1. W. Stevenson, Metals Handbook, 9th ed. ASM, Ohio (1985).
2. Y. Jien-Wei,"Recent progress in high entropy alloys, " Ann. Chim. Sci. Mat, vol. 31 , pp. 633-648 (2006).
3. J.- W. Yeh, "The Development of High-Entropy Alloys, " Hua Kang Journal of Engineering, vol.27, pp. 1-18 (2011).
4. 黃炳剛, "多元高熵合金於熱熔射塗層之研究," 碩士, 材料科學工程學系, 國立清華大學, 新竹市 (2003).5. C.D. Gómez-Esparza, F. Baldenebro-López, L. González- Rodelas, J. Baldenebro-López, and R. Martínez-Sánchez, "Series of nanocrystalline NiCoAlFe(Cr, Cu, Mo, Ti) high- entropy alloys produced by mechanical alloying, " Mater. Res. 19, 39 (2016).
6. C. Sun, P. Li, S. Xi, Y. Zhou, S. Li, and X. Yang, "A new type of high entropy alloy composite Fe18Ni23Co25Cr21Mo8WNb3C2 prepared by mechanical alloying and hot pressing sintering, " Mater. Sci. Eng., A. 728, 144 (2018).
7. q. Rogal, D. Kalita, A. Tarasek, P. Bobrowski, and F. Czerwinski, "Effect of SiC nano-particles on microstructure and mechanical properties of the CoCrFeMnNi high entropy alloy, " J. Alloys Compd. 708, 344 (2017).
8. A.J. Zaddach, C. Niu, A.A. Oni, M. Fan, J.M. LeBeau, D.L. Irving, and C.C. Koch, " Structure and magnetic properties of a multi-principal element Ni–Fe–Cr–Co–Zn–Mn alloy, " Intermetallics 68, 107 (2016).
9. Z. Fu, W. Chen, S. Fang, and X. Li, "Effect of Cr addition on the alloying behavior, microstructure and mechanical properties of twinned CoFeNiAl0.5Ti0.5 alloy," Mater. Sci. Eng., A 597, 204 (2014).
10. I. Moravcik, J. Cizek, P. Gavendova, S. Sheikh, S. Guo, and I.Dlouhy, "Effect of heat treatment on microstructure and mechanical properties of spark plasma sintered AlCoCrFeNiTi0.5 high entropy alloy, " Mater. Lett. 174, 53 (2016).
11. B. Wu, W. Chen, Z. Jiang, Z. Chen, and Z. Fu, "Influence of Ti addition on microstructure and mechanical behavior of a FCC- based Fe30Ni30Co30Mn10 alloy, " Mater. Sci. Eng., A 676, 492 (2016).
12. A. Dwivedi, C.C. Koch, and K.V. Rajulapati, "On the single phase fcc solid solution in nanocrystalline Cr–Nb–Ti–V–Zn high-entropy alloy, " Mater. Lett. 183, 44 (2016).
13. S. Zhang, Y. Sun, B. Ke, Y. Li, W. Ji, W. Wang, and Z. Fu, "Preparation and characterization of TiB2-(supra-nano-dual- phase) high-entropy alloy cermet by spark plasma sintering, " Metals 8, 58 (2018).
14. B. Kang, J. Lee, H.J. Ryu, and S.H. Hong, "Ultra-high strength WNbMoTaV high-entropy alloys with fine grain structure fabricated by powder metallurgical process, " Mater. Sci. Eng., A 712, 616 (2018).
15. W. Ge, B. Wu, S. Wang, S. Xu, C. Shang, Z. Zhang, and Y. Wang, " Characterization and properties of CuZrAlTiNi high entropy alloy coating obtained by mechanical alloying and vacuum hot pressing sintering," Adv. Powder Technol. 28, 2556 (2017).
16. Z. Fu, W. Chen, Z. Jiang, B.E. MacDonald, Y. Lin, F. Chen, L. Zhang, and E.J. Lavernia, "Influence of Cr removal on the microstructure and mechanical behaviour of a high-entropy Al0.8Ti0.2CoNiFeCr alloy fabricated by powder metallurgy," Powder Metall. 5899, 1 (2018).
