跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.188) 您好!臺灣時間:2026/01/16 02:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳采庭
研究生(外文):CHEN,TSAI-TING
論文名稱:矽酸鉍複合氧化石墨烯及石墨化氮化碳光觸媒:合成、特性、活性與其光催化降解有機汙染物之研究
論文名稱(外文):The Photocatalysts of Bismuth Silicate/ Graphene Oxide and Bismuth Silicate/ Graphitic Carbon Nitride Composites: Synthesis, Characterization, Activity, and Their Photocatalytic Degradation of Organic Pollutants
指導教授:陳錦章陳錦章引用關係
指導教授(外文):Chen,Chiing-Chang
口試委員:陳錦章張嘉麟李文亮
口試委員(外文):Chen,Chiing-ChangZhang,Jia-LinLee,wil-liam
口試日期:2017-05-10
學位類別:碩士
校院名稱:國立臺中教育大學
系所名稱:科學教育與應用學系碩士在職專班
學門:教育學門
學類:普通科目教育學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:112
中文關鍵詞:矽酸鉍石墨化氮化碳氧化石墨烯
外文關鍵詞:Bismuth SilicateGraphitic Carbon NitrideGraphene Oxide
相關次數:
  • 被引用被引用:0
  • 點閱點閱:158
  • 評分評分:
  • 下載下載:9
  • 收藏至我的研究室書目清單書目收藏:0
本研究以高壓水熱法(hydrothermal methods)合成矽酸鉍〈Bi12SiO20〉及複合Bi12SiO20/GO(氧化石墨烯)及Bi12SiO20/g-C3N4(石墨化氮化碳),並探討其光催化降解之成效。矽酸鉍是以硝酸鉍及矽酸鈉當起始物,並加入3M NaOH調整pH值至13.3,然後將該水溶液轉移到15毫升高壓釜中,加熱至100℃4小時。矽酸鉍複合氧化石墨烯是將Bi12SiO20和GO依不同重量百分比,混合在高壓釜中加熱至100℃4小時。矽酸鉍複合石墨化氮化碳是將不同重量百分比的Bi12SiO20和石墨化氮化碳( g-C3N4),混合在高壓釜中加熱至100℃4小時。合成觸媒樣品以高解析X光繞射儀(HR-XRD)、場發式掃描電子顯微鏡附能量分散光譜儀(FE-SEM-EDS)、場發式穿透電子顯微鏡附能量分散光譜儀(FE-TEM-EDS)、高解析度X光光電子能譜儀(HR-XPS)、紫外光-可見光擴散反射光譜儀(UV-vis DRS)、比表面積分析儀(BET)、螢光光譜儀(PL)、電子順磁共振光譜儀(EPR)等儀器分析產物的組成。
本研究使用結晶紫(CV)染料與2-羥基苯甲酸(2-hydroxybenzoic acid))作為標的汙染技術物。合成的Bi12SiO20觸媒降解結晶紫(CV)染料的速率k值原本只有0.005 h-1 ,但複合Bi12SiO20/20wt%-GO樣品與5wt%-Bi12SiO20/g-C3N4最高降解速率k值分別為0.050 h-1與0.078 h-1 ,且樣品經複合後對於降解速率都有著正向的效果。最佳觸媒樣品對於無色染料2-羥基苯甲酸(2-hydroxybenzoic acid)染料,也同樣具有光催化效果,以此推測觸媒樣品光催化與光敏化的反應機制,最後透過活性物種測試,以作為光觸媒降解結晶染料之研究基礎。

In this study, bismuth silicate and bismuth silicate composite graphene oxide (GO) and composite graphitic carbon nitride (g-C3N4) are prepared using autoclave hydrothermal methods. The novel heterojunctions of Bi12SiO20/GO and Bi12SiO20/g-C3N4 are fabricated by the hydrothermal method for the first time. Bismuth silicate is prepared by Bi(NO3)3 and Na2SiO3, dissolved in an 3M NaOH aqueous solution and adjusted the pH value . The aqueous solution is then transferred into a 15 mL Teflon-lined autoclave and heated to 100oC for 4 hours. Bi12SiO20/GO or Bi12SiO20/g-C3N4 is mixed in different weight ratio independently in a autoclave and heated to 100 oC for 4hours. The products are characterized by XRD, SEM-EDS, FE-TEM, HR-XPS, PL, DR-UV, BET, FT-IR, and EPR. To discuss bismuth silicate and bismuth silicate composite with graphene oxide and graphitic carbon nitride for photocatalytic efficiency, photocatalytic efficiency of the catalyst is used for the photocatalytic degradation of organic pollutants - crystal violet (CV) and 2-hydroxybenzoic acid . The measurement of crystal violet (CV) concentration, that the reaction rate constant k of Bi12SiO20 / 20wt%-GO and 5wt%-Bi12SiO20/g-C3N4 is 0.050h-1 and 0.078 h-1, respectively. This study shows that the ratio of Bi12SiO20:GO and Bi12SiO20: g-C3N4 strongly affect composite morphology, light response and photocatalytic activity.
