跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.81) 您好!臺灣時間:2025/10/06 14:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林怡君
研究生(外文):I-ChunLin
論文名稱:溫度及壓力對氫化鎂-鋁氫化鋰混合粉體吸/放氫行為之影響研究
論文名稱(外文):Effects of Temperature and Pressure on De-/Re-hydrogenation Behavior of Lithium Alanate mixed with Magnesium Hydride.
指導教授:蔡文達蔡文達引用關係
指導教授(外文):Wen-Ta Tsai
學位類別:碩士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:85
中文關鍵詞:鋁氫化鋰氫化鎂臨場同步X光繞射分析吸氫反應
外文關鍵詞:lithium alanatemagnesium hydrideIn-situ synchrotron XRDrehydrogenation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:291
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究使用氫化鎂與鋁氫化鋰做為研究的混合金屬氫化物材料,然而先前實驗室研究成果中利用臨場同步X光繞射已經了解混合粉體放氫的機制,其中氫化鎂為可逆性材料,因此本研究著重在複合金屬氫化物的吸氫行為。實驗以機械球磨法均勻混合MgH2與LiAlH4,利用高壓熱重分析儀(HPTGA)測定混合粉體吸氫性質,並藉由臨場同步X光繞射技術(In-situ synchrotron XRD)探討混合粉體在吸氫過程中反應現象。
使用臨場同步X光繞射分析的結果可知,MgH2與LiAlH4混合粉體確實有可逆吸氫的行為發生,且吸氫的條件與環境溫度有關,當溫度上升到400 oC才有反應反生,因此以此溫度作為充氫時的環境溫度。結果顯示,溫度維持在400 oC下持續升壓,使壓力到達3.1MPa可使4MgH2-1LiAlH4有3 wt%的吸氫量,且在0.17 MPa ~1.38 MPa的壓力區間有較快的吸氫速率為0.065 wt%/min,之後則以0.0072 wt%/min進行吸氫。為了了解不同莫耳比的混合粉體在吸氫過程中的反應機構,將壓力升至0.7、1.4、2.4 MPa之X光繞射分析圖可得知,在MgH2-1LiAlH4 莫耳比(1:1) 的吸氫行為發生在0.7 MPa ~ 1.4 MPa之間,由Mg17Al12與Mg2Al3進行吸氫反應;莫耳比(2:1) 吸氫行為發生在0.7 MPa之前,由Mg、Li0.92Mg4.08、Mg17Al12先行吸氫生成MgH2,以及部份的Mg17Al12吸氫生成Mg2Al3,當壓力持續上升到1.4 MPa則由Mg2Al3進行吸氫反應;莫耳比(4:1) 同樣在0.7 MPa之前即有產物Mg、Li0.92Mg4.08進行吸氫產生氫化鎂,但其產生MgH2量較少,而在繼續升壓的過程中則由Mg17Al12進行吸氫反應,且從圖上可知,主要吸氫生成MgH2的化合物為Mg17Al12。
在吸氫速率較快的壓力區間取1.03 MPa作為恆壓壓力並恆壓一小時及兩小時,結果顯示4MgH2-1LiAlH4混合粉體未能到達實驗所測得的最大吸氫量3 wt%,且與4MgH2-1LiAlH4混合粉體直接升壓至3.1 MPa的曲線比較下,相同吸氫量所要花費的時間也較長,進一步取1.72 MPa恆壓一小時,有較快吸氫速率區間出現,可到達2.9 wt%的吸氫量,因此可再將低恆壓壓力,取臨界壓力1.38 MPa恆壓一小時,可達到3 wt%吸氫量。結果顯示選擇臨界壓力1.38 MPa並恆壓一小時可以有較好的吸氫效率。
進一步做4MgH2-1LiAlH4三次循環放氫/吸氫的測試。在第一次循環放氫/吸氫中,LiAlH4的起始放氫溫度為175 oC而MgH2的起放氫溫度為310 oC,吸氫量可到達3 wt%。第二次循環放氫/吸氫的結果顯示,MgH2的起始放氫溫度相較於第一次循環放氫時的MgH2的起始放氫溫度高,在385 oC開始釋氫,顯示LiAlH4有催化MgH2的效果使之起始放氫溫度提前,然而第二次循環放氫/吸氫的總吸氫量降低,然而卻有100 %的吸氫程度,顯示可逆效果佳,而第三次循環測試總吸量再度降低,吸氫程度也下降10 %,但仍然有不錯的可逆反應發生。
Rehydrogenation behavior of the discharged MgH2-LiAlH4 composites was investigated by using thermal gravimetric analysis (TGA) and in situ synchrotron X-ray diffraction (XRD) technique. For 4MgH2-LiAlH4 composite, the experimental results showed that at least 3 wt% of hydrogen could be recharged during rising pressure to 3.1MPa/H2 at 400 °C to form MgH2 after