跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.110) 您好!臺灣時間:2025/09/28 22:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林霈豪
研究生(外文):Pei- Hao Lin
論文名稱:以不同球磨與成型途徑製備之鋁基輕量擬高熵合金特性研究
論文名稱(外文):Characterization of Al-Based Lightweight Pseudo-High-Entropy Alloy Prepared by Different Ball Milling and Consolidation Routes
指導教授:李丕耀
指導教授(外文):Lee, Pee-Yew
口試委員:黃榮潭林中魁
口試委員(外文):Huang, Rong-TanLin, Chung-Kwei
口試日期:2019-07-26
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:材料工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:71
中文關鍵詞:機械合金法調和組織
外文關鍵詞:Mechanical alloyingHarmonic structure
相關次數:
  • 被引用被引用:0
  • 點閱點閱:128
  • 評分評分:
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:0
本研究是對平均尺寸約20μm 和200μm之Al65Cr10Fe8Mn14Ti3合金粉末進行高能量研磨處理,期望藉此可形成內部為粗晶粒而表面為細晶粒的調和組織型態粉末。實驗結果顯示二種Al65Cr10Fe8Mn14Ti3粉末經球磨5小時後,其組織會由多相結晶相轉變成納米晶組織;200μm Al65Cr10Fe8Mn14Ti3經過無球研磨後粉末表面會被小顆粒的粉末鋪附,隨著研磨時間的增加,鋪附量也會跟著增加;在 200μm尺寸Al65Cr10Fe8Mn14Ti3粉末中添加1% 20μm Al65Cr10Fe8Mn14Ti3粉末進行研磨後觀察到,隨研磨時間增加200μm表面鋪附20μm粉末的量會逐漸增多,研磨約10小時表面會幾乎鋪滿小顆粒粉末,而20μm的添加量增加至5%時可以減少鋪滿小顆粒粉末所需的研磨時間;又在200μm Al65Cr10Fe8Mn14Ti3粉末中添加經球磨處理之1% 20μm Al65Cr10Fe8Mn14Ti3納米晶粉末時,發現長時間的研磨對此納米晶粉末鋪附在200μm能力是有限的;將20μm(1%) + 200μm (99%) Al65Cr10Fe8Mn14Ti3研磨3及5小時粉末進行傳統燒結和火花電漿燒結(SPS)後發現,SPS塊材的微硬度值和緻密度分別為610 HV 和90 %,而傳統燒結塊材硬度值和緻密度為430 HV和70 %。
In this study, the Al65Cr10Fe8Mn14Ti3 alloy powder of 20μm and 200μm size is subjected to high-energy milling processing of mechanical alloying with and without ball. It is expected to prepare a harmonic structure with fine grains outside the coarse grains. Is expected to prepare the harmonic structure with coarse grains inside and fine grains outside. The structural properties inside the as-milled powders was analyzed by SEM and XRD. Subsequently, suitable parameters were selected for traditional sintering and spark plasma sintering, and the micro hardness and compactness were measured to observe its mechanical properties. Experimental results show that: When Al65Cr10Fe8Mn14Ti3 powder 20 and 200 micron size is milled with pellets for 5 hours, its structure will change from multiphase crystalline phase to nanocrystalline structure;200 micron Al65Cr10Fe8Mn14Ti3 powder is milled spherically and the powder surface is coated with small particles. With the increase of milling time, the amount of coating will also increase;Observation was made when 20 micron Al65Cr10Fe8Mn14Ti3 powder was added to 200 micron Al65Cr10Fe8Mn14Ti3 powder for milling. The amount of 20 micron powder added to the surface increases with the grinding time by 200 microns, and the surface is almost full of small particles after about 10 hours of grinding. Adding 20 micron increases the amount of time it takes to grind a small powder;The nanocrystalline powder formed by ball milling was added into 200 micron Al65Cr10Fe8Mn14Ti3 powder and observed after a long time milling. It was found that nanocrystalline powder had limited ability to paved full for 200 micron powder, and adding more nanocrystalline powder could not effectively achieve its effect;The powder of 1% 20μm Al65Cr10Fe8Mn14Ti3 + 99% 200μm Al65Cr10Fe8Mn14Ti3 for milling 3 and 5 hours was observed after traditional sintering and spark plasma sintering (SPS). The microhardness value and consistency of SPS block were 610 HV and 90 %. The microhardness value and consistency of traditional sintered block were 430 HV and 70 %.
摘要 I
Abstract II
目次 III
圖次 V
表次 VII
第一章 前言 1
第二章 文獻回顧 2
2.1 高熵合金的開發 2
2.2 機械合金化的高熵合金 3
2.3 在機械合金化和成型時的相變化 6
2.4 機械合金化高熵合金的熱穩定性 10
2.5 機械合金化高熵合金特性 11
2.6 潛在的應用 13
2.7 機械合金化後高熵合金加工中的挑戰 14
第三章 實驗步驟 21
3.1 Al65Cr10Fe8Mn14Ti3合金粉末處理 21
3.2 Al65Cr10Fe8Mn14Ti3合金塊材成型 21
3.3 結構檢測 21
3.4 特性檢測 22
第四章 實驗結果 28
4.1 Al65Cr10Fe8Mn14Ti3粉末20μm、200μm有球研磨 28
4.2 Al65Cr10Fe8Mn14Ti3粉末200μm無球研磨 32
4.3 Al65Cr10Fe8Mn14Ti3粉末20μm(1%)+200μm (99%)無球研磨 35
4.4 Al65Cr10Fe8Mn14Ti3粉末20μm(5%)+200μm (95%)無球研磨 38
4.5 Al65Cr10Fe8Mn14Ti3 200μm粉末(99%)+有球球磨5小時粉末(1%)之無球研磨 41
4.6 Al65Cr10Fe8Mn14Ti3 200μm粉末(95%)+有球球磨5小時粉末(5%)之無球研磨 44
4.7 Al65Cr10Fe8Mn14Ti3粉末之傳統燒結與火花電漿燒結 47
第五章 結論 58
參考文獻 59
1. W. Stevenson, Metals Handbook, 9th ed. ASM, Ohio (1985).
2. Y. Jien-Wei,"Recent progress in high entropy alloys, " Ann. Chim. Sci. Mat, vol. 31 , pp. 633-648 (2006).
3. J.- W. Yeh, "The Development of High-Entropy Alloys, " Hua Kang Journal of Engineering, vol.27, pp. 1-18 (2011).
4. 黃炳剛, "多元高熵合金於熱熔射塗層之研究," 碩士, 材料科學工程學系, 國立清華大學, 新竹市 (2003).
