跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.44) 您好!臺灣時間:2025/12/31 21:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳凱鈞
研究生(外文):Chen, Kai-Chun
論文名稱:具有高能隙砷化銦鋁背阻障層之異質砷化銦鎵金氧半電晶體之元件製程開發
論文名稱(外文):The Process Development of a Heterogeneous InGaAs n-MOSFET Device with High Energy Gap InAlAs Back Barrier Layer
指導教授:林俊廷林俊廷引用關係陳仕鴻
指導教授(外文):Lin, Chun-TingChen, Szu-Hung
口試委員:林俊廷陳仕鴻蔡尚華施權峰
口試委員(外文):Lin, Chun-TingChen, Szu-HungTsai, Shang-HuaShih, Chuan-Feng
口試日期:2018-10-18
學位類別:碩士
校院名稱:國立交通大學
系所名稱:照明與能源光電研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:107
語文別:中文
論文頁數:63
中文關鍵詞:金氧半場效電晶體砷化銦鎵深化銦鋁歐姆接觸背阻障層
外文關鍵詞:MOSFETInGaAsInAlAsohmic contactBack barrier layer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:352
  • 評分評分:
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
為了提升提高III-V族金氧半電晶體的元件表現,並有效解決元件間漏電的現象。我們提出了利用砷化銦鋁(InAlAs)作為背阻障層(Back Barrier),並結合Mesa結構使元件之間的絕緣性更加提升,經由結構測試導通區域與絕緣區域之電流比約為3個order,證實此元件設計確實是可以有效提升整體絕緣性的。
而在元件開發初期,我們首先透過各製程模組的驗證,以確認各模組之架構是能夠應用於元件製程開發中。在閘極結構上,我們結合非等向性與側向性蝕刻,並利用TaN與TiN對此蝕刻條件的蝕刻率差異,做出單純利用乾式蝕刻方式即可達成的T型閘極結構。而在金氧半電容結構中,我們在沉積氧化物前利用HCl溶液對晶圓表面清洗,希望能有效改善Al2O3與InGaAs之介面品質。電容特性方面,最大電容值約為1.02uF/cm2、Dit也降低至3E12 cm-2eV-1,電容之dispersion~ 3%/decade,CET =3.26nm的表現。最後源/汲極接觸金屬的結構則是使用氮化鈦/鈦或鋁/氮化鈦/鈦多層結構做為與n型InGaAs做歐姆接觸之金屬,而所得最佳特徵電阻值也有1.39E-7Ωcm2的表現。 而所製作之金氧半場效電晶體元件特性方面,元件之導通電流約有Ion=250 uA/um的表現,但元件整體之電流開關特性與較大漏電流的成因機制,需再進一步的研究分析與改善。
In order to improve the performance of III-V MOSFETs and suppress the leakage current, we have adopted a layer of Indium aluminum arsenide (InAlAs) as a back barrier layer in the device structure. A mesa structure is also applied to improve the isolation between devices. Various process modules were developed and verified for InGaAs MOSFET integration. Besides, a novel T-gate formation method combing both anisotropic and lateral etching processes and a bilayer metal stack is proposed. For the MOS structure, HCl-based solution was used for surface clean before oxide deposition in order to improve the interface quality between Al2O3 and InGaAs. In terms of MOS characteristics, the measured maximum capacitance is 1.02 uF/cm2 (CET = 3.26 nm) with frequency dispersion of 3 %/decade and the extracted Dit is about 3E12 cm-2eV-1. TiN/Ti or Al/TiN/Ti-based metal contact structures were fabricated for InGaAs source/drain ohmic contacts, and the lowest contact resistance value of 1.39E-7 Ω•cm2 is achieved. Finally, the fabricated InGaAs MOSFET shows on-current Ion of 250 uA/um. However, the performance of devices in terms of on/off ratio and leakage level requires further improvement by material refinement as well as process optimization.