17. C. Suryanarayana, " Mechanical alloying and milling, " Prog. Mater. Sci. 46, 1 (2001).
18. F. Salemi, M.H. Abbasi, and F. Karimzadeh, "Synthesis and thermodynamic analysis of nanostructured CuNiCoZnAl high entropy alloy produced by mechanical alloying, " J. Alloys Compd. 685, 278 (2016).
19. X.R. Tan, G.P. Zhang, Q. Zhi, and Z.X. Liu, "Effects of milling on the microstructure and hardness of Al2NbTi3V2Zr high- entropy alloy, " Mater. Des. 109, 27 (2016).
20. M. Vaidya, A. Karati, A. Marshal, K.G. Pradeep, and B. S. Murty, " Phase evolution and stability of nanocrystalline CoCrFeNi and CoCrFeMnNi high entropy alloys, " J. Alloys Compd. 770, 1004 (2019).
21. W. Ji, W. Wang, H. Wang, J. Zhang, Y. Wang, F. Zhang, and Z. Fu, " Alloying behavior and novel properties of CoCrFeNiMn high-entropy alloy fabricated by mechanical alloying and spark plasma sintering, " Intermetallics 56, 24 (2014).
22. J. Xu, Z.F. Zhao, and Y. Wang, " Effect of annealing treatment on the microstructure and magnetic properties of FeSiBAlNi(C, Ce) high entropy alloys, " Mater. Sci. Forum 849, 52 (2016).
23. H.L. Wang, T.X. Gao, J.Z. Niu, P.J. Shi, J. Xu, and Y. Wang, " Microstructure, thermal properties, and corrosion behaviors of FeSiBAlNi alloy fabricated by mechanical alloying and spark plasma sintering, " Int. J. Miner., Metall. Mater. 23, 77 (2016).
24. E. Colombini, R. Rosa, L. Trombi, M. Zadra, A. Casagrande, and P. Veronesi, " High entropy alloys obtained by field assisted powder metallurgy route: SPS and microwave heating , " Mater. Chem. Phys. 210, 78 (2018).
25. N. Kumar, C.S. Tiwary, and K. Biswas, " Preparation of nanocrystalline high-entropy alloys via cryomilling of cast ingots, " J. Mater. Sci. 53, 13411 (2018).
26. S. Varalakshmi, M. Kamaraj, and B.S. Murty, " Formation and stability of equiatomic and nonequiatomic nanocrystalline CuNiCoZnAlTi high-entropy alloys by mechanical alloying, " Metall. Mater. Trans. A 41, 2703 (2010).
27. M. Vaidya, A. Prasad, A. Parakh, and B.S. Murty, " Influence of sequence of elemental addition on phase evolution in nanocrystalline AlCoCrFeNi: Novel approach to alloy synthesis using mechanical alloying, " Mater. Des. 126, 37 (2017).
28. Y. Xie, H. Cheng, Q. Tang, W. Chen, W. Chen, and P. Dai, " Effects of N addition on microstructure and mechanical properties of CoCrFeNiMn high entropy alloy produced by mechanical alloying and vacuum hot pressing sintering, " Intermetallics 93, 228 (2018).
29. H. Cheng, W. Chen, X. Liu, Q. Tang, Y. Xie, and P. Dai, " Effect of Ti and C additions on the microstructure and mechanical properties of the FeCoCrNiMn high-entropy alloy, " Mater. Sci. Eng., A 719, 192 (2018).
30. S. Varalakshmi, M. Kamaraj, and B.S. Murty, " Processing and properties of nanocrystalline CuNiCoZnAlTi high entropy alloys by mechanical alloying, " Mater. Sci. Eng., A 527, 1027 (2010).
31. Z. Fu, W. Chen, Z. Chen, H. Wen, and E.J. Lavernia, " Influence of Ti addition and sintering method on microstructure and mechanical behavior of a medium-entropy Al0.6CoNiFe alloy, " Mater. Sci. Eng., A 619, 137 (2014).