目錄
第一章 緒論 1
1.1 研究動機 1
1.2 研究目的 2
第二章 文獻回顧 3
2.1 染料 3
2.2光催化反應與高級氧化程序 5
2.3矽酸鉍 6
2.4氧化石墨烯 7
2.5石墨化氮化碳〈g-C3N4〉 8
第三章 實驗材料與方法 9
3.1實驗研究流程 9
3.2 觸媒合成方法 10
3.2.1矽酸鉍之製備〈Bi12SiO20〉 10
3.2.2氧化石墨稀之製備 11
3.2.3矽酸鉍複合氧化石墨稀之製備 12
3.2.4石墨化氮化碳(g-C3N4)之製備 13
3.2.5矽酸鉍複合石墨化氮化碳之製備 14
3.3 實驗材料與設備 15
3.3.1 實驗合成材料 15
3.3.2 活性物種試劑 15
3.3.3 有機汙染物 16
3.4 照光程序 17
3.5 儀器與分析方法 18
3.5.1儀器分析: 18
3.5.2儀器規格: 18
3.6活性物種測定實驗 20
第四章 結果與討論 21
4.1 合成Bi12SiO20光觸媒 21
4.1.1高解析X射線繞射分析儀 (HD-XRD) 21
4.1.2場發式掃描電子顯微鏡/ X光能量分散光譜儀(FE-SEM-EDS) 26
4.1.3傅立葉紅外線轉換光譜儀(FT-IR) 28
4.1.4高解析度X光光電子能譜儀(HR-XPS) 29
4.1.5 比表面積分析(BET) 32
4.2 合成Bi12SiO20/GO光觸媒降解結晶紫染料 34
4.2.1 高解析X射線繞射分析儀 (HD-XRD) 34
4.2.2場發式掃描電子顯微鏡/ X光能量分散光譜儀(FE-SEM-EDS) 36
4.2.3 場發式穿透電子顯微鏡附能量分散光譜儀(FE-TEM-EDS) 40
4.2.4 傅立葉紅外線轉換光譜儀(FT-IR) 42
4.2.5紫外光-可見光擴散反射光譜儀(UV-vis DRS) 45
4.2.6高解析度X光光電子能譜儀(HR-XPS) 47
4.2.6螢光光譜儀 (PL) 52
4.2.7比表面積分析(BET) 53
4.2.8光二極體陣列式紫外光-可見光光譜儀(UV-vis PDA) 55
4.2.9 Bi12SiO20/20wt%-GO光觸媒之回收率與穩定性 61
4.2.10 Bi12SiO20/20wt%-GO光觸媒之活性物種確認 63
4.2.11 電子順磁共振光譜儀(EPR) 65
4.2.12 Bi12SiO20/20wt%-GO光觸媒之電子電洞轉移機制圖 68
4.3 合成Bi12SiO20/g-C3N4光觸媒降解結晶紫染料 70
4.3.1 高解析X射線繞射分析儀 (HD-XRD) 70
4.3.2場發式掃描電子顯微鏡/ X光能量分散光譜儀(FE-SEM-EDS) 72
4.3.3 場發式穿透電子顯微鏡附能量分散光譜儀(FE-TEM-EDS) 76
4.3.4 傅立葉紅外線轉換光譜儀(FT-IR) 78
4.3.5紫外光-可見光擴散反射光譜儀(UV-vis DRS) 81
4.3.6高解析度X光光電子能譜儀(HR-XPS) 83
4.3.6螢光光譜儀 (PL) 88
4.3.7比表面積分析(BET) 89
4.3.8光二極體陣列式紫外光-可見光光譜儀(UV-vis PDA) 91
4.3.9 5wt%-Bi12SiO20/ g-C3N4光觸媒之回收率與穩定性 96
4.3.10 5wt%-Bi12SiO20/ g-C3N4光觸媒之活性物種確認 98
4.3.11 電子順磁共振光譜儀(EPR) 100
4.3.12 5wt%-Bi12SiO20/g-C3N4光觸媒之電子電洞轉移機制圖 102
第五章:結論 104
參考文獻 106


[1] F. El-Gohary, A. Tawfik, Decolorization and COD reduction of disperse and reactive dyes wastewater using chemical-coagulation followed by sequential batch reactor (SBR) process, Desalination, 249 (2009) 1159-1164.