5. C.D. Gómez-Esparza, F. Baldenebro-López, L. González- Rodelas, J. Baldenebro-López, and R. Martínez-Sánchez, "Series of nanocrystalline NiCoAlFe(Cr, Cu, Mo, Ti) high- entropy alloys produced by mechanical alloying, " Mater. Res. 19, 39 (2016).
6. C. Sun, P. Li, S. Xi, Y. Zhou, S. Li, and X. Yang, "A new type of high entropy alloy composite Fe18Ni23Co25Cr21Mo8WNb3C2 prepared by mechanical alloying and hot pressing sintering, " Mater. Sci. Eng., A. 728, 144 (2018).
7. q. Rogal, D. Kalita, A. Tarasek, P. Bobrowski, and F. Czerwinski, "Effect of SiC nano-particles on microstructure and mechanical properties of the CoCrFeMnNi high entropy alloy, " J. Alloys Compd. 708, 344 (2017).
8. A.J. Zaddach, C. Niu, A.A. Oni, M. Fan, J.M. LeBeau, D.L. Irving, and C.C. Koch, " Structure and magnetic properties of a multi-principal element Ni–Fe–Cr–Co–Zn–Mn alloy, " Intermetallics 68, 107 (2016).
9. Z. Fu, W. Chen, S. Fang, and X. Li, "Effect of Cr addition on the alloying behavior, microstructure and mechanical properties of twinned CoFeNiAl0.5Ti0.5 alloy," Mater. Sci. Eng., A 597, 204 (2014).
10. I. Moravcik, J. Cizek, P. Gavendova, S. Sheikh, S. Guo, and I.Dlouhy, "Effect of heat treatment on microstructure and mechanical properties of spark plasma sintered AlCoCrFeNiTi0.5 high entropy alloy, " Mater. Lett. 174, 53 (2016).
11. B. Wu, W. Chen, Z. Jiang, Z. Chen, and Z. Fu, "Influence of Ti addition on microstructure and mechanical behavior of a FCC- based Fe30Ni30Co30Mn10 alloy, " Mater. Sci. Eng., A 676, 492 (2016).
12. A. Dwivedi, C.C. Koch, and K.V. Rajulapati, "On the single phase fcc solid solution in nanocrystalline Cr–Nb–Ti–V–Zn high-entropy alloy, " Mater. Lett. 183, 44 (2016).
13. S. Zhang, Y. Sun, B. Ke, Y. Li, W. Ji, W. Wang, and Z. Fu, "Preparation and characterization of TiB2-(supra-nano-dual- phase) high-entropy alloy cermet by spark plasma sintering, " Metals 8, 58 (2018).
14. B. Kang, J. Lee, H.J. Ryu, and S.H. Hong, "Ultra-high strength WNbMoTaV high-entropy alloys with fine grain structure fabricated by powder metallurgical process, " Mater. Sci. Eng., A 712, 616 (2018).
15. W. Ge, B. Wu, S. Wang, S. Xu, C. Shang, Z. Zhang, and Y. Wang, " Characterization and properties of CuZrAlTiNi high entropy alloy coating obtained by mechanical alloying and vacuum hot pressing sintering," Adv. Powder Technol. 28, 2556 (2017).
16. Z. Fu, W. Chen, Z. Jiang, B.E. MacDonald, Y. Lin, F. Chen, L. Zhang, and E.J. Lavernia, "Influence of Cr removal on the microstructure and mechanical behaviour of a high-entropy Al0.8Ti0.2CoNiFeCr alloy fabricated by powder metallurgy," Powder Metall. 5899, 1 (2018).
17. C. Suryanarayana, " Mechanical alloying and milling, " Prog. Mater. Sci. 46, 1 (2001).
18. F. Salemi, M.H. Abbasi, and F. Karimzadeh, "Synthesis and thermodynamic analysis of nanostructured CuNiCoZnAl high entropy alloy produced by mechanical alloying, " J. Alloys Compd. 685, 278 (2016).
19. X.R. Tan, G.P. Zhang, Q. Zhi, and Z.X. Liu, "Effects of milling on the microstructure and hardness of Al2NbTi3V2Zr high- entropy alloy, " Mater. Des. 109, 27 (2016).
20. M. Vaidya, A. Karati, A. Marshal, K.G. Pradeep, and B. S. Murty, " Phase evolution and stability of nanocrystalline CoCrFeNi and CoCrFeMnNi high entropy alloys, " J. Alloys Compd. 770, 1004 (2019).
21. W. Ji, W. Wang, H. Wang, J. Zhang, Y. Wang, F. Zhang, and Z. Fu, " Alloying behavior and novel properties of CoCrFeNiMn high-entropy alloy fabricated by mechanical alloying and spark plasma sintering, " Intermetallics 56, 24 (2014).
22. J. Xu, Z.F. Zhao, and Y. Wang, " Effect of annealing treatment on the microstructure and magnetic properties of FeSiBAlNi(C, Ce) high entropy alloys, " Mater. Sci. Forum 849, 52 (2016).
