[1]A. Zuttel, A. Remhof, A. Borgschulte, O. Friedrichs, “Hydrogen: the future energy carrier, Philosophical Transactions of the Royal Society A, 368 (2010) 3329-3342.
[2] M. Conte, A. Iacobazzi, M. Ronchetti, R. Vellone, “Hydrogen economy for a sustainable development: state-of-the-art and technological perspectives, J. Power Sources, 100 (2001) 171-187.
[3] Toyota, “燃料電池自動車, website available at: http://www.toyota.co.jp/jpn/tech/environment/fcv/index.html
[4] website available at:
http://techconnectworld.com/World2016/participate/authors/
[5] U.S. DOE, “Fuel Cell Technologies Offices Multi-Year Research, Development and Demonstration Plan, 3.3 hydrogen storage, 2015, website available at: http://energy.gov/sites/prod/files/2015/05/f22/fcto_myrdd_storage.pdf.
[6] B. Sakintuna, F. Lamari-Darkrim, M. Hirscher, “Metal hydride materials for solid hydrogen storage: A review, Int. J. Hydrogen Energy, 32 (2007) 1121.
[7] A. Züttel, “Materials for hydrogen storage, Mater. Today, 6 (2003) 24-33.
[8] W. I. F. David, “Effective hydrogen storage: a strategic chemistry challenge, Faraday Discuss., 151 (2011) 399-414.
[9] H. J. Lin, J. Matsuda, H. W. Li, M. Zhu, E. Akiba, “Enhanced hydrogen desorption property of MgH2 with the addition of cerium fluorides, J. Alloys Compd., 645 (2015) S392.
[10] Y. Wang, Q. Zhang, Y. Wang, L. Jiao, H. Yuan, “Catalytic effects of different Ti-based materials on dehydrogenation performances of MgH2, J. Alloys Compd., 645 (2015) S509.
[11]許維哲(民102年7月)。添加劑對鋁氫化鋰放氫行為影響之研究。國立成功大學材料科學及工程學系碩士論文。[12] M. Martin, C. Gommel, C. Borkhart, E. Fromm, “Absorption and desorption kinetics of hydrogen storage alloys, J. Alloys Compd., 238 (1996) 193-201.
[13] L. Schlapbach, A. Züttel, “Hydrogen-storage materials for mobile applications, Nature, 414 (2001) 353-358.
[14] D. Chandra, J. J. Reilly, R. Chellappa, “Metal hydride for vehicular applications: the storage of the art, JOM (Journal of the Minerals Metals and Materials Society), 58 (2006) 26-32.
[15] Basic research needs for the hydrogen economy, Second Printing, U.S.
Department of Energy, “Basic Research Challenges for Hydrogen
Storage, Washington, D.C., (2004) 31-35.
[16] G. Principi a, F. Agresti, A. Maddalena, S. Lo Russo b, “The problem of solid state hydrogen storage, Energy, 34 (2009) 2087-2091.
[17] L. George, S. K. Saxena, “Structural stability of metal hydrides, alanates and borohydrides of alkali and alkali- earth elements: A review, Int. J. Hydrogen Energy, 35 (2010) 5454-5470
[18] W. Grichala, P. P. Edwards, “Thermal decomposition of the non-interstitial hydrides for the storage and production of hydrogen, Chem. Rev., 104 (2004) 1283-1315
[19] R. Gupta, F. Agresti, S. Lo Russo, A. Maddalena, P. Palade, G. Principi, “Structure and hydrogen storage properties of MgH2 catalysed with La2O3, J. Alloy Compd, 450 (2008) 310-313
[20] J.Huot, I. Swainson, R. Schulz, “Phase transformation in magnesium hydride induced by ball milling, Ann Chim-Sci Mat, 31 (2006) 135-144
[21] S.A. Jin, Y.S. Lee, J.H. Shim, Y.w. Cho, “Reversible hydrogen storage in LiBH4-MH2 (M = Ce, Ca) composites, J Phys Chem C, 112 (2008) 9520-9524
[22] U. Eberle, M. Felderhoff, F. Schüth, “Chemical and physical solutions for hydrogen storage, Angew. Chem. Int. Ed., (2009) 48 6608-6630.
[23] M. B. Ley, L. H. Jepsen, Y.-S. Lee, Y.W. Cho, J. M. Bellosta von Colbe, M. Dornheim, M. Rokni, J. O. Jensen, M. Sloth, Y. Filinchuk, J. E. Jørgensen, F. Besenbacher, T. R. Jensen, “Complex hydrides for hydrogen storage - New perspectives, Mater. Today, 17 (2014) 122-128.
