[1] F. El-Gohary, A. Tawfik, Decolorization and COD reduction of disperse and reactive dyes wastewater using chemical-coagulation followed by sequential batch reactor (SBR) process, Desalination, 249 (2009) 1159-1164.
[2] C.S.D. Rodrigues, S.A.C. Carabineiro, F.J. Maldonado-Hódar, L.M. Madeira, Wet peroxide oxidation of dye-containing wastewaters using nanosized Au supported on Al2O3, Catalysis Today, 280 (2017) 165-175.
[3] M.A. Nejad, C. Mücksch, H.M. Urbassek, Insulin adsorption on crystalline SiO2: Comparison between polar and nonpolar surfaces using accelerated molecular-dynamics simulations, Chemical Physics Letters, 670 (2017) 77-83.
[4] S.H. Chen, A.S. Yien Ting, Biosorption and biodegradation potential of triphenylmethane dyes by newly discovered Penicillium simplicissimum isolated from indoor wastewater sample, International Biodeterioration and Biodegradation, 103 (2015) 1-7.
[5] A.S. Naje, S. Chelliapan, Z. Zakaria, S.A. Abbas, Electrocoagulation using a rotated anode: A novel reactor design for textile wastewater treatment, J Environ Manage, 176 (2016) 34-44.
[6] M. Radecka, M. Rekas, A. Trenczek-Zajac, K. Zakrzewska, Importance of the band gap energy and flat band potential for application of modified TiO2 photoanodes in water photolysis, Journal of Power Sources, 181 (2008) 46-55.
[7] C.C. Chen, C.S. Lu, H.J. Fan, W.H. Chung, J.L. Jan, H.D. Lin, W.Y. Lin, Photocatalyzed N-de-ethylation and degradation of Brilliant Green in TiO2 dispersions under UV irradiation, Desalination, 219 (2008) 89-100.
[8] O. Ola, M.M. Maroto-Valer, Review of material design and reactor engineering on TiO2 photocatalysis for CO2 reduction, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 24 (2015) 16-42.
[9] A. Pal, T.K. Jana, K. Chatterjee, Silica supported TiO2 nanostructures for highly efficient photocatalytic application under visible light irradiation, Materials Research Bulletin, 76 (2016) 353-357.
[10] A.C. Mera, D. Contreras, N. Escalona, H.D. Mansilla, BiOI microspheres for photocatalytic degradation of gallic acid, Journal of Photochemistry and Photobiology A: Chemistry, 318 (2016) 71-76.
[11] Y. Ju, J. Hong, X. Zhang, Z. Xu, D. Wei, Y. Sang, X. Fang, J. Fang, Z. Wang, Synthesis of surface sulfated BiWO with enhanced photocatalytic performance, Journal of Environmental Sciences, 24 (2012) 2180-2190.
[12] M. Yao, M. Liu, L. Gan, F. Zhao, X. Fan, D. Zhu, Z. Xu, Z. Hao, L. Chen, Monoclinic mesoporous BiVO4: Synthesis and visible-light-driven photocatalytic property, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 433 (2013) 132-138.
[13] H.F. Lai, C.C. Chen, Y.K. Chang, C.S. Lu, R.J. Wu, Efficient photocatalytic degradation of thiobencarb over BiVO4 driven by visible light: Parameter and reaction pathway investigations, Separation and Purification Technology, 122 (2014) 78-86.
[14] L. Hou, H. Hua, L. Gan, C. Yuan, Template-free solvothermal fabrication of hollow Bi2MoO6 microspheres with enhanced visible light photocatalytic activity, Materials Letters, 159 (2015) 35-38.
[15] C.T. Yang, W.W. Lee, H.P. Lin, Y.M. Dai, H.T. Chi, C.C. Chen, A novel heterojunction photocatalyst, Bi2SiO5/g-C3N4: synthesis, characterization, photocatalytic activity, and mechanism, Royal socity of chemistry, 6 (2016) 40664-40675.
[16] R. Pocklanova, A.K. Rathi, M.B. Gawande, K.K.R. Datta, V. Ranc, K. Cepe, M. Petr, R.S. Varma, L. Kvitek, R. Zboril, Gold nanoparticle-decorated graphene oxide: Synthesis and application in oxidation reactions under benign conditions, Journal of Molecular Catalysis A: Chemical, 424 (2016) 121-127.
