|
1. Jackson, A.L. and L.A. Loeb, The mutation rate and cancer. Genetics, 1998. 148(4): p. 1483-90. 2. Yao, Y. and W. Dai, Genomic Instability and Cancer. J Carcinog Mutagen, 2014. 5. 3. Fu, D., J.A. Calvo, and L.D. Samson, Balancing repair and tolerance of DNA damage caused by alkylating agents. Nat Rev Cancer, 2012. 12(2): p. 104-20. 4. Jackson, S.P., Sensing and repairing DNA double-strand breaks. Carcinogenesis, 2002. 23(5): p. 687-96. 5. Li, G.M., Mechanisms and functions of DNA mismatch repair. Cell Res, 2008. 18(1): p. 85-98. 6. Mitchell, J.R., J.H. Hoeijmakers, and L.J. Niedernhofer, Divide and conquer: nucleotide excision repair battles cancer and ageing. Curr Opin Cell Biol, 2003. 15(2): p. 232-40. 7. Wallace, S.S., Base excision repair: a critical player in many games. DNA Repair (Amst), 2014. 19: p. 14-26. 8. Kunkel, T.A., DNA-mismatch repair. The intricacies of eukaryotic spell- checking. Curr Biol, 1995. 5(10): p. 1091-4. 9. Hsieh, P. and K. Yamane, DNA mismatch repair: molecular mechanism, cancer, and ageing. Mech Ageing Dev, 2008. 129(7-8): p. 391-407. 10. Li, G.M., DNA mismatch repair and cancer. Front Biosci, 2003. 8: p. d997-1017. 11. McCulloch, S.D., L. Gu, and G.M. Li, Bi-directional processing of DNA loops by mismatch repair-dependent and -independent pathways in human cells. J Biol Chem, 2003. 278(6): p. 3891-6. 12. Liu, D., G. Keijzers, and L.J. Rasmussen, DNA mismatch repair and its many roles in eukaryotic cells. Mutat Res, 2017. 773: p. 174-187. 13. Harfe, B.D. and S. Jinks-Robertson, DNA mismatch repair and genetic instability. Annu Rev Genet, 2000. 34: p. 359-399. 14. Nielsen, F.C., et al., Characterization of human exonuclease 1 in complex with mismatch repair proteins, subcellular localization and association with PCNA.Oncogene, 2004. 23(7): p. 1457-68. 15. Longley, M.J., A.J. Pierce, and P. Modrich, DNA polymerase delta is required for human mismatch repair in vitro. J Biol Chem, 1997. 272(16): p. 10917-21. 16. Vilar, E. and S.B. Gruber, Microsatellite instability in colorectal cancer-the stable evidence. Nat Rev Clin Oncol, 2010. 7(3): p. 153-62. 17. Boland, C.R., et al., A National Cancer Institute Workshop on Microsatellite Instability for cancer detection and familial predisposition: development of 30 international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res, 1998. 58(22): p. 5248-57. 18. Pritchard, C.C., et al., Complex MSH2 and MSH6 mutations in hypermutated microsatellite unstable advanced prostate cancer. Nat Commun, 2014. 5: p.4988. 19. Aaltonen, L.A., et al., Clues to the pathogenesis of familial colorectal cancer. Science, 1993. 260(5109): p. 812-6. 20. Boland, C.R. and A. Goel, Microsatellite instability in colorectal cancer. Gastroenterology, 2010. 138(6): p. 2073-2087 e3. 21. Papadopoulos, N. and A. Lindblom, Molecular basis of HNPCC: mutations of MMR genes. Hum Mutat, 1997. 10(2): p. 89-99. 22. Haraldsdottir, S., et al., Colon and endometrial cancers with mismatch repair deficiency can arise from somatic, rather than germline, mutations. Gastroenterology, 2014. 147(6): p. 1308-1316 e1. 23. Durno, C.A., et al., Phenotypic and genotypic characterisation of biallelic mismatch repair deficiency (BMMR-D) syndrome. Eur J Cancer, 2015. 51(8): p.977-83. 24. Bruwer, Z., et al., Predictive genetic testing in children: constitutional mismatch repair deficiency cancer predisposing syndrome. J Genet Couns, 2014. 23(2): p.147-55. 25. Subramanian, S., R.K. Mishra, and L. Singh, Genome-wide analysis ofmicrosatellite repeats in humans: their abundance and density in specific genomic regions. Genome Biol, 2003. 