32. V. Shivam, J. Basu, Y. Shadangi, M.K. Singh, and N.K. K. Mukhopadhyay, " Mechano-chemical synthesis, thermal stability and phase evolution in AlCoCrFeNiMn high entropy alloy, " J. Alloys Compd. 757, 87 (2018).
33. S. Varalakshmi, G. Appa Rao, M. Kamaraj, and B.S. Murty, " Hot consolidation and mechanical properties of nanocrystalline equiatomic AlFeTiCrZnCu high entropy alloy after mechanical alloying, " J. Mater. Sci. 45, 5158 (2010).
34. M. Omori, " Sintering, consolidation, reaction and crystal growth by the spark plasma system (SPS) , " Mater. Sci. Eng., A 287, 183 (2000).
35. M. Murali, S.P. Kumaresh Babu, J. Majhi, A. Vallimanalan, and R. Mahendran, " Processing and characterisation of nano crystalline AlCoCrCuFeTix high-entropy alloy, " Powder Metall. 61, 139 (2018).
36. S. Praveen, B.S. Murty, and R.S. Kottada, " Alloying behavior in multi-component AlCoCrCuFe and NiCoCrCuFe high entropy alloys, " Mater. Sci. Eng., A 534, 83 (2012).
37. S-H. Joo, H. Kato, M.J. Jang, J. Moon, E.B. Kim, S-J. Hong, and H.S. Kim, " Structure and properties of ultrafine-grained CoCrFeMnNi high-entropy alloys produced by mechanical alloying and spark plasma sintering, " J. Alloys Compd. 698, 591 (2017).
38. P. Wang, H. Cai, and X. Cheng, " Effect of Ni/Cr ratio on phase, microstructure and mechanical properties of NixCoCuFeCr2-x (x =1.0, 1.2, 1.5, 1.8 mol) high entropy alloys, " J. Alloys Compd. 662, 20 (2016).
39. M. Vaidya, K.G. Pradeep, B.S. Murty, G. Wilde, and S. V. Divinski, " Radioactive isotopes reveal a non sluggish kinetics of grain boundary diffusion in high entropy alloys, " Sci. Rep. 7, 1 (2017).
40. S. Praveen, B.S. Murty, and R.S. Kottada, " Phase evolution and densification behavior of nanocrystalline multicomponent high entropy alloys during spark plasma sintering, " JOM 65, 1797 (2013).
41. S. Praveen, A. Anupam, T. Sirasani, B.S. Murty, and R. S. Kottada, " Characterization of oxide dispersed AlCoCrFe high entropy alloy synthesized by mechanical alloying and spark plasma sintering, " Trans. Indian Inst. Met. 66, 369 (2013).
42. R.B. Mane, Y. Rajkumar, and B.B. Panigrahi, " Sintering mechanism of CoCrFeMnNi high-entropy alloy powders, " Powder Metall. 61, 131 (2018).
43. R.B. Mane and B.B. Panigrahi, " Sintering mechanisms of mechanically alloyed CoCrFeNi high-entropy alloy powders, " J. Mater. Res. 33, 3321 (2018).
44. R.B. Mane and B.B. Panigrahi, " Comparative study on sintering kinetics of as-milled and annealed CoCrFeNi high entropy alloy powders, " Mater. Chem. Phys. 210, 49 (2018).
45. R.B. Mane and B.B. Panigrahi, " Effect of alloying order on non- isothermal sintering kinetics of mechanically alloyed high entropy alloy powders, " Mater. Lett. 217, 131 (2018).
46. E. Colombini, M. Lassinantti Gualtieri, R. Rosa, F. Tarterini, M. Zadra, A. Casagrande, and P. Veronesi, " SPS-assisted synthesis of SIC and reinforced high entropy alloys: Reactivity of SIC and effects of pre-mechanical alloying and post-annealing treatment, " Powder Metall. 61, 64 (2018).
47. E.J. Pickering and N.G. Jones: High-entropy alloys, " A critical assessment of their founding principles and future prospects, " Int. Mater. Rev. 61, 183 (2016).