中文摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VII
表目錄 X
第一章 緒論 1
1.1 研究背景 1
1.2 III-V CMOS技術所面對的挑戰 2
1.3 MOS電容之high-k材料 2
1.4 源/汲極接觸電阻 3
1.5 論文架構 4
第二章 製程設備介紹 5
2.1 前言 5
2.1.1 半導體元件製程及四大模組 5
2.2 薄膜設備 5
2.2.1 電漿輔助化學氣相沉積系統PECVD 5
2.2.2 濺鍍機Sputter 6
2.3 黃光設備 7
2.3.1 I-line光學曝光步進機 7
2.3.2 電子束曝光機E-Beam lithography 8
2.4 蝕刻設備 10
2.4.1 反應性離子蝕刻RIE 10
2.4.2 濕式工作台Wet Bench 12
2.5 擴散設備 13
2.5.1 離子佈植Ion Implantation 13
2.5.2 快速熱退火RTA 14
第三章 元件各大模組驗證 15
3.1 金屬蝕刻測試與T-型閘極製作 15
3.1.1 ICP-RIE蝕刻率與profile條件測試 15
3.1.2 利用乾式蝕刻法製作T型閘極 17
3.2 金氧半電容 19
3.2.1 理想金氧半電容模型、能帶分佈及操作原理 19
3.2.2 非理想金氧半電容 22
3.2.2.1 功函數差異及平帶電壓 22
3.2.2.2 氧化層缺陷 23
3.2.2.3 利用電導法估算介面缺陷密度Dit 26
3.2.3 實驗方法及結果討論 27
3.2.3.1 砷化銦鎵金氧半電容製作 27
3.2.3.2 電容特性分析 28
3.3 源/汲極之歐姆接觸結構 36
3.3.1 歐姆接觸原理及能帶結構介紹 36
3.3.1.1 金屬與半導體之接面 36
3.3.1.2 能帶結構定性特徵 36
3.3.1.3 蕭特基接觸及能障 37
3.3.1.4 歐姆接觸 39
3.3.2 傳輸線模型理論及特徵電阻量測 41
3.3.2.1 傳輸線模型及特徵電阻 41
3.3.2.2 特徵電阻量測方法 42
3.3.3 實驗方法及結果討論 45
3.3.3.1 圓形傳輸線模型(CTLM)量測樣品製作 45
3.3.3.2 結果與討論 46
第四章 InGaAs MOSFETs元件整合及特性 49
4.1 In-situ MOSFET之結構與元件設計 49
4.2 元件製作流程 50
4.3 元件特性與結果 53
第五章 結論 58
參考文獻 59
[1] G. Moore, “Cramming more components onto integrated circuits,”
Electronics, vol. 38, pp. 114, 1965.
[2] G. Moore, “Progress in digital integrated electronics,” Technical Digest -
International Electron Devices Meeting, 1975, pp. 11.
[3] Source: http://www.ioffe.ru/SVA/NSM/
[4] S. Oktyabrsky, and P. D. Ye et al., “Fundamentals of III-V semiconductor MOSFETs,” Springer, New York (2009)
[5] Xingui Zhang, PhD Thesis, NUS, ECE, “self-aligned source and drain contact engineering for high mobility III-V transistor'', 2013
[6] P. D. Ye et al, ''GaAs metal–oxide–semiconductor field-effect transistor with nanometer-thin dielectric grown by atomic layer deposition'', Appl. Phys. Lett. 83, 180, 2003
[7] M. L. Huang et al, ''Surface passivation of III-V compound semiconductors using atomic-layer-deposition-grown Al2O3'', Appl. Phys. Lett. 87, 252104, 2005
[8] M. Radosavljevic et al, ''Advanced High-K Gate Dielectric for High-Performance Short-Channel In0.7Ga0.3As Quantum Well Field Effect Transistors on Silicon Substrate for Low Power Logic Applications'', IEDM, 2009
[9] Igor Krylov et al, ''Correlation between Ga-O signature and midgap states at the Al2O3/In0.53Ga0.47As interface'', APPLIED PHYSICS LETTERS 101, 063504 (2012)
[10] Y. Xuan et al, ''Simplified Surface Preparation for GaAs Passivation Using Atomic Layer-Deposited High-κDielectrics'', IEEE Transactions on Electron Devices, Vol 54,pp. 1811, 2007
[11] P. Chang et al, ''Passivation of InGaAs using in situ molecular beam epitaxy Al2O3 /HfO2 and HfAlO/HfO2'',APPLIED PHYSICS LETTERS, vol 97, 025904, 2010