its first dehydrogenation reaction. The faster hydrogen absorption rate 0.065 wt%/min happened between 0.17 MPa ~ 1.38 MPa. The XRD results indicated that it would have different absorption reaction in the various pressure interval by using various MgH2-LiAlH4 composite. (Table 1) Not only Mg but also Mg17Al12 and Mg2Al3 could be rehydrogenated in the hydrogen atmosphere investigated although LiAlH4 was found irreversible. In the experiment of isobaric, we know that it must be more than 1.38 MPa would have a better amount of hydrogen absorption and reaction time. In the cyclic test, the second test had the extent of hydrogen absorption 100 %, and the third one had 90%. Both of them were good. The In-situ synchrotron XRD results indicated that the reversibility of the MgH2-LiAlH4 composite which was temperature-dependent.
摘要 I
EXTENDED ABSTRACT III
誌謝 XIII
總目錄 XV
圖目錄 XVII
表目錄 XX
一、前言 1
二、研究背景及文獻回顧 9
2-1固態金屬氫化物儲氫系統 9
2-1鋁氫化鋰之基本性質 11
2-2氫化鎂之基本性質 13
2-3氫化物複合系統開發 14
三、研究方法與實驗步驟 26
3-1氫化鎂-鋁氫化鋰混合粉體之製備 26
3-2材料基本特性分析 27
3-2-1微觀結構分析 27
3-2-2微晶結構分析 27
3-3臨場同步X光繞射分析 27
3-4熱重分析 28
四、結果與討論 36
4-1 MgH2-LiAlH4混合粉體之基本性質分析 36
4-1-1混合粉體的形貌觀察 36
4-1-2混合粉體的結晶結構 36
4-2 MgH2-LiAlH4混合粉體釋氫行為比較 37
4-3 MgH2-LiAlH4混合粉體吸氫行為比較 40
4-3-1臨場同步輻射X光繞射分析 (in-situ XRD) 41
4-3-2吸氫溫度、吸氫量、吸氫壓力 41
4-3-3吸氫反應機構 42
4-3-4恆壓對混合粉體吸氫行為之影響 44
4-4粉體放氫/吸氫循環特性 45
4-4-1 4MgH2-LiAlH4混合粉體 45
4-4-2 球磨0.5小時之氫化鎂 46
五、結論 73
六、參考文獻 76
[1]A. Zuttel, A. Remhof, A. Borgschulte, O. Friedrichs, “Hydrogen: the future energy carrier, Philosophical Transactions of the Royal Society A, 368 (2010) 3329-3342.
[2] M. Conte, A. Iacobazzi, M. Ronchetti, R. Vellone, “Hydrogen economy for a sustainable development: state-of-the-art and technological perspectives, J. Power Sources, 100 (2001) 171-187.
[3] Toyota, “燃料電池自動車, website available at: http://www.toyota.co.jp/jpn/tech/environment/fcv/index.html
[4] website available at:
http://techconnectworld.com/World2016/participate/authors/
[5] U.S. DOE, “Fuel Cell Technologies Offices Multi-Year Research, Development and Demonstration Plan, 3.3 hydrogen storage, 2015, website available at: http://energy.gov/sites/prod/files/2015/05/f22/fcto_myrdd_storage.pdf.
[6] B. Sakintuna, F. Lamari-Darkrim, M. Hirscher, “Metal hydride materials for solid hydrogen storage: A review, Int. J. Hydrogen Energy, 32 (2007) 1121.