48. Z. Liu, Y. Lei, C. Gray, and G. Wang, " Examination of solid- solution phase formation rules for high entropy alloys from atomistic Monte Carlo simulations, " JOM 67, 2364 (2015).
49. Y. Zhang and Y.J. Zhou, " Solid solution formation criteria for high entropy alloys, " Mater. Sci. Forum 561–565, 1337 (2007).
50. S. Guo, C. Ng, J. Lu, and C.T. Liu, " Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys, " J. Appl. Phys. 109, 103505 (2011).
51. A. Kumar, P. Dhekne, A.K. Swarnakar, and M.K. Chopkar, " Analysis of Si addition on phase formation in AlCoCrCuFeNiSix high entropy alloys, " Mater. Lett. 188, 73 (2017).
52. B.S. Murty, J.W. Yeh, and S. Ranganathan, High-Entropy Alloys (Butterworth-Heinemann, London, UK, 2014).
53. S. Mohanty, T.N. Maity, S. Mukhopadhyay, S. Sarkar, N. P. Gurao, S. Bhowmick, and K. Biswas, " Powder metallurgical processing of equiatomic AlCoCrFeNi high entropy alloy: Microstructure and mechanical properties, " Mater. Sci. Eng., A 679, 299 (2017).
54. B.S. Murty and S. Ranganathan, " Novel materials synthesis by mechanical alloying/milling, " Int. Mater. Rev. 43, 101 (1998).
55. M. Zhang, W. Zhang, Y. Liu, B. Liu, and J. Wang, " FeCoCrNiMo high-entropy alloys prepared by powder metallurgy processing for diamond tool applications, " Powder Metall. 61, 123 (2018).
56. V. Shivam, J. Basu, Y. Shadangi, M.K. Singh, and N. K. Mukhoupadhyay, " Mechano-chemical synthesis, thermal stability and phase evolution in AlCoCrFeNiMn high entropy alloy, " J. Alloys Compd. 757, 20 (2016).
57. R.M. Pohan, B. Gwalani, J. Lee, T. Alam, J.Y. Hwang, H.J. Ryu, R. Banerjee, and S.H. Hong, " Microstructures and mechanical properties of mechanically alloyed and spark plasma sintered Al0.3CoCrFeMnNi high entropy alloy, " Mater. Chem. Phys. 210, 62 (2018).
58. M. Murali, S.P.K. Babu, B.J. Krishna, and A. Vallimanalan, " Synthesis and characterization of AlCoCrCuFeZnx high-entropy alloy by mechanical alloying, " Prog. Nat. Sci.: Mater. Int. 26, 380 (2016).
59. K.M. Youssef, A.J. Zaddach, C. Niu, D.L. Irving, and C. C. Koch, " A novel low-density, high-hardness, high-entropy alloy with close-packed single-phase nanocrystalline structures, " Mater. Res. Lett. 3, 95 (2014).
60. S. Fang, W. Chen, and Z. Fu, " Microstructure and mechanical properties of twinned Al0.5CrFeNiCo0.3C0.2 high entropy alloy processed by mechanical alloying and spark plasma sintering, " Mater. Des. 54, 973 (2014).
61. H. Baker and H. Okamoto, ASM Handbook: Alloy Phase Diagrams, Vol. 3 (ASM International, Materials Park, Ohio, 1992); p. 1741.
62. F.J. Baldenebro-Lopez, J.M. Herrera-Ramírez, S.P. Arredondo- Rea, C.D. Gómez-Esparza, and R. Martínez-Sánchez, " Simultaneous effect of mechanical alloying and arc-melting processes in the microstructure and hardness of an AlCoFeMoNiTi high-entropy alloy , " J. Alloys Compd. 643, S250 (2015).
63. M. Vaidya, K. Guruvidyathri, and B.S. Murty, " Phase formation and thermal stability of CoCrFeNi and CoCrFeMnNi equiatomic high entropy alloys, " J. Alloys Compd. 774, 856 (2019).
64. Y.L. Chen, Y.H. Hu, C.A. Hsieh, J.W. Yeh, and S.K. Chen, " Competition between elements during mechanical alloying in an octonary multi-principal-element alloy system, " J. Alloys Compd. 481, 768 (2009).