4(2): p. R13. 26. Leclercq, S., E. Rivals, and P. Jarne, DNA slippage occurs at microsatellite loci without minimal threshold length in humans: a comparative genomic approach. Genome Biol Evol, 2010. 2: p. 325-35. 27. Duval, A. and R. Hamelin, Mutations at coding repeat sequences in mismatch repair-deficient human cancers: toward a new concept of target genes for instability. Cancer Res, 2002. 62(9): p. 2447-54. 28. Myeroff, L.L., et al., A transforming growth factor beta receptor type II gene mutation common in colon and gastric but rare in endometrial cancers with microsatellite instability. Cancer Res, 1995. 55(23): p.5545-7. 29. Wang, J., et al., Demonstration that mutation of the type II transforming growth factor beta receptor inactivates its tumor suppressor activity in replication error-positive colon carcinoma cells. J Biol Chem, 1995. 270(37): p. 22044-9. 30. Souza, R.F., et al., Microsatellite instability in the insulin-like growth factor II receptor gene in gastrointestinal tumours. Nat Genet, 1996. 14(3): p. 255-7. 31. Malkhosyan, S., et al., Frameshift mutator mutations. Nature, 1996. 382(6591):31 p. 499-500. 32. Rampino, N., et al., Somatic frameshift mutations in the BAX gene in colon cancers of the microsatellite mutator phenotype. Science, 1997. 275(5302): p.967-9. 33. Woerner, S.M., et al., Pathogenesis of DNA repair-deficient cancers: astatistical meta-analysis of putative Real Common Target genes. Oncogene, 2003. 22(15): p. 2226-35. 34. Wagner, S., C.S. Mullins, and M. Linnebacher, Colorectal cancer vaccines:Tumor-associated antigens vs neoantigens. World J Gastroenterol, 2018. 24(48):p. 5418-5432. 35. Kloor, M. and M. von Knebel Doeberitz, The Immune Biology of Microsatellite-Unstable Cancer. Trends Cancer, 2016. 2(3): p. 121-133. 36. Yamamoto, H. and K. Imai, Microsatellite instability: an update. Arch Toxicol,2015. 89(6): p. 899-921. 37. Tougeron, D., et al., Tumor-infiltrating lymphocytes in colorectal cancers with microsatellite instability are correlated with the number and spectrum of frameshift mutations. Mod Pathol, 2009. 22(9): p. 1186-95. 38. Le, D.T., et al., PD-1 Blockade in Tumors with Mismatch-Repair Deficiency. N Engl J Med, 2015. 372(26): p. 2509-20. 39. Le, D.T., et al., Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science, 2017. 357(6349): p. 409-413. 40. de la Chapelle, A. and H. Hampel, Clinical relevance of microsatellite instability in colorectal cancer. J Clin Oncol, 2010. 28(20): p. 3380-7. 41. Vasen, H.F., et al., New clinical criteria for hereditary nonpolyposis colorectal cancer (HNPCC, Lynch syndrome) proposed by the International Collaborative group on HNPCC. Gastroenterology, 1999. 116(6): p. 1453-6. 42. Bacher, J.W., et al., Improved Detection of Microsatellite Instability in Early Colorectal Lesions. PLoS One, 2015. 10(8): p. e0132727. 43. Muller, A., et al., Challenges and pitfalls in HNPCC screening by microsatellite analysis and immunohistochemistry. J Mol Diagn, 2004. 6(4): p. 308-15. 44. Waalkes, A., et al., Accurate Pan-Cancer Molecular Diagnosis of Microsatellite Instability by Single-Molecule Molecular Inversion Probe Capture and High- Throughput Sequencing. Clin Chem, 2018. 64(6): p. 950-958. 45. Salipante, S.J., et al., Microsatellite instability detection by next generation sequencing. Clin Chem, 2014. 60(9): p. 1192-9. 46. Niu, B., et al., MSIsensor: microsatellite instability detection using paired tumor-normal sequence data. Bioinformatics, 2014. 30(7): p. 1015-6. 