[17] W. Shan, Y. Hu, Z. Bai, M. Zheng, C. Wei, In situ preparation of g-C3N4/bismuth-based oxide nanocomposites with enhanced photocatalytic activity, Applied Catalysis B: Environmental, 188 (2016) 1-12.
[18] J. Miao, G. Xu, J. Liu, J. Lv, Y. Wu, Synthesis and photocatalytic performance of g-C3N4 nanosheets via liquid phase stripping, Journal of Solid State Chemistry, 246 (2017) 186-193.
[19] Q. Han, J. Zhang, X. Wang, J. Zhu, Preparing Bi12SiO20 crystals at low temperature through nontopotactic solid-state transformation and improving its photocatalytic activity by etching, Journal of Materials Chemistry, 3 (2015) 7413-7421.
[20] S. Nakagawa, K. Sakakibara, H. Gotoh, Novel degradation mechanism for triarylmethane dyes: Acceleration of degradation speed by the attack of active oxygen to halogen groups, Dyes and Pigments, 124 (2016) 130-132.
[21] N.S. Allen, J.F. McKellar, B. Mohajerani, Lightfastness and spectroscopic properties of basic triphenylmethane dyes: Effect of the substrate, Dyes and Pigments, 1 (1980) 49-57.
[22] A. Mittal, V. Gajbe, J. Mittal, Removal and recovery of hazardous triphenylmethane dye, Methyl Violet through adsorption over granulated waste materials, Journal of Hazardous Materials, 150 (2008) 364-375.
[23] A. Mittal, J. Mittal, A. Malviya, D. Kaur, V.K. Gupta, Adsorption of hazardous dye crystal violet from wastewater by waste materials, Journal of Colloid and Interface Science, 343 (2010) 463-473.
[24] T. Higashihara, Y. Saito, K. Mizoguchi, M. Ueda, Recent progress in negative-working photosensitive and thermally stable polymers, Reactive and Functional Polymers, 73 (2013) 303-315.
[25] K.T. Chen, C.S. Lu, T.H. Chang, Y.Y. Lai, T.H. Chang, C.W. Wu, C.C. Chen, Comparison of photodegradative efficiencies and mechanisms of Victoria Blue R assisted by Nafion-coated and fluorinated TiO2 photocatalysts, Journal of Hazardous Materials, 174 (2010) 598-609.
[26] C.C. Chen, C.S. Lu, Y.C. Chung, Photocatalytic degradation of ethyl violet in aqueous solution mediated by TiO2 suspensions, Journal of Photochemistry and Photobiology A: Chemistry, 181 (2006) 120-125.
[27] A.C. Affam, M. Chaudhuri, Degradation of pesticides chlorpyrifos, cypermethrin and chlorothalonil in aqueous solution by TiO2 photocatalysis, J Environ Manage, 130 (2013) 160-165.
[28] H.-J. Fan, C.-S. Lu, W.-L.W. Lee, M.-R. Chiou, C.-C. Chen, Mechanistic pathways differences between P25-TiO2 and Pt-TiO2 mediated CV photodegradation, Journal of Hazardous Materials, 185 (2011) 227-235.
[29] G. Dai, S. Liu, Y. Liang, A simple preparation of carbon doped porous Bi2O3 with enhanced visible-light photocatalytic activity, Journal of Alloys and Compounds, 608 (2014) 44-48.
[30] J. Fu, Y. Tian, B. Chang, F. Xi, X. Dong, BiOBr–carbon nitride heterojunctions: synthesis, enhanced activity and photocatalytic mechanism, Journal of Materials Chemistry, 22 (2012) 21159.
[31] J. Di, J. Xia, M. Ji, B. Wang, S. Yin, Q. Zhang, Z. Chen, H. Li, Advanced photocatalytic performance of graphene-like BN modified BiOBr flower-like materials for the removal of pollutants and mechanism insight, Applied Catalysis B: Environmental, 183 (2016) 254-262.
[32] X. Zhu, J. Xie, D. Lin, Z. Guo, J. Xu, Y. Shi, F. Lei, Y. Wang, Synthesis of BSO (Bi4Si3O12) scintillation thin film by sol–gel method, Journal of Alloys and Compounds, 582 (2014) 33-36.