[12] Yanzhen Wang et al, ''Improved Electrical Properties of HfO2-Based Gate Dielectrics on InP Substrate Using Al2O3/HfO2 and SF6 Plasma Treatment'', Electrochem. Solid-State Lett., volume 14, issue 7, H291-H293, 2011
[13] R Suzuki et al, ''1-nm-capacitance-equivalent-thickness HfO2/Al2O3/InGaAs metal-oxide-semiconductor structure with low interface trap density and low gate leakage current density'', Appl. Phys. Lett. 100, 132906 (2012)
[14] Han Zhao et al, ''In0.53Ga0.47As n-metal-oxide-semiconductor field effect transistors with atomic layer deposited Al2O3, HfO2, and LaAlO3 gate dielectrics'', Journal of Vacuum Science & Technology, vol 27, mo.4, pp.2024, 2009
[15] Byungha Shin et al, ''Origin and passivation of fixed charge in atomic layer deposited aluminum oxide gate insulators on chemically treated InGaAs substrates'', Appl. Phys. Lett. 96, 152908, 2010
[16] É. O’Connor et al, ''Temperature and frequency dependent electrical characterization of HfO2/InxGa1−xAs interfaces using capacitance-voltage and conductance methods'', Appl. Phys. Lett. 94, 102902, 2009
[17] Yanning Sun et al, ''High-PerformanceIn0.7Ga0.3As-Channel MOSFETs With High-κGate Dielectrics andα-Si Passivation'', IEEE Electron Device Letters, Vol 30, no.1, pp.5,2009
[18] X. Gong et al, ''Self-Aligned Gate-First In0.7Ga0.3As n-MOSFETs with an InP Capping Layer for Performance Enhancement'', Electrochem. Solid-State Lett., volume 14, issue 3, H117-H119, 2011
[19] Jeongchan Lee et al, ''Contact Resistance Reduction between Ni–InGaAs and n-InGaAs via Rapid Thermal Annealing in Hydrogen Atmosphere'', JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE (2017)
[20] J. Lin et al, ''InGaAs Quantum-Well MOSFET Arrays for Nanometer-Scale Ohmic Contact Characterization'', IEEE, 2016
[21] M. H. Lin et al, ''Investigation of Electrical Characteristics on 25-nm InGaAs Channel FinFET Using InAlAs Back Barrier and Al2O3 Gate Dielectric'', ECS, 2017
[22] Meng Li et al, ''Reduction of contact resistance between Ni–InGaAs and n-InGaAs by Ge2Sb2Te5 interlayer'' ,Appl. Phys., 2017
[23] Saeid Masudy-Panah et al,''Nanoscale metal-InGaAs contacts with ultra-low specific contact resistivity: Improved interfacial quality and extraction methodology'', Journal of Applied Physics, 2018
[24] Source: http://www.junsun.com.tw/index.php/zh/2018-03-21-02-43-40/cvd.html#pecvd
[25] Source: http://lnf-wiki.eecs.umich.edu/wiki/Sputter_deposition
[26] Source: http://www.ndl.org.tw/tech/equipment
[27] 龍柏華/何孝恆,乾蝕刻製程暨機台原理簡介,光電科技工業協進會
[28] Hamm, Robert W., Industrial Accelerators and Their Applications. World Scientific Hamm, Marianne E. (2012)., ISBN 978-981-4307-04-8.