[7] A. Züttel, “Materials for hydrogen storage, Mater. Today, 6 (2003) 24-33.
[8] W. I. F. David, “Effective hydrogen storage: a strategic chemistry challenge, Faraday Discuss., 151 (2011) 399-414.
[9] H. J. Lin, J. Matsuda, H. W. Li, M. Zhu, E. Akiba, “Enhanced hydrogen desorption property of MgH2 with the addition of cerium fluorides, J. Alloys Compd., 645 (2015) S392.
[10] Y. Wang, Q. Zhang, Y. Wang, L. Jiao, H. Yuan, “Catalytic effects of different Ti-based materials on dehydrogenation performances of MgH2, J. Alloys Compd., 645 (2015) S509.
[11]許維哲(民102年7月)。添加劑對鋁氫化鋰放氫行為影響之研究。國立成功大學材料科學及工程學系碩士論文。
[12] M. Martin, C. Gommel, C. Borkhart, E. Fromm, “Absorption and desorption kinetics of hydrogen storage alloys, J. Alloys Compd., 238 (1996) 193-201.
[13] L. Schlapbach, A. Züttel, “Hydrogen-storage materials for mobile applications, Nature, 414 (2001) 353-358.
[14] D. Chandra, J. J. Reilly, R. Chellappa, “Metal hydride for vehicular applications: the storage of the art, JOM (Journal of the Minerals Metals and Materials Society), 58 (2006) 26-32.
[15] Basic research needs for the hydrogen economy, Second Printing, U.S.
Department of Energy, “Basic Research Challenges for Hydrogen
Storage, Washington, D.C., (2004) 31-35.
[16] G. Principi a, F. Agresti, A. Maddalena, S. Lo Russo b, “The problem of solid state hydrogen storage, Energy, 34 (2009) 2087-2091.
[17] L. George, S. K. Saxena, “Structural stability of metal hydrides, alanates and borohydrides of alkali and alkali- earth elements: A review, Int. J. Hydrogen Energy, 35 (2010) 5454-5470
[18] W. Grichala, P. P. Edwards, “Thermal decomposition of the non-interstitial hydrides for the storage and production of hydrogen, Chem. Rev., 104 (2004) 1283-1315
[19] R. Gupta, F. Agresti, S. Lo Russo, A. Maddalena, P. Palade, G. Principi, “Structure and hydrogen storage properties of MgH2 catalysed with La2O3, J. Alloy Compd, 450 (2008) 310-313
[20] J.Huot, I. Swainson, R. Schulz, “Phase transformation in magnesium hydride induced by ball milling, Ann Chim-Sci Mat, 31 (2006) 135-144
[21] S.A. Jin, Y.S. Lee, J.H. Shim, Y.w. Cho, “Reversible hydrogen storage in LiBH4-MH2 (M = Ce, Ca) composites, J Phys Chem C, 112 (2008) 9520-9524
[22] U. Eberle, M. Felderhoff, F. Schüth, “Chemical and physical solutions for hydrogen storage, Angew. Chem. Int. Ed., (2009) 48 6608-6630.
[23] M. B. Ley, L. H. Jepsen, Y.-S. Lee, Y.W. Cho, J. M. Bellosta von Colbe, M. Dornheim, M. Rokni, J. O. Jensen, M. Sloth, Y. Filinchuk, J. E. Jørgensen, F. Besenbacher, T. R. Jensen, “Complex hydrides for hydrogen storage - New perspectives, Mater. Today, 17 (2014) 122-128.
[24] B. Bogdanović, M. Schwickardi, “Ti-doped alkali metal aluminium hydride reversible hydrogen storage materials, J. Alloys Compd., 253-254 (1997) 1-9.
[25] L.H. Rude, T. K. Nielsen, D. B. Ravnsbæk, U. Bösenberg, M. B. Ley, B. Richter, L. M. Arnbjerg, M. Dornheim, Y. Filinchuk, F. Besenbacher, and T. R. Jensen, “Tailoring properties of borohydrides for hydrogen storage: A review, Phys. Status Solidi A, 208 (2011) 1754-1773.