[24] B. Bogdanović, M. Schwickardi, “Ti-doped alkali metal aluminium hydride reversible hydrogen storage materials, J. Alloys Compd., 253-254 (1997) 1-9.
[25] L.H. Rude, T. K. Nielsen, D. B. Ravnsbæk, U. Bösenberg, M. B. Ley, B. Richter, L. M. Arnbjerg, M. Dornheim, Y. Filinchuk, F. Besenbacher, and T. R. Jensen, “Tailoring properties of borohydrides for hydrogen storage: A review, Phys. Status Solidi A, 208 (2011) 1754-1773.
[26] B. Bogdanović, R. A. Brand, A. Marjanović, M. Schwickardi, J. Tölle“Metal-doped sodium aluminium hydrides as potential new hydrogen
storage materials, J. Alloys Compd., 302 (2000) 36-58.
[27] M. Fichtner, O. Fuhr, O. Kircher, J. Rothe, “Small Ti clusters for
catalysis of hydrogen exchange in NaAlH4, Nanotechnology, 14 (2003) 778-785.
[28] H. Morioka, K. Kakizaki, S. C. Chung, A.Yamada, “Reversible hydrogen decomposition of KAlH4, J. Alloys Compd., 353 (2003) 310-314
[29] M. Fichtner, O. Fuhr, O. Kircher, “Magnesium alanate–a material for
reversible hydrogen storage?, J. Alloys Compd., 356-357 (2003) 418-422.
[30] S. Orimo, Y. Nakamori, J. R. Eliseo, A. Züttel, C. M. Jensen, “Complex hydrides for hydrogen storage, Chem. Rev., 107 (2007) 4111-4132.
[31] A. E. Finholt, A. C. Bond, H. I. Schlesinger, “Lithium aluminum hydride, Aluminum Hydride and Lithium Gallium Hydride, and Some of their Applications in Organic and Inorganic Chemistry, J. Am. Chem. Soc., 69 (1947) 1199-1203.
[32] O. M. Løvvik, S. M. Opalka, H. W. Brinks and B. C. Hauback, “Crystal and thermodynamic stability of the lithium alanates LiAlH4 and Li3AlH6, Physical Review B, 69 (2004) 134117.
[33] B. C. Hauback, H. W. Brinks, H. Fjellvåg, “Accurate structure of LiAlD4 studied by combined powder neutron and X-ray diffraction, J. Alloys Compd., 346 (2002) 184-189.
[34] J. A. Dilts, E. C. Ashby, “A study of the thermal decomposition of complex metal hydrides, Inorg. Chem., 11 (1972) 1230-1236.
[35] H. W. Brinks, B. C. Hauback, P. Norby, H. Fjellvåg, “The decomposition of LiAlD4 studied by in-situ X-ray and neutron diffraction, J. Alloys Compd., 351 (2003) 222-227.
[36] A. Andreasen, T. Vegge, A. S. Pedersen, “Dehydrogenation kinetics of as-received and ball-milled LiAlH4, J. Solid state Chem., 178 (2005) 3672-3678.
[37] P. Adelhelm and P. E. de Jongh, “The impact of carbon materials on the hydrogen storage properties of light metal hydrides, J. Mater. Chem., 21(8) (2011) 2417-2427.
[38] M. Ismaail, Y. Zhao, X. Yu, A. Ranjbar, S. X. Dou, Improved hydrogen desorption in lithium alanate by addition of SWCNT metallic catalyst, Int. J. Hydrogen Energy, 36(5) (2011) 3593-3599.
[39] W.C. Hsu, C.H. Yang, and W.T. Tsai, “Catalytic effect of MWCNTs on the dehydrogenation behavior of LiAlH4, Int. J. Hydrogen Energy, 39(2) (2014) 927-933.
[40] R. A. Varin and R. Parviz, “The effects of the micrometric and nanometric iron (Fe) additives on the mechanical and thermal dehydrogenation of lithium alanate (LiAlH4), its self-discharge at low temperatures and rehydrogenation, Int. J. Hydrogen Energy, 37(11) (2012) 9088-9102.