[29] Donald A. Neamen, Semiconductor Physics And Devices, 4th Edition, McGraw-Hill, 2012
[30] Bruce E. Deal, “Standardized Terminology for Oxide Charges Associated with Thermally Oxidized Silicon”, IEEE Transactions on Electron Devices, Vol ED-27, no.3 , 1980
[31] W.A. Hill, “A single-frequency approximation for interface-state density determination”, Solid-State Electronics, Volume 23, Issue 9, Pages 987-993 September 1980
[32] Hsi-Chieh Lu, “Characterization of Metal Oxide Semiconductor Devices with high-k dielectrics”, Master Degree Thesis, 2016
[33] Roy Winter et al., “New method for determining flat-band voltage in high mobility semiconductors”, Journal of Vacuum Science & Technology ,2013
[34] G. K. REEVES AND H. B. HARRISON, “Obtaining the Specific Contact Resistance from Transmission Line Model Measurement”, IEEE ELECTRON DEVICE LETTERS, VOL. EDL-3, NO, 5, MAY 1982
[35] STEPHEN J. PROCTOR, “Direct Measurements of Interfacial Contact Resistance, End Contact Resistance, and Interfacial Contact Layer Uniformity”, IEEE TFLANSACTIONS ON ELECTRON DEVICES, VOL. ED-30, NO. 11, NOVEMBER 1983
[36] Hao Yu et al, “A Simplified Method for (Circular) Transmission Line Model Simulation and Ultra-low Contact Resistivity Extraction”, IEEE Electron Device Letters, Volume: 35 Issue: 9, 2013
[37] CRC Handbook of Chemistry and Physics version 2008, p. 12–114.
[38] G. Brammertz et al, “On the interface state density at In0.53Ga0.47As/oxide interfaces”, Appl. Phys. Lett. 95, 202109 2009.

[39] H. C. Chiu et al, “Achieving a low interfacial density of states in atomic layer deposited Al2O3 on In0.53Ga0.47As”, Appl. Phys. Lett. 93, 202903 2008
[40] H.-C. Lin et al, “Electrical study of sulfur passivated In0.53Ga0.47As MOS capacitor and transistor with ALD Al2O3 as gate insulator”, Microelectron. Eng. 86, 1554 2009.
[41] Y. Xuan et al, “Submicrometer Inversion-Type Enhancement-Mode InGaAs MOSFET With Atomic-Layer-DepositedAl2O3as Gate Dielectric”, IEEE Electron Device Lett. 28, 935 2007.
[42] P. K. Hurley et al, “Structural and Electrical Properties of HfO2/n-InxGa1-xAs structures (x: 0, 0.15, 0.3 and 0.53)”, ECS Trans. 256, 113 2009.
[43] Y. C. Chang et al, “Atomic-layer-deposited HfO2 on In0.53Ga0.47As: Passivation and energy-band parameters”, Appl. Phys. Lett. 92, 072901 2008.
[44] http://scholarbank.nus.sg/bitstream/10635/14040/7/CHAPTER%202.PDF
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
1. 多載波功率強制截斷演算法應用於5G最新混合式波束成形巨量陣列天線多輸入多輸出系統
2. 錯頻式載波技術應用於2×2多天線輸入多天線輸出V-Band光載微波訊號光纖之功率偵測器降頻系統
3. 支援載波聚合之混合式波束成形預編碼設計應用於巨量天線系統
4. 低取樣率類比數位轉換器與降低訊號峰對峰值比技術應用於多天線輸入多天線輸出光載微波單載波頻分多址系統
5. 預處理錯頻等化器暨功率偵測器降頻應用於2×2多天線輸入多天線輸出光載微波系統
6. 使用光模態分復用於光纖與無線多輸入多輸出之可行性
7. 運用功率偵測降頻與Volterra非線性補償混合式V波段同調光載微波無線-被動光纖網路系統
8. 監督式深度學習實現混合式波束成形預編碼設計於5G毫米波巨量天線系統
9. 窄邊框液晶電視壓著製程提升良率之研究
10. 被動式光纖網路單載波頻分多址系統使用低取樣率類比數位轉換器並降低訊號峰對峰值數位訊號處理技術
11. 新穎低取樣率接收端與數位訊號處理應用於第五代無線光纖網路
12. 2 × 2多天線輸入多天線輸出正交分頻多工60GHz光載微波訊號系統使用低取樣率類比數位轉換器偵測
13. 應用於高載子遷移率半導體的多層金屬歐姆接觸製作與分析
14. 運用自適應濾波器演算法 補償2× 2多天線輸入多天線輸出60-GHz 光載微波無線系統之非線性失真
15. 研究多發多收及數位訊號處理技術於高傳輸率之下世代光纖無線通訊系統