[26] B. Bogdanović, R. A. Brand, A. Marjanović, M. Schwickardi, J. Tölle“Metal-doped sodium aluminium hydrides as potential new hydrogen
storage materials, J. Alloys Compd., 302 (2000) 36-58.
[27] M. Fichtner, O. Fuhr, O. Kircher, J. Rothe, “Small Ti clusters for
catalysis of hydrogen exchange in NaAlH4, Nanotechnology, 14 (2003) 778-785.
[28] H. Morioka, K. Kakizaki, S. C. Chung, A.Yamada, “Reversible hydrogen decomposition of KAlH4, J. Alloys Compd., 353 (2003) 310-314
[29] M. Fichtner, O. Fuhr, O. Kircher, “Magnesium alanate–a material for
reversible hydrogen storage?, J. Alloys Compd., 356-357 (2003) 418-422.
[30] S. Orimo, Y. Nakamori, J. R. Eliseo, A. Züttel, C. M. Jensen, “Complex hydrides for hydrogen storage, Chem. Rev., 107 (2007) 4111-4132.
[31] A. E. Finholt, A. C. Bond, H. I. Schlesinger, “Lithium aluminum hydride, Aluminum Hydride and Lithium Gallium Hydride, and Some of their Applications in Organic and Inorganic Chemistry, J. Am. Chem. Soc., 69 (1947) 1199-1203.
[32] O. M. Løvvik, S. M. Opalka, H. W. Brinks and B. C. Hauback, “Crystal and thermodynamic stability of the lithium alanates LiAlH4 and Li3AlH6, Physical Review B, 69 (2004) 134117.
[33] B. C. Hauback, H. W. Brinks, H. Fjellvåg, “Accurate structure of LiAlD4 studied by combined powder neutron and X-ray diffraction, J. Alloys Compd., 346 (2002) 184-189.
[34] J. A. Dilts, E. C. Ashby, “A study of the thermal decomposition of complex metal hydrides, Inorg. Chem., 11 (1972) 1230-1236.
[35] H. W. Brinks, B. C. Hauback, P. Norby, H. Fjellvåg, “The decomposition of LiAlD4 studied by in-situ X-ray and neutron diffraction, J. Alloys Compd., 351 (2003) 222-227.
[36] A. Andreasen, T. Vegge, A. S. Pedersen, “Dehydrogenation kinetics of as-received and ball-milled LiAlH4, J. Solid state Chem., 178 (2005) 3672-3678.
[37] P. Adelhelm and P. E. de Jongh, “The impact of carbon materials on the hydrogen storage properties of light metal hydrides, J. Mater. Chem., 21(8) (2011) 2417-2427.
[38] M. Ismaail, Y. Zhao, X. Yu, A. Ranjbar, S. X. Dou, Improved hydrogen desorption in lithium alanate by addition of SWCNT metallic catalyst, Int. J. Hydrogen Energy, 36(5) (2011) 3593-3599.
[39] W.C. Hsu, C.H. Yang, and W.T. Tsai, “Catalytic effect of MWCNTs on the dehydrogenation behavior of LiAlH4, Int. J. Hydrogen Energy, 39(2) (2014) 927-933.
[40] R. A. Varin and R. Parviz, “The effects of the micrometric and nanometric iron (Fe) additives on the mechanical and thermal dehydrogenation of lithium alanate (LiAlH4), its self-discharge at low temperatures and rehydrogenation, Int. J. Hydrogen Energy, 37(11) (2012) 9088-9102.
[41] R. A. Varin, L. Zbroniec, T. Czujko, Z. S. Wronski, “The effects of nanonickel additive on the decomposition of complex metal hydride LiAlH4 (lithium alanate), Int. J. Hydrogen Energy, 36 (2011) 1167-1176.
[42] D. S. Easton, J. H. Schneibel, and S. A. Speakman, “Factors affecting hydrogen release from lithium alanate (LiAlH4), J. Alloys Compd., 398(1-2) (2005) 245-248.
[43] J. Fu, L. Röntzsch, T. Schmidt, M. Tegel, T. Weißgärber, B. Kieback, “Comparative study on the dehydrogenation properties of TiCl4-doped LiAlH4 using different doping techniques, Int. J. Hydrogen Energy, 37(18) (2012) 13387-13392.