[41] R. A. Varin, L. Zbroniec, T. Czujko, Z. S. Wronski, “The effects of nanonickel additive on the decomposition of complex metal hydride LiAlH4 (lithium alanate), Int. J. Hydrogen Energy, 36 (2011) 1167-1176.
[42] D. S. Easton, J. H. Schneibel, and S. A. Speakman, “Factors affecting hydrogen release from lithium alanate (LiAlH4), J. Alloys Compd., 398(1-2) (2005) 245-248.
[43] J. Fu, L. Röntzsch, T. Schmidt, M. Tegel, T. Weißgärber, B. Kieback, “Comparative study on the dehydrogenation properties of TiCl4-doped LiAlH4 using different doping techniques, Int. J. Hydrogen Energy, 37(18) (2012) 13387-13392.
[44] 譚家彥(民104年7月)。添加經表面修飾之多壁奈米碳管觸媒對複合金屬氫化物放氫行為的影響研究。國立成功大學材料科學及工程學系博士論文。[45] C.Y. Tan, W.T. Tsai, “Effects of TiCl3-decorated MWCNTs addition on the dehydrogenation behavior and stability of LiAlH4, Int. J. Hydrogen Energy, 39 (2014) 20038-20044.
[46] J. A. Teprovich Jr. D. A. Knight, M. S. Wellons, R. Zidan, “Catalytic effect of fullerene and formation of nanocomposites with complex hydrides: LiAlH4, J. Alloys Compd., 5095 (2011) S562-S566.
[47] X.F. Liu, S. D. Beattie, H. W. Langmi, G. Sean McGrady, C. M. Jensen, “Ti-doped LiAlH4 for hydrogen storage: Rehydrogenation process, reaction conditions and microstructure evolution during cycling, Int. J. Hydrogen Energy, 37 (2012) 10215-10221.
[48] M. Zhu, Y. Lu, L. Ouyang, H. Wang, “Thermodynamic tuning of mg-based hydrogen storage alloys: A review, Materials, 6 (2013) 4654–4674.
[49] Z. G. Huang, Z. P. Guo, A. Calka, D. Wexler, H. K. Liu, “Effects of
carbon black, graphite and carbon nanotube additives on hydrogen
storage properties of magnesium, J. Alloys Compd., 427 (2007) 94-100.
[50] X. Yao, C. Wu, A. Du, G. Q. Lu, H. Cheng, S. C. Smith, J. Zou, Y. He, “Mg-Based Nanocomposites with High Capacity and Fast Kinetics for Hydrogen Storage, J. Phys. Chem. B, 110 (2006) 11697-11703.
[51] R. A. Varin, T. Czujko, Z. S. Wronski, “Nanomaterials for Solid State
Hydrogen Storage, New York, Springer Science+Business Media, 2009
[52] A. Ming, “Hydrogen storage properties of magnesium based
nanostructured composite materials, Mat. Sci. Eng. B-Solid, 117 (2005) 37-44
[53] O. Gutfleisch, N. Schlorke-de Boer, N. Ismail, M. Herrich, A. Walton, J. Speight, I. R. Harris , A. S. Pratt , A. Züttel, “Hydrogenation properties of nanocrystalline Mg- and Mg2Ni-based compounds modified with platinum group metals (PGMs), J. Alloys Compd., 356-357 (2003) 598-602.
[54] R. A. Varin, S. Lia, Ch. Chiu, L. Guo, O. Morozova, T. Khomenko, Z.
Wronski, “Nanocrystalline and non-crystalline hydrides synthesized by controlled reactive mechanical alloying/milling of Mg and Mg-X (X = Fe, Co, Mn, B) systems, J. Alloys Compd., 404-406 (2005) 494-498
[55] G. Liang, J. Huot, S. Boily, A. Van Neste, R. Schulz, “Catalytic effect of transition metals on hydrogen sorption in nanocrystalline ball milled MgH2-Tm (Tm = Ti, V, Mn, Fe and Ni) systems, J. Alloys Compd., 292 (1999) 247-252.
[56] A. Zaluska, L. Zaluski, J. O. Ström-Olsen, “Structure, catalysis and
atomic reactions on the nano-scale: a systematic approach to metal
hydrides for hydrogen storage, Appl. Phys. A, 72 (2001) 157-165.
[57] Y. Q. Hu, H. F. Zhang, A. M. Wang, B. Z. Ding, Z. Q. Hu, “Preparation and hydriding/dehydriding properties of mechanically milled Mg-30wt% TiMn1.5 composite, J. Alloys Compd., 354 (2003) 296-302.