23. H.L. Wang, T.X. Gao, J.Z. Niu, P.J. Shi, J. Xu, and Y. Wang, " Microstructure, thermal properties, and corrosion behaviors of FeSiBAlNi alloy fabricated by mechanical alloying and spark plasma sintering, " Int. J. Miner., Metall. Mater. 23, 77 (2016).
24. E. Colombini, R. Rosa, L. Trombi, M. Zadra, A. Casagrande, and P. Veronesi, " High entropy alloys obtained by field assisted powder metallurgy route: SPS and microwave heating , " Mater. Chem. Phys. 210, 78 (2018).
25. N. Kumar, C.S. Tiwary, and K. Biswas, " Preparation of nanocrystalline high-entropy alloys via cryomilling of cast ingots, " J. Mater. Sci. 53, 13411 (2018).
26. S. Varalakshmi, M. Kamaraj, and B.S. Murty, " Formation and stability of equiatomic and nonequiatomic nanocrystalline CuNiCoZnAlTi high-entropy alloys by mechanical alloying, " Metall. Mater. Trans. A 41, 2703 (2010).
27. M. Vaidya, A. Prasad, A. Parakh, and B.S. Murty, " Influence of sequence of elemental addition on phase evolution in nanocrystalline AlCoCrFeNi: Novel approach to alloy synthesis using mechanical alloying, " Mater. Des. 126, 37 (2017).
28. Y. Xie, H. Cheng, Q. Tang, W. Chen, W. Chen, and P. Dai, " Effects of N addition on microstructure and mechanical properties of CoCrFeNiMn high entropy alloy produced by mechanical alloying and vacuum hot pressing sintering, " Intermetallics 93, 228 (2018).
29. H. Cheng, W. Chen, X. Liu, Q. Tang, Y. Xie, and P. Dai, " Effect of Ti and C additions on the microstructure and mechanical properties of the FeCoCrNiMn high-entropy alloy, " Mater. Sci. Eng., A 719, 192 (2018).
30. S. Varalakshmi, M. Kamaraj, and B.S. Murty, " Processing and properties of nanocrystalline CuNiCoZnAlTi high entropy alloys by mechanical alloying, " Mater. Sci. Eng., A 527, 1027 (2010).
31. Z. Fu, W. Chen, Z. Chen, H. Wen, and E.J. Lavernia, " Influence of Ti addition and sintering method on microstructure and mechanical behavior of a medium-entropy Al0.6CoNiFe alloy, " Mater. Sci. Eng., A 619, 137 (2014).
32. V. Shivam, J. Basu, Y. Shadangi, M.K. Singh, and N.K. K. Mukhopadhyay, " Mechano-chemical synthesis, thermal stability and phase evolution in AlCoCrFeNiMn high entropy alloy, " J. Alloys Compd. 757, 87 (2018).
33. S. Varalakshmi, G. Appa Rao, M. Kamaraj, and B.S. Murty, " Hot consolidation and mechanical properties of nanocrystalline equiatomic AlFeTiCrZnCu high entropy alloy after mechanical alloying, " J. Mater. Sci. 45, 5158 (2010).
34. M. Omori, " Sintering, consolidation, reaction and crystal growth by the spark plasma system (SPS) , " Mater. Sci. Eng., A 287, 183 (2000).
35. M. Murali, S.P. Kumaresh Babu, J. Majhi, A. Vallimanalan, and R. Mahendran, " Processing and characterisation of nano crystalline AlCoCrCuFeTix high-entropy alloy, " Powder Metall. 61, 139 (2018).
36. S. Praveen, B.S. Murty, and R.S. Kottada, " Alloying behavior in multi-component AlCoCrCuFe and NiCoCrCuFe high entropy alloys, " Mater. Sci. Eng., A 534, 83 (2012).
37. S-H. Joo, H. Kato, M.J. Jang, J. Moon, E.B. Kim, S-J. Hong, and H.S. Kim, " Structure and properties of ultrafine-grained CoCrFeMnNi high-entropy alloys produced by mechanical alloying and spark plasma sintering, " J. Alloys Compd. 698, 591 (2017).
38. P. Wang, H. Cai, and X. Cheng, " Effect of Ni/Cr ratio on phase, microstructure and mechanical properties of NixCoCuFeCr2-x (x =1.0, 1.2, 1.5, 1.8 mol) high entropy alloys, " J. Alloys Compd. 662, 20 (2016).
39. M. Vaidya, K.G. Pradeep, B.S. Murty, G. Wilde, and S. V. Divinski, " Radioactive isotopes reveal a non sluggish kinetics of grain boundary diffusion in high entropy alloys, " Sci. Rep. 7, 1 (2017).
40. S. Praveen, B.S. Murty, and R.S. Kottada, " Phase evolution and densification behavior of nanocrystalline multicomponent high entropy alloys during spark plasma sintering, " JOM 65, 1797 (2013).
41. S. Praveen, A. Anupam, T. Sirasani, B.S. Murty, and R. S. Kottada, " Characterization of oxide dispersed AlCoCrFe high entropy alloy synthesized by mechanical alloying and spark plasma sintering, " Trans. Indian Inst. Met. 66, 369 (2013).
42. R.B. Mane, Y. Rajkumar, and B.B. Panigrahi, " Sintering mechanism of CoCrFeMnNi high-entropy alloy powders, " Powder Metall. 61, 131 (2018).
43. R.B. Mane and B.B. Panigrahi, " Sintering mechanisms of mechanically alloyed CoCrFeNi high-entropy alloy powders, " J. Mater. Res. 33, 3321 (2018).