47. Hause, R.J., et al., Classification and characterization of microsatellite instability across 18 cancer types. Nat Med, 2016. 22(11): p. 1342-1350. 48. Lee, K., E. Tosti, and W. Edelmann, Mouse models of DNA mismatch repair in cancer research. DNA Repair (Amst), 2016. 38: p. 140-146. 49. Reitmair, A.H., et al., Spontaneous intestinal carcinomas and skin neoplasms in Msh2-deficient mice. Cancer Res, 1996. 56(16): p. 3842-9. 50. Edelmann, L. and W. Edelmann, Loss of DNA mismatch repair function and cancer predisposition in the mouse: animal models for human hereditary nonpolyposis colorectal cancer. Am J Med Genet C Semin Med Genet, 2004. 129C(1): p. 91-9. 51. el Marjou, F., et al., Tissue-specific and inducible Cre-mediated recombination in the gut epithelium. Genesis, 2004. 39(3): p. 186-93. 52. Toft, N.J., et al., Heterozygosity for p53 promotes microsatellite instability and tumorigenesis on a Msh2 deficient background. Oncogene, 2002. 21(41): p.6299-306. 53. Young, L.C., et al., The associated contributions of p53 and the DNA mismatch repair protein Msh6 to spontaneous tumorigenesis. Carcinogenesis, 2007. 28(10): p. 2131-8. 54. Luo, F., et al., Conditional expression of mutated K-ras accelerates intestinal tumorigenesis in Msh2-deficient mice. Oncogene, 2007. 26(30): p. 4415-27. 55. Wimmer, K. and J. Etzler, Constitutional mismatch repair-deficiency syndrome: have we so far seen only the tip of an iceberg? Hum Genet, 2008. 124(2): p.105-22. 56. Woerner, S.M., et al., Detection of coding microsatellite frameshift mutations in DNA mismatch repair-deficient mouse intestinal tumors. Mol Carcinog, 2015. 54(11): p. 1376-86. 57. Lowsky, R., et al., MSH2-deficient murine lymphomas harbor insertion/deletion mutations in the transforming growth factor beta receptor type 2 gene and display low not high frequency microsatellite instability. Blood, 2000. 95(5): p. 1767-72. 58. Maletzki, C., et al., The mutational profile and infiltration pattern of murine MLH1-/- tumors: concurrences, disparities and cell line establishment for functional analysis. Oncotarget, 2016. 7(33): p. 53583-53598. 59. Fan, H.H., et al., P53 ICE CRIM mouse: a tool to generate mutant allelic series in somatic cells and germ lines for cancer studies. FASEB J, 2019. 33(4): p. 5571-5584. 60. Li, H. and R. Durbin, Fast and accurate short read alignment with Burrows- Wheeler transform. Bioinformatics, 2009. 25(14): p. 1754-60. 61. Wang, K., M. Li, and H. Hakonarson, ANNOVAR: functional annotation of 33 genetic variants from high-throughput sequencing data. Nucleic Acids Res, 2010. 38(16): p. e164. 62. Bacher, J.W., et al., Use of mononucleotide repeat markers for detection of microsatellite instability in mouse tumors. Mol Carcinog, 2005. 44(4): p. 285-92. 63. Woerner, S.M., et al., SelTarbase, a database of human mononucleotide-microsatellite mutations and their potential impact to tumorigenesis and immunology. Nucleic Acids Res, 2010. 38(Database issue): p. D682-9. 64. Maletzki, C., et al., Frameshift mutational target gene analysis identifies similarities and differences in constitutional mismatch repair-deficiency and Lynch syndrome. Mol Carcinog, 2017. 56(7): p. 1753-1764. 65. Bolger, A.M., M. Lohse, and B. Usadel, Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 2014. 30(15): p. 2114-20. 66. Quinlan, A.R. and I.M. Hall, BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics, 2010. 26(6): p. 841-2. 67. Koboldt, D.C., et al., VarScan: variant detection in massively parallel sequencing of individual and pooled samples. Bioinformatics, 2009. 