65. D. Kumar, O. Maulik, S. Kumar, Y.V.S.S. Prasad, andV. Kumar, " Phase and thermal study of equiatomic AlCuCrFeMnW high entropy alloy processed via spark plasma sintering, " Mater. Chem. Phys. 210, 71 (2018).
66. O. Maulik, D. Kumar, S. Kumar, D.M. Fabijanic, and V. Kumar, " Structural evolution of spark plasma sintered AlFeCuCrMgx (x = 0, 0.5, 1, 1.7) high entropy alloys, " Intermetallics 77, 46 (2016).
67. B. Cantor, I.T.H. Chang, P. Knight, and A.J.B. Vincent, " Microstructural development in equiatomic multicomponent alloys, " Mater. Sci. Eng., A 375–377, 213 (2004).
68. L. Ma, L. Wang, T. Zhang, and A. Inoue, " Bulk glass formation of Ti–Zr–Hf–Cu–M (M 5 Fe, Co, Ni) alloys, " Mater. Trans. 43, 277 (2002).
69. W. Ge, Y. Wang, C. Shang, Z. Zhang, and Y. Wang, " Microstructures and properties of equiatomic CuZr and CuZrAlTiNi bulk alloys fabricated by mechanical alloying and spark plasma sintering, " J. Mater. Sci. 52, 5726 (2017).
70. Y.L. Chen, C.W. Tsai, C.C. Juan, M.H. Chuang, J.W. Yeh, T. S. Chin, and S.K. Chen, " Amorphization of equimolar alloys with HCP elements during mechanical alloying, " J. Alloys Compd. 506, 210 (2010).
71. Y.L. Chen, Y.H. Hu, C.W. Tsai, C.A. Hsieh, S.W. Kao, J. W. Yeh, T.S. Chin, and S.K. Chen, " Alloying behavior of binary to octonary alloys based on Cu–Ni–Al–Co–Cr–Fe–Ti–Mo during mechanical alloying, " J. Alloys Compd. 477, 696 (2009).
72. Y.L. Chen, Y.H. Hu, C.W. Tsai, J.W. Yeh, S.K. Chen, and S.Y. Chang, " Structural evolution during mechanical milling and subsequent annealing of Cu–Ni–Al–Co–Cr–Fe–Ti alloys, " Mater. Chem. Phys. 118, 354 (2009).
73. A.W. Weeber and H. Bakker, " Amorphization by ball milling, " A review. Physica B 153, 93–135 (1988).
74. W. Wang, B. Li, S. Zhai, J. Xu, Z. Niu, J. Xu, and Y. Wang, " Alloying behavior and properties of FeSiBAlNiCox high entropy alloys fabricated by mechanical alloying and spark plasma sintering, " Met. Mater. Int. 24, 1112–1119 (2018).
75. J. Xu, C. Shang, W. Ge, H. Jia, P.K. Liaw, and Y. Wang, " Effects of elemental addition on the microstructure, thermal stability, and magnetic properties of the mechanically alloyed FeSiBAlNi high entropy alloys, " Adv. Powder Technol. 27, 1418 (2016).
76. J. Xu, E. Axinte, Z. Zhao, and Y. Wang, " Effect of C and Ce addition on the microstructure and magnetic property of the mechanically alloyed FeSiBAlNi high entropy alloys, " J. Magn. Magn. Mater. 414, 59 (2016).
77. W. juan Ge, X. ting Li, P. Li, P. chao Qiao, J. wei Du, S. Xu, and Y. Wang , " Microstructures and properties of CuZrAl and CuZrAlTi medium entropy alloys prepared by mechanical alloying and spark plasma sintering, " J. Iron Steel Res. Int. 24, 448 (2017).
78. L.C. Zhang, K.B. Kim, P. Yu, W.Y. Zhang, U. Kunz, and J. Eckert, " Amorphization in mechanically alloyed (Ti, Zr, Nb)–(Cu, Ni)–Al equiatomic alloys, " J. Alloys Compd. 428, 157 (2007).