44. R.B. Mane and B.B. Panigrahi, " Comparative study on sintering kinetics of as-milled and annealed CoCrFeNi high entropy alloy powders, " Mater. Chem. Phys. 210, 49 (2018).
45. R.B. Mane and B.B. Panigrahi, " Effect of alloying order on non- isothermal sintering kinetics of mechanically alloyed high entropy alloy powders, " Mater. Lett. 217, 131 (2018).
46. E. Colombini, M. Lassinantti Gualtieri, R. Rosa, F. Tarterini, M. Zadra, A. Casagrande, and P. Veronesi, " SPS-assisted synthesis of SIC and reinforced high entropy alloys: Reactivity of SIC and effects of pre-mechanical alloying and post-annealing treatment, " Powder Metall. 61, 64 (2018).
47. E.J. Pickering and N.G. Jones: High-entropy alloys, " A critical assessment of their founding principles and future prospects, " Int. Mater. Rev. 61, 183 (2016).
48. Z. Liu, Y. Lei, C. Gray, and G. Wang, " Examination of solid- solution phase formation rules for high entropy alloys from atomistic Monte Carlo simulations, " JOM 67, 2364 (2015).
49. Y. Zhang and Y.J. Zhou, " Solid solution formation criteria for high entropy alloys, " Mater. Sci. Forum 561–565, 1337 (2007).
50. S. Guo, C. Ng, J. Lu, and C.T. Liu, " Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys, " J. Appl. Phys. 109, 103505 (2011).
51. A. Kumar, P. Dhekne, A.K. Swarnakar, and M.K. Chopkar, " Analysis of Si addition on phase formation in AlCoCrCuFeNiSix high entropy alloys, " Mater. Lett. 188, 73 (2017).
52. B.S. Murty, J.W. Yeh, and S. Ranganathan, High-Entropy Alloys (Butterworth-Heinemann, London, UK, 2014).
53. S. Mohanty, T.N. Maity, S. Mukhopadhyay, S. Sarkar, N. P. Gurao, S. Bhowmick, and K. Biswas, " Powder metallurgical processing of equiatomic AlCoCrFeNi high entropy alloy: Microstructure and mechanical properties, " Mater. Sci. Eng., A 679, 299 (2017).
54. B.S. Murty and S. Ranganathan, " Novel materials synthesis by mechanical alloying/milling, " Int. Mater. Rev. 43, 101 (1998).
55. M. Zhang, W. Zhang, Y. Liu, B. Liu, and J. Wang, " FeCoCrNiMo high-entropy alloys prepared by powder metallurgy processing for diamond tool applications, " Powder Metall. 61, 123 (2018).
56. V. Shivam, J. Basu, Y. Shadangi, M.K. Singh, and N. K. Mukhoupadhyay, " Mechano-chemical synthesis, thermal stability and phase evolution in AlCoCrFeNiMn high entropy alloy, " J. Alloys Compd. 757, 20 (2016).
57. R.M. Pohan, B. Gwalani, J. Lee, T. Alam, J.Y. Hwang, H.J. Ryu, R. Banerjee, and S.H. Hong, " Microstructures and mechanical properties of mechanically alloyed and spark plasma sintered Al0.3CoCrFeMnNi high entropy alloy, " Mater. Chem. Phys. 210, 62 (2018).
58. M. Murali, S.P.K. Babu, B.J. Krishna, and A. Vallimanalan, " Synthesis and characterization of AlCoCrCuFeZnx high-entropy alloy by mechanical alloying, " Prog. Nat. Sci.: Mater. Int. 26, 380 (2016).
59. K.M. Youssef, A.J. Zaddach, C. Niu, D.L. Irving, and C. C. Koch, " A novel low-density, high-hardness, high-entropy alloy with close-packed single-phase nanocrystalline structures, " Mater. Res. Lett. 3, 95 (2014).
60. S. Fang, W. Chen, and Z. Fu, " Microstructure and mechanical properties of twinned Al0.5CrFeNiCo0.3C0.2 high entropy alloy processed by mechanical alloying and spark plasma sintering, " Mater. Des. 54, 973 (2014).
61. H. Baker and H. Okamoto, ASM Handbook: Alloy Phase Diagrams, Vol. 3 (ASM International, Materials Park, Ohio, 1992); p. 1741.
62. F.J. Baldenebro-Lopez, J.M. Herrera-Ramírez, S.P. Arredondo- Rea, C.D. Gómez-Esparza, and R. Martínez-Sánchez, " Simultaneous effect of mechanical alloying and arc-melting processes in the microstructure and hardness of an AlCoFeMoNiTi high-entropy alloy , " J. Alloys Compd. 643, S250 (2015).
63. M. Vaidya, K. Guruvidyathri, and B.S. Murty, " Phase formation and thermal stability of CoCrFeNi and CoCrFeMnNi equiatomic high entropy alloys, " J. Alloys Compd. 774, 856 (2019).
64. Y.L. Chen, Y.H. Hu, C.A. Hsieh, J.W. Yeh, and S.K. Chen, " Competition between elements during mechanical alloying in an octonary multi-principal-element alloy system, " J. Alloys Compd. 481, 768 (2009).
65. D. Kumar, O. Maulik, S. Kumar, Y.V.S.S. Prasad, andV. Kumar, " Phase and thermal study of equiatomic AlCuCrFeMnW high entropy alloy processed via spark plasma sintering, " Mater. Chem. Phys. 210, 71 (2018).
66. O. Maulik, D. Kumar, S. Kumar, D.M. Fabijanic, and V. Kumar, " Structural evolution of spark plasma sintered AlFeCuCrMgx (x = 0, 0.5, 1, 1.7) high entropy alloys, " Intermetallics 77, 46 (2016).
67. B. Cantor, I.T.H. Chang, P. Knight, and A.J.B. Vincent, " Microstructural development in equiatomic multicomponent alloys, " Mater. Sci. Eng., A 375–377, 213 (2004).