[2] C.S.D. Rodrigues, S.A.C. Carabineiro, F.J. Maldonado-Hódar, L.M. Madeira, Wet peroxide oxidation of dye-containing wastewaters using nanosized Au supported on Al2O3, Catalysis Today, 280 (2017) 165-175.
[3] M.A. Nejad, C. Mücksch, H.M. Urbassek, Insulin adsorption on crystalline SiO2: Comparison between polar and nonpolar surfaces using accelerated molecular-dynamics simulations, Chemical Physics Letters, 670 (2017) 77-83.
[4] S.H. Chen, A.S. Yien Ting, Biosorption and biodegradation potential of triphenylmethane dyes by newly discovered Penicillium simplicissimum isolated from indoor wastewater sample, International Biodeterioration and Biodegradation, 103 (2015) 1-7.
[5] A.S. Naje, S. Chelliapan, Z. Zakaria, S.A. Abbas, Electrocoagulation using a rotated anode: A novel reactor design for textile wastewater treatment, J Environ Manage, 176 (2016) 34-44.
[6] M. Radecka, M. Rekas, A. Trenczek-Zajac, K. Zakrzewska, Importance of the band gap energy and flat band potential for application of modified TiO2 photoanodes in water photolysis, Journal of Power Sources, 181 (2008) 46-55.
[7] C.C. Chen, C.S. Lu, H.J. Fan, W.H. Chung, J.L. Jan, H.D. Lin, W.Y. Lin, Photocatalyzed N-de-ethylation and degradation of Brilliant Green in TiO2 dispersions under UV irradiation, Desalination, 219 (2008) 89-100.
[8] O. Ola, M.M. Maroto-Valer, Review of material design and reactor engineering on TiO2 photocatalysis for CO2 reduction, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 24 (2015) 16-42.
[9] A. Pal, T.K. Jana, K. Chatterjee, Silica supported TiO2 nanostructures for highly efficient photocatalytic application under visible light irradiation, Materials Research Bulletin, 76 (2016) 353-357.
[10] A.C. Mera, D. Contreras, N. Escalona, H.D. Mansilla, BiOI microspheres for photocatalytic degradation of gallic acid, Journal of Photochemistry and Photobiology A: Chemistry, 318 (2016) 71-76.
[11] Y. Ju, J. Hong, X. Zhang, Z. Xu, D. Wei, Y. Sang, X. Fang, J. Fang, Z. Wang, Synthesis of surface sulfated BiWO with enhanced photocatalytic performance, Journal of Environmental Sciences, 24 (2012) 2180-2190.
[12] M. Yao, M. Liu, L. Gan, F. Zhao, X. Fan, D. Zhu, Z. Xu, Z. Hao, L. Chen, Monoclinic mesoporous BiVO4: Synthesis and visible-light-driven photocatalytic property, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 433 (2013) 132-138.
[13] H.F. Lai, C.C. Chen, Y.K. Chang, C.S. Lu, R.J. Wu, Efficient photocatalytic degradation of thiobencarb over BiVO4 driven by visible light: Parameter and reaction pathway investigations, Separation and Purification Technology, 122 (2014) 78-86.
[14] L. Hou, H. Hua, L. Gan, C. Yuan, Template-free solvothermal fabrication of hollow Bi2MoO6 microspheres with enhanced visible light photocatalytic activity, Materials Letters, 159 (2015) 35-38.
[15] C.T. Yang, W.W. Lee, H.P. Lin, Y.M. Dai, H.T. Chi, C.C. Chen, A novel heterojunction photocatalyst, Bi2SiO5/g-C3N4: synthesis, characterization, photocatalytic activity, and mechanism, Royal socity of chemistry, 6 (2016) 40664-40675.