79. X. Zhu, X. Zhou, S. Yu, C. Wei, J. Xu, and Y. Wang, " Effects of annealing on the microstructure and magnetic property of the mechanically alloyed FeSiBAlNiM (M = Co, Cu, Ag) amorphous high entropy alloys, " J. Magn. Magn. Mater. 430, 59 (2017).
80. A. Kumar, A.K.A.K. Swarnakar, and M. Chopkar, " Phase evolution and mechanical properties of AlCoCrFeNiSix high- entropy alloys synthesized by mechanical alloying and spark plasma sintering, " J. Mater. Eng. Perform. 27, 3304 (2018).
81. V.K. Portnoi, A.V. Leonov, S.E. Filippova, A.N. Streletskii, and A.I. Logacheva, " Mechanochemical synthesis and heating-induced transformations of a high-entropy Cr–Fe–Co–Ni–Al–Ti alloy, " Inorg. Mater. 50, 1202 (2014).
82. S.R. Shatynski, " The thermochemistry of transition metal carbides, " Oxid. Met. 13, 105 (1979).
83. N.T.B.N. Koundinya, C. Sajith Babu, K. Sivaprasad, P. Susila, N. Kishore Babu, and J. Baburao, " Phase evolution and thermal analysis of nanocrystalline AlCrCuFeNiZn high entropy alloy produced by mechanical alloying, " J. Mater. Eng. Perform. 22, 3077 (2013).
84. S. Mridha, S. Samal, P.Y. Khan, K. Biswas, and Govind, " Processing and consolidation of nanocrystalline Cu–Zn–Ti–Fe–Cr high-entropy alloys via mechanical alloying, " Metall. Mater. Trans. A 44, 4532 (2013).
85. O. Maulik and V. Kumar, " Synthesis of AlFeCuCrMgx (x = 0, 0.5, 1, 1.7) alloy powders by mechanical alloying, " Mater. Charact. 110, 116 (2015).
86. Q. Yang, Y. Tang, Y. Wen, Q. Zhang, D. Deng, and X. Nai, " Microstructures and properties of CoCrCuFeNiMox high-entropy alloys fabricated by mechanical alloying and spark plasma sintering, " Powder Metall. 61, 115 (2018).
87. S. Praveen, B.S. Murty, and R.S. Kottada, " Effect of molybdenum and niobium on the phase formation and hardness of nanocrystalline CoCrFeNi high entropy alloys, " J. Nanosci. Nanotechnol. 14, 8106 (2014).
88. J. Wang, Z. Zheng, J. Xu, and Y. Wang, " Microstructure and magnetic properties of mechanically alloyed FeSiBAlNi(Nb) high entropy alloys, " J. Magn. Magn. Mater. 355, 58 (2014).
89. S. Nam, M.J. Kim, J.Y. Hwang, and H. Choi, " Strengthening of Al0.15CoCrCuFeNiTix–C (x = 0, 1, 2) high-entropy alloys by grain refinement and using nanoscale carbides via powder metallurgical route, " J. Alloys Compd. 762, 29 (2018).
90. N.H. Tariq, M. Naeem, B.A. Hasan, J.I. Akhter, and M. Siddique, " Effect of W and Zr on structural, thermal and magnetic properties of AlCoCrCuFeNi high entropy alloy, " J. Alloys Compd. 556, 79 (2013).
91. S. Praveen, A. Anupam, R. Tilak, and R.S. Kottada, " Phase evolution and thermal stability of AlCoCrFe high entropy alloy with carbon as unsolicited addition from milling media, " Mater. Chem. Phys. 210, 57 (2018).
92. R. Sriharitha, B.S. Murty, and R.S. Kottada, " Phase formation in mechanically alloyed AlxCoCrCuFeNi (x = 0.45, 1, 2.5, 5 mol) high entropy alloys, " Intermetallics 32, 119 (2013).
93. V. Shivam, J. Basu, V.K. Pandey, Y. Shadangi, and N. K. Mukhopadhyay, " Alloying behaviour, thermal stability and phase evolution in quinary AlCoCrFeNi high entropy alloy, " Adv. Powder Technol. 29, 2221 (2018).