[33] A. Veber, S. Kunej, D. Suvorov, Synthesis and microstructural characterization of Bi12SiO20 (BSO) thin films produced by the sol–gel process, Ceramics International, 36 (2010) 245-250.
[34] M.Y. Yang, C.H. Hsu, C.S. Hsi, Low temperature sintered of Bi2O3 deficient sillenite Bi12SiO20 ceramics, Advanced Powder Technology, 27 (2016) 977-982.
[35] 葉德夫, 許智銘, 鄭靜, 鄧熙聖, 氧化石墨烯光觸媒之分解水應用, 化工, 59 (2012) 82-101.[36] P.-Q. Wang, T. Chen, B. Yu, P. Tao, Y. Bai, Tollen's-assisted preparation of Ag3PO4/GO photocatalyst with enhanced photocatalytic activity and stability, Journal of the Taiwan Institute of Chemical Engineers, 62 (2016) 267-274.
[37] L. Zhang, Q. Zhang, H. Xie, J. Guo, H. Lyu, Y. Li, Z. Sun, H. Wang, Z. Guo, Electrospun titania nanofibers segregated by graphene oxide for improved visible light photocatalysis, Applied Catalysis B: Environmental, 201 (2017) 470-478.
[38] L. Liu, J. Deng, T. Niu, G. Zheng, P. Zhang, Y. Jin, Z. J, X. Sun, One-step synthesis of Ag/AgCl/GO composite: a photocatalyst of extraordinary photoactivity and stability, Journal of Colloid and Interface Science, (2014).
[39] J. Xie, L. Li, Y. Guan, H. Lu, C. Han, D. Zhao, C. Tian, Q. Yin, AgBr/Ag/Ag2O/GO composite: Ultrasonic fabrication, characterization and visible-driven photocatalytic property, Materials Letters, 120 (2014) 54-57.
[40] J. Cheng, X. Yan, Q. Mo, B. Liu, J. Wang, X. Yang, L. Li, Facile synthesis of g-C3N4/BiVO4 heterojunctions with enhanced visible light photocatalytic performance, Ceramics International, 43 (2017) 301-307.
[41] Y. Shang, X. Chen, W. Liu, P. Tan, H. Chen, L. Wu, C. Ma, X. Xiong, J. Pan, Photocorrosion inhibition and high-efficiency photoactivity of porous g-C3N4/Ag2CrO4 composites by simple microemulsion-assisted co-precipitation method, Applied Catalysis B: Environmental, 204 (2017) 78-88.
[42] X.-j. Wang, C. Liu, X.-l. Li, F.-t. Li, Y.-p. Li, J. Zhao, R.-h. Liu, Construction of g-C3N4/Al2O3 hybrids via in-situ acidification and exfoliation with enhanced photocatalytic activity, Applied Surface Science, 394 (2017) 340-350.
[43] R.S. Rajaura, S. Srivastava, V. Sharma, P.K. Sharma, C. Lal, M. Singh, H.S. Palsania, Y.K. Vijay, Role of interlayer spacing and functional group on the hydrogen storage properties of graphene oxide and reduced graphene oxide, International Journal of Hydrogen Energy, 41 (2016) 9454-9461.
[44] A.B. Dongil, L. Pastor-Pérez, J.L.G. Fierro, N. Escalona, A. Sepúlveda-Escribano, Synthesis of palladium nanoparticles over graphite oxide and carbon nanotubes by reduction in ethylene glycol and their catalytic performance on the chemoselective hydrogenation of para-chloronitrobenzene, Applied Catalysis A: General, 513 (2016) 89-97.
[45] T.T. Wu, J.-M. Ting, Preparation and characteristics of graphene oxide and its thin films, Surface and Coatings Technology, 231 (2013) 487-491.
[46] F.T. Li, Y. Zhao, Q. Wang, X.J. Wang, Y.J. Hao, R.H. Liu, D. Zhao, Enhanced visible-light photocatalytic activity of active Al(2)O(3)/g-C(3)N(4) heterojunctions synthesized via surface hydroxyl modification, Journal of Hazardous Materials, 283 (2015) 371-381.