[44] 譚家彥(民104年7月)。添加經表面修飾之多壁奈米碳管觸媒對複合金屬氫化物放氫行為的影響研究。國立成功大學材料科學及工程學系博士論文。
[45] C.Y. Tan, W.T. Tsai, “Effects of TiCl3-decorated MWCNTs addition on the dehydrogenation behavior and stability of LiAlH4, Int. J. Hydrogen Energy, 39 (2014) 20038-20044.
[46] J. A. Teprovich Jr. D. A. Knight, M. S. Wellons, R. Zidan, “Catalytic effect of fullerene and formation of nanocomposites with complex hydrides: LiAlH4, J. Alloys Compd., 5095 (2011) S562-S566.
[47] X.F. Liu, S. D. Beattie, H. W. Langmi, G. Sean McGrady, C. M. Jensen, “Ti-doped LiAlH4 for hydrogen storage: Rehydrogenation process, reaction conditions and microstructure evolution during cycling, Int. J. Hydrogen Energy, 37 (2012) 10215-10221.
[48] M. Zhu, Y. Lu, L. Ouyang, H. Wang, “Thermodynamic tuning of mg-based hydrogen storage alloys: A review, Materials, 6 (2013) 4654–4674.
[49] Z. G. Huang, Z. P. Guo, A. Calka, D. Wexler, H. K. Liu, “Effects of
carbon black, graphite and carbon nanotube additives on hydrogen
storage properties of magnesium, J. Alloys Compd., 427 (2007) 94-100.
[50] X. Yao, C. Wu, A. Du, G. Q. Lu, H. Cheng, S. C. Smith, J. Zou, Y. He, “Mg-Based Nanocomposites with High Capacity and Fast Kinetics for Hydrogen Storage, J. Phys. Chem. B, 110 (2006) 11697-11703.
[51] R. A. Varin, T. Czujko, Z. S. Wronski, “Nanomaterials for Solid State
Hydrogen Storage, New York, Springer Science+Business Media, 2009
[52] A. Ming, “Hydrogen storage properties of magnesium based
nanostructured composite materials, Mat. Sci. Eng. B-Solid, 117 (2005) 37-44
[53] O. Gutfleisch, N. Schlorke-de Boer, N. Ismail, M. Herrich, A. Walton, J. Speight, I. R. Harris , A. S. Pratt , A. Züttel, “Hydrogenation properties of nanocrystalline Mg- and Mg2Ni-based compounds modified with platinum group metals (PGMs), J. Alloys Compd., 356-357 (2003) 598-602.
[54] R. A. Varin, S. Lia, Ch. Chiu, L. Guo, O. Morozova, T. Khomenko, Z.
Wronski, “Nanocrystalline and non-crystalline hydrides synthesized by controlled reactive mechanical alloying/milling of Mg and Mg-X (X = Fe, Co, Mn, B) systems, J. Alloys Compd., 404-406 (2005) 494-498
[55] G. Liang, J. Huot, S. Boily, A. Van Neste, R. Schulz, “Catalytic effect of transition metals on hydrogen sorption in nanocrystalline ball milled MgH2-Tm (Tm = Ti, V, Mn, Fe and Ni) systems, J. Alloys Compd., 292 (1999) 247-252.
[56] A. Zaluska, L. Zaluski, J. O. Ström-Olsen, “Structure, catalysis and
atomic reactions on the nano-scale: a systematic approach to metal
hydrides for hydrogen storage, Appl. Phys. A, 72 (2001) 157-165.
[57] Y. Q. Hu, H. F. Zhang, A. M. Wang, B. Z. Ding, Z. Q. Hu, “Preparation and hydriding/dehydriding properties of mechanically milled Mg-30wt% TiMn1.5 composite, J. Alloys Compd., 354 (2003) 296-302.
[58] X. Yao, C. Wu, A. Du, J. Zou, Z. Zhu, P. Wang, H. Cheng, S. Smith, G. Lu, “Metallic and carbon nanotube-catalyzed Coupling of hydrogenation in magnesium, J. Am. Chem. Soc., 129 (2007) 15650-15654.