94. K.B. Zhang, Z.Y. Fu, J.Y. Zhang, J. Shi, W.M. Wang, H. Wang, Y.C. Wang, and Q.J. Zhang, " Nanocrystalline CoCrFeNiCuAl high-entropy solid solution synthesized by mechanical alloying, " J. Alloys Compd. 485, 34 (2009).
95. S. Praveen, J. Basu, S. Kashyap, and R.S. Kottada, " Exceptional resistance to grain growth in nanocrystalline CoCrFeNi high entropy alloy at high homologous temperatures, " J. Alloys Compd. 662, 361 (2016).
96. R. Sriharitha, B.S. Murty, and R.S. Kottada, " Alloying, thermal stability and strengthening in spark plasma sintered AlxCoCrCuFeNi high entropy alloys, " J. Alloys Compd. 583, 419 (2014).
97. J. Wang, T. Guo, J. Li, W. Jia, and H. Kou, " Microstructure and mechanical properties of non-equilibrium solidified CoCrFeNi high entropy alloy, " Mater. Chem. Phys. 210, 192 (2018).
98. J.M. Zhu, H.M. Fu, H.F. Zhang, A.M. Wang, H. Li, and Z. Q. Hu, " Microstructure and compressive properties of multiprincipal component AlCoCrFeNiCx alloys, " J. Alloys Compd. 509, 3476 (2011).
99. Z. Fu, W. Chen, H. Wen, S. Morgan, F. Chen, B. Zheng, Y. Zhou, L. Zhang, and E.J. Lavernia, " Microstructure and mechanical behavior of a novel Co20Ni20Fe20Al20Ti20 alloy fabricated by mechanical alloying and spark plasma sintering, " Mater. Sci. Eng., A 644, 10 (2015).
100. I. Moravcik, L. Gouvea, V. Hornik, Z. Kovacova, M. Kitzmantel, E. Neubauer, and I. Dlouhy, " Synergic strengthening by oxide and coherent precipitate dispersions in high-entropy alloy prepared by powder metallurgy, " Scr. Mater. 157, 24 (2018).
101. Z. Fu, W. Chen, H. Wen, D. Zhang, Z. Chen, B. Zheng, Y. Zhou, and E.J. Lavernia, " Microstructure and strengthening mechanisms in an FCC structured single-phase nanocrystalline Co25Ni25Fe25Al7.5Cu17.5 high-entropy alloy, " Acta Mater. 107, 59 (2016).
102. H. Hadraba, Z. Chlup, A. Dlouhy, F. Dobes, P. Roupcova, M. Vilemova, and J. Matejicek, " Oxide dispersion strengthened CoCrFeNiMn high-entropy alloy, " Mater. Sci. Eng., A 689, 252 (2017).
103. Z. Chen, W. Chen, B. Wu, X. Cao, L. Liu, and Z. Fu, " Effects of Co and Ti on microstructure and mechanical behavior of Al0.75FeNiCrCo high entropy alloy prepared by mechanical alloying and spark plasma sintering, " Mater. Sci. Eng., A 648, 217 (2015).
104. Z.Q. Fu, W.P. Chen, S.C. Fang, D.Y. Zhang, H.Q. Xiao, and D. Z. Zhu, " Alloying behavior and deformation twinning in a CoNiFeCrAl0.6Ti0.4 high entropy alloy processed by spark plasma sintering, " J. Alloys Compd. 553, 316 (2013).
105. P. Wang, H. Cai, S. Zhou, and L. Xu, " Processing, microstructure and properties of Ni1.5CoCuFeCr0.5-xVx high entropy alloys with carbon introduced from process control agent, " J. Alloys Compd. 695, 462 (2017).
106. S. Mohanty, N.P. Gurao, and K. Biswas, " Sinter ageing of equiatomic Al20Co20Cu20Zn20Ni20 high entropy alloy via mechanical alloying, " Mater. Sci. Eng., A 617, 211 (2014).