[58] X. Yao, C. Wu, A. Du, J. Zou, Z. Zhu, P. Wang, H. Cheng, S. Smith, G. Lu, “Metallic and carbon nanotube-catalyzed Coupling of hydrogenation in magnesium, J. Am. Chem. Soc., 129 (2007) 15650-15654.
[59] J. J. Reilly Jr., R. H. Wiswall Jr., “Reaction of hydrogen with alloys of magnesium and copper, Inorg. Chem., 6 (1967) 2220-2223.
[60] J. J. Reilly Jr., R. H. Wiswall Jr., “Reaction of hydrogen with alloys of magnesium and nickel and the formation of Mg2NiH4, Inorg. Chem., 7 (1968) 2254-2256.
[61] J. J. Vajo, T. T. Salguero, A. F. Gross, S. L. Skeith, G. L. Olson,
“Thermodynamic destabilization and reaction kinetics in light metal
hydride systems, J. Alloys Compd., 446–447 (2007) 409-414.
[62] R. A. Varin, T. Czujko, C. Chiu, R. Pulz, Z. S. Wronski, “Synthesis of nanocomposite hydrides for solid-state hydrogen storage by controlled
mechanical milling techniques, J. Alloys Compd., 483 (2009) 252-255.
[63] M. Ismail, Y. Zhao, X. B. Yu, J. F. Mao, S. X. Dou, “The hydrogen
storage properties and reaction mechanism of the MgH2–NaAlH4
composite system, Int. J. Hydrog. Energy, 36 (2011) 9045-9050.
[64] M. S. L. Hudson, D. Pukazhselvan, G. I. Sheeja, O. N. Srivastava,
“Studies on synthesis and dehydrogenation behavior of magnesium
alanate and magnesium-sodium alanate mixture, Int. J. Hydrog. Energy, 32 (2007) 4933-4938.
[65] Y. Nakamori, A. Ninomiya, G. Kitahara, M. Aoki, T. Noritake, K. Miwa, Y. Kojima, S. Orimo, “Dehydriding reactions of mixed complex hydrides, J. Power Sources, 155 (2006) 447-455.
[66] Y. Zhang, Q. F. Tian, S. S. Liu, L. X. Sun, “The destabilization
mechanism and de/re-hydrogenation kinetics of MgH2–LiAlH4 hydrogen storage system, J. Power Sources, 185 (2008) 1514-1518.
[67] R. Chen, X. Wang, L. Xu, L. Chen, S. Li, C. Chen, “An investigation on the reaction mechanism of LiAlH4-MgH2 hydrogen storage system, Mater. Chem. Phys., 124 (2010) 83-87.
[68] Y.S. Au, M.K. Obbink, S. Srinivasan, P.C.M.M.Magusin, K.P. de Jong, P.E. de Jongh, “The size dependence of hydrogen mobility and sorption kinetics for carbon-supported MgH2 particles, Adv. Funct. Mater., 24 (2014) 3604-3611.
[69] J. J. Vajo, F. Mertens, C. A. Channing, C. B. Robert Jr., F. Brent,
“Altering Hydrogen Storage Properties by Hydride Destabilization through Alloy Formation: LiH and MgH2 Destabilized with Si, J. Phys. Chem. B, 108 (2004) 13977-13983.
[70] R. A. Varin, T. Czujko, C. Chiu, R. Pulz, Z. S. Wronski, “Synthesis of nanocomposite hydrides for solid-state hydrogen storage by controlled mechanical milling techniques, J. Alloys Compd., 483 (2009) 252-255.
[71] T. Czujko, Z. Zaranski, I. E. Malka, Z. Wronski, “Composite behavior of MgH2 and complex hydride mixtures synthesized by ball milling, J. Alloys Compd., 509S (2011) S604-S607.
[72] H. Yabe, T. Kuji, “Thermal stability and hydrogen absorption/desorption properties of Mg17Al12 produced by bulk mechanical alloying, J. Alloys Compd., 433 (2007) 241-245.
[73] Q.A. Zhang, H.Y. Wu, Hydriding behavior of Mg17Al12 compound, Mater. Chem. Phys., 94 (2005) 69-72.
[74] G. Huebschen, I. Altpeter, R. Tschuncky, H. G. Herrmann (2016). Materials Characterization Using Nondestructive Evaluation (NDE) Methods (pp. 81-124). BRE: Foundation Institute of Materials Science.