68. L. Ma, L. Wang, T. Zhang, and A. Inoue, " Bulk glass formation of Ti–Zr–Hf–Cu–M (M 5 Fe, Co, Ni) alloys, " Mater. Trans. 43, 277 (2002).
69. W. Ge, Y. Wang, C. Shang, Z. Zhang, and Y. Wang, " Microstructures and properties of equiatomic CuZr and CuZrAlTiNi bulk alloys fabricated by mechanical alloying and spark plasma sintering, " J. Mater. Sci. 52, 5726 (2017).
70. Y.L. Chen, C.W. Tsai, C.C. Juan, M.H. Chuang, J.W. Yeh, T. S. Chin, and S.K. Chen, " Amorphization of equimolar alloys with HCP elements during mechanical alloying, " J. Alloys Compd. 506, 210 (2010).
71. Y.L. Chen, Y.H. Hu, C.W. Tsai, C.A. Hsieh, S.W. Kao, J. W. Yeh, T.S. Chin, and S.K. Chen, " Alloying behavior of binary to octonary alloys based on Cu–Ni–Al–Co–Cr–Fe–Ti–Mo during mechanical alloying, " J. Alloys Compd. 477, 696 (2009).
72. Y.L. Chen, Y.H. Hu, C.W. Tsai, J.W. Yeh, S.K. Chen, and S.Y. Chang, " Structural evolution during mechanical milling and subsequent annealing of Cu–Ni–Al–Co–Cr–Fe–Ti alloys, " Mater. Chem. Phys. 118, 354 (2009).
73. A.W. Weeber and H. Bakker, " Amorphization by ball milling, " A review. Physica B 153, 93–135 (1988).
74. W. Wang, B. Li, S. Zhai, J. Xu, Z. Niu, J. Xu, and Y. Wang, " Alloying behavior and properties of FeSiBAlNiCox high entropy alloys fabricated by mechanical alloying and spark plasma sintering, " Met. Mater. Int. 24, 1112–1119 (2018).
75. J. Xu, C. Shang, W. Ge, H. Jia, P.K. Liaw, and Y. Wang, " Effects of elemental addition on the microstructure, thermal stability, and magnetic properties of the mechanically alloyed FeSiBAlNi high entropy alloys, " Adv. Powder Technol. 27, 1418 (2016).
76. J. Xu, E. Axinte, Z. Zhao, and Y. Wang, " Effect of C and Ce addition on the microstructure and magnetic property of the mechanically alloyed FeSiBAlNi high entropy alloys, " J. Magn. Magn. Mater. 414, 59 (2016).
77. W. juan Ge, X. ting Li, P. Li, P. chao Qiao, J. wei Du, S. Xu, and Y. Wang , " Microstructures and properties of CuZrAl and CuZrAlTi medium entropy alloys prepared by mechanical alloying and spark plasma sintering, " J. Iron Steel Res. Int. 24, 448 (2017).
78. L.C. Zhang, K.B. Kim, P. Yu, W.Y. Zhang, U. Kunz, and J. Eckert, " Amorphization in mechanically alloyed (Ti, Zr, Nb)–(Cu, Ni)–Al equiatomic alloys, " J. Alloys Compd. 428, 157 (2007).
79. X. Zhu, X. Zhou, S. Yu, C. Wei, J. Xu, and Y. Wang, " Effects of annealing on the microstructure and magnetic property of the mechanically alloyed FeSiBAlNiM (M = Co, Cu, Ag) amorphous high entropy alloys, " J. Magn. Magn. Mater. 430, 59 (2017).
80. A. Kumar, A.K.A.K. Swarnakar, and M. Chopkar, " Phase evolution and mechanical properties of AlCoCrFeNiSix high- entropy alloys synthesized by mechanical alloying and spark plasma sintering, " J. Mater. Eng. Perform. 27, 3304 (2018).
81. V.K. Portnoi, A.V. Leonov, S.E. Filippova, A.N. Streletskii, and A.I. Logacheva, " Mechanochemical synthesis and heating-induced transformations of a high-entropy Cr–Fe–Co–Ni–Al–Ti alloy, " Inorg. Mater. 50, 1202 (2014).
82. S.R. Shatynski, " The thermochemistry of transition metal carbides, " Oxid. Met. 13, 105 (1979).
83. N.T.B.N. Koundinya, C. Sajith Babu, K. Sivaprasad, P. Susila, N. Kishore Babu, and J. Baburao, " Phase evolution and thermal analysis of nanocrystalline AlCrCuFeNiZn high entropy alloy produced by mechanical alloying, " J. Mater. Eng. Perform. 22, 3077 (2013).
84. S. Mridha, S. Samal, P.Y. Khan, K. Biswas, and Govind, " Processing and consolidation of nanocrystalline Cu–Zn–Ti–Fe–Cr high-entropy alloys via mechanical alloying, " Metall. Mater. Trans. A 44, 4532 (2013).
85. O. Maulik and V. Kumar, " Synthesis of AlFeCuCrMgx (x = 0, 0.5, 1, 1.7) alloy powders by mechanical alloying, " Mater. Charact. 110, 116 (2015).
86. Q. Yang, Y. Tang, Y. Wen, Q. Zhang, D. Deng, and X. Nai, " Microstructures and properties of CoCrCuFeNiMox high-entropy alloys fabricated by mechanical alloying and spark plasma sintering, " Powder Metall. 61, 115 (2018).
87. S. Praveen, B.S. Murty, and R.S. Kottada, " Effect of molybdenum and niobium on the phase formation and hardness of nanocrystalline CoCrFeNi high entropy alloys, " J. Nanosci. Nanotechnol. 14, 8106 (2014).