[16] R. Pocklanova, A.K. Rathi, M.B. Gawande, K.K.R. Datta, V. Ranc, K. Cepe, M. Petr, R.S. Varma, L. Kvitek, R. Zboril, Gold nanoparticle-decorated graphene oxide: Synthesis and application in oxidation reactions under benign conditions, Journal of Molecular Catalysis A: Chemical, 424 (2016) 121-127.
[17] W. Shan, Y. Hu, Z. Bai, M. Zheng, C. Wei, In situ preparation of g-C3N4/bismuth-based oxide nanocomposites with enhanced photocatalytic activity, Applied Catalysis B: Environmental, 188 (2016) 1-12.
[18] J. Miao, G. Xu, J. Liu, J. Lv, Y. Wu, Synthesis and photocatalytic performance of g-C3N4 nanosheets via liquid phase stripping, Journal of Solid State Chemistry, 246 (2017) 186-193.
[19] Q. Han, J. Zhang, X. Wang, J. Zhu, Preparing Bi12SiO20 crystals at low temperature through nontopotactic solid-state transformation and improving its photocatalytic activity by etching, Journal of Materials Chemistry, 3 (2015) 7413-7421.
[20] S. Nakagawa, K. Sakakibara, H. Gotoh, Novel degradation mechanism for triarylmethane dyes: Acceleration of degradation speed by the attack of active oxygen to halogen groups, Dyes and Pigments, 124 (2016) 130-132.
[21] N.S. Allen, J.F. McKellar, B. Mohajerani, Lightfastness and spectroscopic properties of basic triphenylmethane dyes: Effect of the substrate, Dyes and Pigments, 1 (1980) 49-57.
[22] A. Mittal, V. Gajbe, J. Mittal, Removal and recovery of hazardous triphenylmethane dye, Methyl Violet through adsorption over granulated waste materials, Journal of Hazardous Materials, 150 (2008) 364-375.
[23] A. Mittal, J. Mittal, A. Malviya, D. Kaur, V.K. Gupta, Adsorption of hazardous dye crystal violet from wastewater by waste materials, Journal of Colloid and Interface Science, 343 (2010) 463-473.
[24] T. Higashihara, Y. Saito, K. Mizoguchi, M. Ueda, Recent progress in negative-working photosensitive and thermally stable polymers, Reactive and Functional Polymers, 73 (2013) 303-315.
[25] K.T. Chen, C.S. Lu, T.H. Chang, Y.Y. Lai, T.H. Chang, C.W. Wu, C.C. Chen, Comparison of photodegradative efficiencies and mechanisms of Victoria Blue R assisted by Nafion-coated and fluorinated TiO2 photocatalysts, Journal of Hazardous Materials, 174 (2010) 598-609.
[26] C.C. Chen, C.S. Lu, Y.C. Chung, Photocatalytic degradation of ethyl violet in aqueous solution mediated by TiO2 suspensions, Journal of Photochemistry and Photobiology A: Chemistry, 181 (2006) 120-125.
[27] A.C. Affam, M. Chaudhuri, Degradation of pesticides chlorpyrifos, cypermethrin and chlorothalonil in aqueous solution by TiO2 photocatalysis, J Environ Manage, 130 (2013) 160-165.
[28] H.-J. Fan, C.-S. Lu, W.-L.W. Lee, M.-R. Chiou, C.-C. Chen, Mechanistic pathways differences between P25-TiO2 and Pt-TiO2 mediated CV photodegradation, Journal of Hazardous Materials, 185 (2011) 227-235.
[29] G. Dai, S. Liu, Y. Liang, A simple preparation of carbon doped porous Bi2O3 with enhanced visible-light photocatalytic activity, Journal of Alloys and Compounds, 608 (2014) 44-48.
[30] J. Fu, Y. Tian, B. Chang, F. Xi, X. Dong, BiOBr–carbon nitride heterojunctions: synthesis, enhanced activity and photocatalytic mechanism, Journal of Materials Chemistry, 22 (2012) 21159.
[31] J. Di, J. Xia, M. Ji, B. Wang, S. Yin, Q. Zhang, Z. Chen, H. Li, Advanced photocatalytic performance of graphene-like BN modified BiOBr flower-like materials for the removal of pollutants and mechanism insight, Applied Catalysis B: Environmental, 183 (2016) 254-262.