25(17): p.2283-5. 68. Cingolani, P., et al., A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin), 2012. 6(2): p. 80-92. 69. Molinari, F. and M. Frattini, Functions and Regulation of the PTEN Gene in Colorectal Cancer. Front Oncol, 2013. 3: p. 326. 70. Markowitz, S., et al., Inactivation of the type II TGF-beta receptor in colon cancer cells with microsatellite instability. Science, 1995. 268(5215): p. 1336-8. 71. Jonchere, V., et al., Identification of Positively and Negatively Selected Driver Gene Mutations Associated With Colorectal Cancer With Microsatellite Instability. Cell Mol Gastroenterol Hepatol, 2018. 6(3): p. 277-300. 72. Haigis, K.M., KRAS Alleles: The Devil Is in the Detail. Trends Cancer, 2017.3(10): p. 686-697. 73. Roberts, K.G., et al., Targetable kinase-activating lesions in Ph-like acute lymphoblastic leukemia. N Engl J Med, 2014. 371(11): p. 1005-15. 74. Irving, J., et al., Ras pathway mutations are prevalent in relapsed childhood acute lymphoblastic leukemia and confer sensitivity to MEK inhibition. Blood, 2014. 124(23): p. 3420-30. 75. Oliveira, C., et al., Distinct patterns of KRAS mutations in colorectal carcinomas according to germline mismatch repair defects and hMLH1 34 methylation status. Hum Mol Genet, 2004. 13(19): p. 2303-11. 76. Zhang, J., et al., Whole-genome sequencing identifies genetic alterations in pediatric low-grade gliomas. Nat Genet, 2013. 45(6): p. 602-12. 77. Rajagopalan, H., et al., Tumorigenesis: RAF/RAS oncogenes and mismatch-repair status. Nature, 2002. 418(6901): p. 934. 78. Solimini, N.L., et al., STOP gene Phactr4 is a tumor suppressor. Proc Natl Acad Sci U S A, 2013. 110(5): p. E407-14. 79. Kim, T.H., et al., Phactr4 regulates neural tube and optic fissure closure by controlling PP1-, Rb-, and E2F1-regulated cell-cycle progression. Dev Cell, 2007. 13(1): p. 87-102. 80. Bellacosa, A., et al., Akt activation by growth factors is a multiple-step process: the role of the PH domain. Oncogene, 1998. 17(3): p. 313-25. 81. Downward, J., PI 3-kinase, Akt and cell survival. Semin Cell Dev Biol, 2004. 15(2): p. 177-82. 82. Mutter, G.L., et al., Altered PTEN expression as a diagnostic marker for the earliest endometrial precancers. J Natl Cancer Inst, 2000. 92(11): p. 924-30. 83. Peterson, L.M., et al., Molecular characterization of endometrial cancer: a correlative study assessing microsatellite instability, MLH1 hypermethylation, DNA mismatch repair protein expression, and PTEN, PIK3CA, KRAS, and BRAF mutation analysis. Int J Gynecol Pathol, 2012. 31(3): p. 195-205. 84. Karamurzin, Y. and J.K. Rutgers, DNA mismatch repair deficiency in endometrial carcinoma. Int J Gynecol Pathol, 2009. 28(3): p. 239-55. 85. Levine, R.L., et al., PTEN mutations and microsatellite instability in complex atypical hyperplasia, a precursor lesion to uterine endometrioid carcinoma. Cancer Res, 1998. 58(15): p. 3254-8. 86. Kim, M.S., et al., NIPBL, a cohesion loading factor, is somatically mutated in gastric and colorectal cancers with high microsatellite instability. Dig Dis Sci, 2013. 58(11): p. 3376-8. 87. Wagener, R., et al., The mutational landscape of Burkitt-like lymphoma with 11q aberration is distinct from that of Burkitt lymphoma. Blood, 2019. 133(9): p. 962-966. 88. Cortes-Ciriano, I., et al., A molecular portrait of microsatellite instability across multiple cancers. Nat Commun, 2017. 8: p. 15180. 89. Bos, J.L., ras oncogenes in human cancer: a review. Cancer Res, 1989. 49(17): p. 4682-9. 90. Barbacid, M., ras genes. Annu Rev Biochem, 1987. 56: p. 779-827.
|