88. J. Wang, Z. Zheng, J. Xu, and Y. Wang, " Microstructure and magnetic properties of mechanically alloyed FeSiBAlNi(Nb) high entropy alloys, " J. Magn. Magn. Mater. 355, 58 (2014).
89. S. Nam, M.J. Kim, J.Y. Hwang, and H. Choi, " Strengthening of Al0.15CoCrCuFeNiTix–C (x = 0, 1, 2) high-entropy alloys by grain refinement and using nanoscale carbides via powder metallurgical route, " J. Alloys Compd. 762, 29 (2018).
90. N.H. Tariq, M. Naeem, B.A. Hasan, J.I. Akhter, and M. Siddique, " Effect of W and Zr on structural, thermal and magnetic properties of AlCoCrCuFeNi high entropy alloy, " J. Alloys Compd. 556, 79 (2013).
91. S. Praveen, A. Anupam, R. Tilak, and R.S. Kottada, " Phase evolution and thermal stability of AlCoCrFe high entropy alloy with carbon as unsolicited addition from milling media, " Mater. Chem. Phys. 210, 57 (2018).
92. R. Sriharitha, B.S. Murty, and R.S. Kottada, " Phase formation in mechanically alloyed AlxCoCrCuFeNi (x = 0.45, 1, 2.5, 5 mol) high entropy alloys, " Intermetallics 32, 119 (2013).
93. V. Shivam, J. Basu, V.K. Pandey, Y. Shadangi, and N. K. Mukhopadhyay, " Alloying behaviour, thermal stability and phase evolution in quinary AlCoCrFeNi high entropy alloy, " Adv. Powder Technol. 29, 2221 (2018).
94. K.B. Zhang, Z.Y. Fu, J.Y. Zhang, J. Shi, W.M. Wang, H. Wang, Y.C. Wang, and Q.J. Zhang, " Nanocrystalline CoCrFeNiCuAl high-entropy solid solution synthesized by mechanical alloying, " J. Alloys Compd. 485, 34 (2009).
95. S. Praveen, J. Basu, S. Kashyap, and R.S. Kottada, " Exceptional resistance to grain growth in nanocrystalline CoCrFeNi high entropy alloy at high homologous temperatures, " J. Alloys Compd. 662, 361 (2016).
96. R. Sriharitha, B.S. Murty, and R.S. Kottada, " Alloying, thermal stability and strengthening in spark plasma sintered AlxCoCrCuFeNi high entropy alloys, " J. Alloys Compd. 583, 419 (2014).
97. J. Wang, T. Guo, J. Li, W. Jia, and H. Kou, " Microstructure and mechanical properties of non-equilibrium solidified CoCrFeNi high entropy alloy, " Mater. Chem. Phys. 210, 192 (2018).
98. J.M. Zhu, H.M. Fu, H.F. Zhang, A.M. Wang, H. Li, and Z. Q. Hu, " Microstructure and compressive properties of multiprincipal component AlCoCrFeNiCx alloys, " J. Alloys Compd. 509, 3476 (2011).
99. Z. Fu, W. Chen, H. Wen, S. Morgan, F. Chen, B. Zheng, Y. Zhou, L. Zhang, and E.J. Lavernia, " Microstructure and mechanical behavior of a novel Co20Ni20Fe20Al20Ti20 alloy fabricated by mechanical alloying and spark plasma sintering, " Mater. Sci. Eng., A 644, 10 (2015).
100. I. Moravcik, L. Gouvea, V. Hornik, Z. Kovacova, M. Kitzmantel, E. Neubauer, and I. Dlouhy, " Synergic strengthening by oxide and coherent precipitate dispersions in high-entropy alloy prepared by powder metallurgy, " Scr. Mater. 157, 24 (2018).
101. Z. Fu, W. Chen, H. Wen, D. Zhang, Z. Chen, B. Zheng, Y. Zhou, and E.J. Lavernia, " Microstructure and strengthening mechanisms in an FCC structured single-phase nanocrystalline Co25Ni25Fe25Al7.5Cu17.5 high-entropy alloy, " Acta Mater. 107, 59 (2016).
102. H. Hadraba, Z. Chlup, A. Dlouhy, F. Dobes, P. Roupcova, M. Vilemova, and J. Matejicek, " Oxide dispersion strengthened CoCrFeNiMn high-entropy alloy, " Mater. Sci. Eng., A 689, 252 (2017).
103. Z. Chen, W. Chen, B. Wu, X. Cao, L. Liu, and Z. Fu, " Effects of Co and Ti on microstructure and mechanical behavior of Al0.75FeNiCrCo high entropy alloy prepared by mechanical alloying and spark plasma sintering, " Mater. Sci. Eng., A 648, 217 (2015).
104. Z.Q. Fu, W.P. Chen, S.C. Fang, D.Y. Zhang, H.Q. Xiao, and D. Z. Zhu, " Alloying behavior and deformation twinning in a CoNiFeCrAl0.6Ti0.4 high entropy alloy processed by spark plasma sintering, " J. Alloys Compd. 553, 316 (2013).
105. P. Wang, H. Cai, S. Zhou, and L. Xu, " Processing, microstructure and properties of Ni1.5CoCuFeCr0.5-xVx high entropy alloys with carbon introduced from process control agent, " J. Alloys Compd. 695, 462 (2017).
106. S. Mohanty, N.P. Gurao, and K. Biswas, " Sinter ageing of equiatomic Al20Co20Cu20Zn20Ni20 high entropy alloy via mechanical alloying, " Mater. Sci. Eng., A 617, 211 (2014).
107. Y. Zou, J.M. Wheeler, H. Ma, P. Okle, and R. Spolenak, " Nanocrystalline high-entropy alloys: A new paradigm in high- temperature strength and stability, " Nano Lett. 17, 1569 (2017).