[59] J. J. Reilly Jr., R. H. Wiswall Jr., “Reaction of hydrogen with alloys of magnesium and copper, Inorg. Chem., 6 (1967) 2220-2223.
[60] J. J. Reilly Jr., R. H. Wiswall Jr., “Reaction of hydrogen with alloys of magnesium and nickel and the formation of Mg2NiH4, Inorg. Chem., 7 (1968) 2254-2256.
[61] J. J. Vajo, T. T. Salguero, A. F. Gross, S. L. Skeith, G. L. Olson,
“Thermodynamic destabilization and reaction kinetics in light metal
hydride systems, J. Alloys Compd., 446–447 (2007) 409-414.
[62] R. A. Varin, T. Czujko, C. Chiu, R. Pulz, Z. S. Wronski, “Synthesis of nanocomposite hydrides for solid-state hydrogen storage by controlled
mechanical milling techniques, J. Alloys Compd., 483 (2009) 252-255.
[63] M. Ismail, Y. Zhao, X. B. Yu, J. F. Mao, S. X. Dou, “The hydrogen
storage properties and reaction mechanism of the MgH2–NaAlH4
composite system, Int. J. Hydrog. Energy, 36 (2011) 9045-9050.
[64] M. S. L. Hudson, D. Pukazhselvan, G. I. Sheeja, O. N. Srivastava,
“Studies on synthesis and dehydrogenation behavior of magnesium
alanate and magnesium-sodium alanate mixture, Int. J. Hydrog. Energy, 32 (2007) 4933-4938.
[65] Y. Nakamori, A. Ninomiya, G. Kitahara, M. Aoki, T. Noritake, K. Miwa, Y. Kojima, S. Orimo, “Dehydriding reactions of mixed complex hydrides, J. Power Sources, 155 (2006) 447-455.
[66] Y. Zhang, Q. F. Tian, S. S. Liu, L. X. Sun, “The destabilization
mechanism and de/re-hydrogenation kinetics of MgH2–LiAlH4 hydrogen storage system, J. Power Sources, 185 (2008) 1514-1518.
[67] R. Chen, X. Wang, L. Xu, L. Chen, S. Li, C. Chen, “An investigation on the reaction mechanism of LiAlH4-MgH2 hydrogen storage system, Mater. Chem. Phys., 124 (2010) 83-87.
[68] Y.S. Au, M.K. Obbink, S. Srinivasan, P.C.M.M.Magusin, K.P. de Jong, P.E. de Jongh, “The size dependence of hydrogen mobility and sorption kinetics for carbon-supported MgH2 particles, Adv. Funct. Mater., 24 (2014) 3604-3611.
[69] J. J. Vajo, F. Mertens, C. A. Channing, C. B. Robert Jr., F. Brent,
“Altering Hydrogen Storage Properties by Hydride Destabilization through Alloy Formation: LiH and MgH2 Destabilized with Si, J. Phys. Chem. B, 108 (2004) 13977-13983.
[70] R. A. Varin, T. Czujko, C. Chiu, R. Pulz, Z. S. Wronski, “Synthesis of nanocomposite hydrides for solid-state hydrogen storage by controlled mechanical milling techniques, J. Alloys Compd., 483 (2009) 252-255.
[71] T. Czujko, Z. Zaranski, I. E. Malka, Z. Wronski, “Composite behavior of MgH2 and complex hydride mixtures synthesized by ball milling, J. Alloys Compd., 509S (2011) S604-S607.
[72] H. Yabe, T. Kuji, “Thermal stability and hydrogen absorption/desorption properties of Mg17Al12 produced by bulk mechanical alloying, J. Alloys Compd., 433 (2007) 241-245.
[73] Q.A. Zhang, H.Y. Wu, Hydriding behavior of Mg17Al12 compound, Mater. Chem. Phys., 94 (2005) 69-72.
[74] G. Huebschen, I. Altpeter, R. Tschuncky, H. G. Herrmann (2016). Materials Characterization Using Nondestructive Evaluation (NDE) Methods (pp. 81-124). BRE: Foundation Institute of Materials Science.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top