[32] X. Zhu, J. Xie, D. Lin, Z. Guo, J. Xu, Y. Shi, F. Lei, Y. Wang, Synthesis of BSO (Bi4Si3O12) scintillation thin film by sol–gel method, Journal of Alloys and Compounds, 582 (2014) 33-36.
[33] A. Veber, S. Kunej, D. Suvorov, Synthesis and microstructural characterization of Bi12SiO20 (BSO) thin films produced by the sol–gel process, Ceramics International, 36 (2010) 245-250.
[34] M.Y. Yang, C.H. Hsu, C.S. Hsi, Low temperature sintered of Bi2O3 deficient sillenite Bi12SiO20 ceramics, Advanced Powder Technology, 27 (2016) 977-982.
[35] 葉德夫, 許智銘, 鄭靜, 鄧熙聖, 氧化石墨烯光觸媒之分解水應用, 化工, 59 (2012) 82-101.
[36] P.-Q. Wang, T. Chen, B. Yu, P. Tao, Y. Bai, Tollen's-assisted preparation of Ag3PO4/GO photocatalyst with enhanced photocatalytic activity and stability, Journal of the Taiwan Institute of Chemical Engineers, 62 (2016) 267-274.
[37] L. Zhang, Q. Zhang, H. Xie, J. Guo, H. Lyu, Y. Li, Z. Sun, H. Wang, Z. Guo, Electrospun titania nanofibers segregated by graphene oxide for improved visible light photocatalysis, Applied Catalysis B: Environmental, 201 (2017) 470-478.
[38] L. Liu, J. Deng, T. Niu, G. Zheng, P. Zhang, Y. Jin, Z. J, X. Sun, One-step synthesis of Ag/AgCl/GO composite: a photocatalyst of extraordinary photoactivity and stability, Journal of Colloid and Interface Science, (2014).
[39] J. Xie, L. Li, Y. Guan, H. Lu, C. Han, D. Zhao, C. Tian, Q. Yin, AgBr/Ag/Ag2O/GO composite: Ultrasonic fabrication, characterization and visible-driven photocatalytic property, Materials Letters, 120 (2014) 54-57.
[40] J. Cheng, X. Yan, Q. Mo, B. Liu, J. Wang, X. Yang, L. Li, Facile synthesis of g-C3N4/BiVO4 heterojunctions with enhanced visible light photocatalytic performance, Ceramics International, 43 (2017) 301-307.
[41] Y. Shang, X. Chen, W. Liu, P. Tan, H. Chen, L. Wu, C. Ma, X. Xiong, J. Pan, Photocorrosion inhibition and high-efficiency photoactivity of porous g-C3N4/Ag2CrO4 composites by simple microemulsion-assisted co-precipitation method, Applied Catalysis B: Environmental, 204 (2017) 78-88.
[42] X.-j. Wang, C. Liu, X.-l. Li, F.-t. Li, Y.-p. Li, J. Zhao, R.-h. Liu, Construction of g-C3N4/Al2O3 hybrids via in-situ acidification and exfoliation with enhanced photocatalytic activity, Applied Surface Science, 394 (2017) 340-350.
[43] R.S. Rajaura, S. Srivastava, V. Sharma, P.K. Sharma, C. Lal, M. Singh, H.S. Palsania, Y.K. Vijay, Role of interlayer spacing and functional group on the hydrogen storage properties of graphene oxide and reduced graphene oxide, International Journal of Hydrogen Energy, 41 (2016) 9454-9461.
[44] A.B. Dongil, L. Pastor-Pérez, J.L.G. Fierro, N. Escalona, A. Sepúlveda-Escribano, Synthesis of palladium nanoparticles over graphite oxide and carbon nanotubes by reduction in ethylene glycol and their catalytic performance on the chemoselective hydrogenation of para-chloronitrobenzene, Applied Catalysis A: General, 513 (2016) 89-97.
[45] T.T. Wu, J.-M. Ting, Preparation and characteristics of graphene oxide and its thin films, Surface and Coatings Technology, 231 (2013) 487-491.
[46] F.T. Li, Y. Zhao, Q. Wang, X.J. Wang, Y.J. Hao, R.H. Liu, D. Zhao, Enhanced visible-light photocatalytic activity of active Al(2)O(3)/g-C(3)N(4) heterojunctions synthesized via surface hydroxyl modification, Journal of Hazardous Materials, 283 (2015) 371-381.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top