108. S. Yadav, S. Sarkar, A. Aggarwal, A. Kumar, and K. Biswas, " Wear and mechanical properties of novel (CuCrFeTiZn)100-xPbx high entropy alloy composite via mechanical alloying and spark plasma sintering, " Wear 410–411, 93 (2018).
109. L.H. Tian, W. Xiong, C. Liu, S. Lu, and M. Fu, " Microstructure and wear behavior of atmospheric plasma-sprayed AlCoCrFeNiTi high-entropy alloy coating, " J. Mater. Eng. Perform. 25, 5513 (2016).
110. R.F. Zhao, B. Ren, G.P. Zhang, Z.X. Liu, and J. jian Zhang, " Effect of Co content on the phase transition and magnetic properties of CoxCrCuFeMnNi high-entropy alloy powders, " J. Magn. Magn. Mater. 468, 14 (2018).
111. P. Yang, Y. Liu, X. Zhao, J. Cheng, and H. Li, " Electromagnetic wave absorption properties of FeCoNiCrAl0.8 high entropy alloy powders and its amorphous structure prepared by high-energy ball milling, " J. Mater. Res. 31, 2398 (2016).
112. A.S. Sharma, S. Yadav, K. Biswas, and B. Basu: High-entropy alloys and metallic nanocomposites, " Processing challenges, microstructure development and property enhancement, " Mater. Sci. Eng., R 131, 1 (2018).
113. Y. Long, K. Su, J. Zhang, X. Liang, H. Peng, and X. Li, " Enhanced strength of a mechanical alloyed NbMoTaWVTi refractory high entropy alloy, " Materials 11, 1 (2018).
114. K. Vasanthakumar, N.S. Karthiselva, N.M. Chawake, and S. R. Bakshi, " Formation of TiCx during reactive spark plasma sintering of mechanically milled Ti/carbon nanotube mixtures, " J. Alloys Compd. 709, 829 (2017).
115. W. Sun, X. Huang, and A.A. Luo, " Phase formations in low density high entropy alloys, " Calphad 56, 19 (2017).
116. M. Vaidya, G. Mohan Muralikrishna, S.V. Divinski, and B. S. Murty, " Experimental assessment of the thermodynamic factor for diffusion in CoCrFeNi and CoCrFeMnNi high entropy alloys, " Scr. Mater. 157, 81 (2018)
117. M. Vaidya, K.G. Pradeep, B.S. Murty, G. Wilde, and S. V. Divinski, " Bulk tracer diffusion in CoCrFeNi and CoCrFeMnNi high entropy alloys, " Acta Mater. 146, 211 (2018).
118. S.V. Divinski, A. Pokoev, N. Esakkiraja, and A. Paul, " A mystery of “sluggish diffusion” in high-entropy alloys: The truth or a myth? , "Diffusion Foundations vol. 17, pp. 69-104 (2018).
119. D.B. Miracle and O.N. Senkov, " A critical review of high entropy alloys and related concepts, " Acta Mater. 122, 448 (2017).
120. C. Shang, E. Axinte, J. Sun, X. Li, P. Li, J. Du, P. Qiao, and Y. Wang, " CoCrFeNi(W1-xMox) high-entropy alloy coatings with excellent mechanical properties and corrosion resistance prepared by mechanical alloying and hot pressing sintering, " Mater. Des. 117, 193 (2017).
121. L. Tian, M. Fu, and W. Xiong, " Microstructural evolution of AlCoCrFeNiSi high-entropy alloy powder during mechanical alloying and its coating performance, " Materials 11, 320 (2018).
122. A.S.M. Ang, C.C. Berndt, M.L. Sesso, A. Anupam, S. Praveen, R.S. Kottada, and B.S. Murty: Plasma-sprayed high entropy alloys, " Microstructure and properties of AlCoCrFeNi and MnCoCrFeNi, " Metall. Mater. Trans. A 46, 791 (2014).
123. F.Y. Shu, S. Liu, H.Y. Zhao, W.X. He, S.H. Sui, J. Zhang, P. He, and B.S. Xu, " Structure and high-temperature property of amorphous composite coating synthesized by laser cladding FeCrCoNiSiB high-entropy alloy powder, " J. Alloys Compd. 731, 662 (2018).
124. H. Prasad, S. Singh, and B.B. Panigrahi, " Mechanical activated synthesis of alumina dispersed FeNiCoCrAlMn high entropy alloy, " J. Alloys Compd. 692, 720 (2017).
125. B. Zhang, Y. Duan, Y. Cui, G. Ma, T. Wang, and X. Dong, " Improving electromagnetic properties of FeCoNiSi0.4Al0.4 high entropy alloy powders via their tunable aspect ratio and elemental uniformity, " Mater. Des. 149, 173 (2018).
126. P. Yang, Y. Liu, X. Zhao, J. Cheng, and H. Li, " Electromagnetic wave absorption properties of mechanically alloyed FeCoNiCrAl high entropy alloy powders, " Adv. Powder Technol. 27, 1128 (2016).
127. W. Ji, J. Zhang, W. Wang, H. Wang, F. Zhang, Y. Wang, and Z. Fu, " Fabrication and properties of TiB2-based cermets by spark plasma sintering with CoCrFeNiTiAl high-entropy alloy as sintering aid, " J. Eur. Ceram. Soc. 35, 879 (2014).
128. G. Zhu, Y. Liu, and J. Ye, " Fabrication and properties of Ti(C, N)- based cermets with multi-component AlCoCrFeNi high-entropy alloys binder, " Mater. Lett. 113, 80 (2013).
129. Z. Tan, L. Wang, Y. Xue, P. Zhang, T. Cao, and X. Cheng, " High-entropy alloy particle reinforced Al-based amorphous alloy composite with ultrahigh strength prepared by spark plasma sintering, " Mater. Des. 109, 219 (2016).
