol. 75, no. 3, p. 1656, 1994.
[72] M.Manheller, S.Karthäuser, R.Waser, K.Blech, andU.Simon, “Electrical Transport through Single Nanoparticles and Nanoparticle Arrays,” J. Phys. Chem. C, vol. 116, no. 39, p. 20657, 2012.
[73] M.Kiy, P.Losio, I.Biaggio, M.Koehler, A.Tapponnier, andP.Günter, “Observation of the Mott–Gurney law in tris (8-hydroxyquinoline) aluminum films,” Appl. Phys. Lett., vol. 80, no. 7, p. 1198, 2001.
[74] J.Archer, “LG Unveils Stunning New OLED TV Range - Including Jaw-Dropping ‘Wallpaper’ Design,” Forbes Magazine, 2017. [Online]. Available: http://www.forbes.com/sites/johnarcher/2017/01/04/lg-unveils-stunning-new-oled-tv-range-including-jaw-dropping-wallpaper-design/#1cb8ae6d2c05. [Accessed: 09-Jan-2017].
[75] B.Bennett, “We tried on Lenovo’s bendable phone that you can wear like a watch,” CNET online magazine, 2016. [Online]. Available: https://www.cnet.com/news/lenovo-shows-off-superflexible-phone-you-wear-like-a-watch/. [Accessed: 09-Jan-2017].
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top