130. S. Yang, X. Yan, K. Yang, and Z. Fu, " Effect of the addition of nano-Al2O3 on the microstructure and mechanical properties of twinned Al0.4FeCrCoNi1.2Ti0.3 alloys, " Vacuum 131, 69 (2016).
131. Yeh, J.W.; Chen, S.K.; Lin, S.J.; Gan, J.Y.; Chin, T.S.; Shun, T.T.; Tsau, C.H.; Chang, S.Y, "Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes, " Adv. Eng. Mater. 7, 6, 299–303(2004).
132. Yeh, J.-W.; Lin, S.-J.; Chin, T.-S.; Gan, J.-Y.; Chen, S.-K.; Shun, T.-T.; Tsau, C.-H.; Chou, S.-Y, " Formation of simple crystal structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V alloys with multiprincipal metallic elements, " Metall. Mater. Trans. A 35, 2533–2536 (2004).
133. Tong, C.-J.; Chen, Y.-L.; Yeh, J.-W.; Lin, S.-J.; Chen, S.-K.; Shun, T.-T.; Tsau, C.-H.; Chang, S.-Y, " Microstructure characterization of AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements, " Metall. Mater. Trans. A 36, 881–893(2005).
134. Chen, T.-K.; Shun, T.; Yeh, J.; Wong, M, " Nanostructured nitride films of multi-element high-entropy alloys by reactive DC sputtering, " Surf. Coat. Technol.188, 193–200(2004).
135. Tong, C.-J.; Chen, M.-R.; Yeh, J.-W.; Lin, S.-J.; Chen, S.-K.; Shun, T.-T.; Chang, S.-Y, " Mechanical performance of the AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements, " Metall. Mater.Trans. A 2005, 36, 1263–1271.
136. Huang, P.K.; Yeh, J.W.; Shun, T.T.; Chen, S.K, " Multi-Principal-Element Alloys with Improved Oxidation and Wear Resistance for Thermal Spray Coating, " Adv. Eng. Mater. 6, 74–78(2004).
137. Chen, Y.; Duval, T.; Hung, U.; Yeh, J.; Shih, H, " Microstructure and electrochemical properties of high entropy alloys-A comparison with type-304 stainless steel, " Corros. Sci.47, 2257–2279 (2005).
138. Chen, Y.; Hong, U.; Shih, H.; Yeh, J.; Duval, T, " Electrochemical kinetics of the high entropy alloys in aqueous environments-A comparison with type 304 stainless steel, " Corros. Sci. 47, 2679–2699 (2005).
139. Hsu, C.-Y.; Yeh, J.-W.; Chen, S.-K.; Shun, T.-T , " Wear resistance and high-temperature compression strength of Fcc CuCoNiCrAl0.5Fe alloy with boron addition, " Metall. Mater. Trans. A 35, 1465–1469 (2004).
140. Yang, X.; Zhang, Y.; Liaw, P , " Microstructure and compressive properties of NbTiVTaAlx high entropy alloys, " Proced. Eng. 36, 292–298(2012).
141. Senkov, O.; Scott, J.; Senkova, S.; Miracle, D.;Woodward, C, " Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy , " J. Alloy. Compd. 509, 6043–6048 (2011).
142. Lilensten, L.; Couzinié, J.; Perrière, L.; Bourgon, J.; Emery, N.; Guillot, I , " New structure in refractory high-entropy alloys, " Mater. Lett.132, 123–125 (2014).
143. C. Sawangrat, O. Yamaguchi, S.K. Vajpai, K. Ameyama, "Application of Harmonic Structure Design to Biomedical Co–Cr–Mo Alloy for Improved Mechanical Properties" Mater. Trans. 55, 99 (2014).
144. R. Feng, M.C. Gao, C. Lee, M. Mathes, T. Zuo, S. Chen, J.A. Hawk, Y. Zhang, P.K. Liaw, "Design of light-weight high-entropy alloys", Entropy.18(9), 333, (2016).
145. Li, Z.; Ludwig, A.; Savan, A.; Springer, H.; Raabe, D, " Combinatorial metallurgical synthesis and processing of high-entropy alloys, " J. Mater. Res. 33, 3156 −3169 (2018 ).
146. Stepanov, N.; Yurchenko, N.Y.; Shaysultanov, D.; Salishchev, G.; Tikhonovsky, M, " Effect of Al on structure and mechanical properties of AlxNbTiVZr (x = 0, 0.5, 1, 1.5) high entropy alloys, " Mater. Sci. Technol.31, 1184–1193 (2015).
147. Stepanov, N.; Shaysultanov, D.; Salishchev, G.; Tikhonovsky, M, " Structure and mechanical properties of a light-weight AlNbTiV high entropy alloy, " Mater. Lett. 142, 153–155 (2015).
148. Youssef KM , " A novel low-density, high-hardness, high-entropy alloy with close-packed single-phase nanocrystalline structures, " Materials Research Letters 3(2). 95-99 (2015).
149. M. Vaidya, S. Armugam, S. Kashyap, and B.S.S. Murty, " Amorphization in equiatomic high entropy alloys, " J. Non-Cryst. Solids. 413, 8 (2015).
150. Z. Fu, W. Chen, H. Wen, Z. Chen, and E.J. Lavernia, " Effects of Co and sintering method on microstructure and mechanical behavior of a high-entropy Al0.6NiFeCrCo alloy prepared by powder metallurgy, " J. Alloys Compd. 646, 175 (2015).
151. Y. Zhang, B. Zhang, K. Li, G.L. Zhao, and S.M. Guo, " Electromagnetic interference shielding effectiveness of high entropy AlCoCrFeNi alloy powder laden composites, " J. Alloys Compd. 734, 220 (2018).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top