107. Y. Zou, J.M. Wheeler, H. Ma, P. Okle, and R. Spolenak, " Nanocrystalline high-entropy alloys: A new paradigm in high- temperature strength and stability, " Nano Lett. 17, 1569 (2017).
108. S. Yadav, S. Sarkar, A. Aggarwal, A. Kumar, and K. Biswas, " Wear and mechanical properties of novel (CuCrFeTiZn)100-xPbx high entropy alloy composite via mechanical alloying and spark plasma sintering, " Wear 410–411, 93 (2018).
109. L.H. Tian, W. Xiong, C. Liu, S. Lu, and M. Fu, " Microstructure and wear behavior of atmospheric plasma-sprayed AlCoCrFeNiTi high-entropy alloy coating, " J. Mater. Eng. Perform. 25, 5513 (2016).
110. R.F. Zhao, B. Ren, G.P. Zhang, Z.X. Liu, and J. jian Zhang, " Effect of Co content on the phase transition and magnetic properties of CoxCrCuFeMnNi high-entropy alloy powders, " J. Magn. Magn. Mater. 468, 14 (2018).
111. P. Yang, Y. Liu, X. Zhao, J. Cheng, and H. Li, " Electromagnetic wave absorption properties of FeCoNiCrAl0.8 high entropy alloy powders and its amorphous structure prepared by high-energy ball milling, " J. Mater. Res. 31, 2398 (2016).
112. A.S. Sharma, S. Yadav, K. Biswas, and B. Basu: High-entropy alloys and metallic nanocomposites, " Processing challenges, microstructure development and property enhancement, " Mater. Sci. Eng., R 131, 1 (2018).
113. Y. Long, K. Su, J. Zhang, X. Liang, H. Peng, and X. Li, " Enhanced strength of a mechanical alloyed NbMoTaWVTi refractory high entropy alloy, " Materials 11, 1 (2018).
114. K. Vasanthakumar, N.S. Karthiselva, N.M. Chawake, and S. R. Bakshi, " Formation of TiCx during reactive spark plasma sintering of mechanically milled Ti/carbon nanotube mixtures, " J. Alloys Compd. 709, 829 (2017).
115. W. Sun, X. Huang, and A.A. Luo, " Phase formations in low density high entropy alloys, " Calphad 56, 19 (2017).
116. M. Vaidya, G. Mohan Muralikrishna, S.V. Divinski, and B. S. Murty, " Experimental assessment of the thermodynamic factor for diffusion in CoCrFeNi and CoCrFeMnNi high entropy alloys, " Scr. Mater. 157, 81 (2018)
117. M. Vaidya, K.G. Pradeep, B.S. Murty, G. Wilde, and S. V. Divinski, " Bulk tracer diffusion in CoCrFeNi and CoCrFeMnNi high entropy alloys, " Acta Mater. 146, 211 (2018).
118. S.V. Divinski, A. Pokoev, N. Esakkiraja, and A. Paul, " A mystery of “sluggish diffusion” in high-entropy alloys: The truth or a myth? , "Diffusion Foundations vol. 17, pp. 69-104 (2018).
119. D.B. Miracle and O.N. Senkov, " A critical review of high entropy alloys and related concepts, " Acta Mater. 122, 448 (2017).
120. C. Shang, E. Axinte, J. Sun, X. Li, P. Li, J. Du, P. Qiao, and Y. Wang, " CoCrFeNi(W1-xMox) high-entropy alloy coatings with excellent mechanical properties and corrosion resistance prepared by mechanical alloying and hot pressing sintering, " Mater. Des. 117, 193 (2017).
121. L. Tian, M. Fu, and W. Xiong, " Microstructural evolution of AlCoCrFeNiSi high-entropy alloy powder during mechanical alloying and its coating performance, " Materials 11, 320 (2018).
122. A.S.M. Ang, C.C. Berndt, M.L. Sesso, A. Anupam, S. Praveen, R.S. Kottada, and B.S. Murty: Plasma-sprayed high entropy alloys, " Microstructure and properties of AlCoCrFeNi and MnCoCrFeNi, " Metall. Mater. Trans. A 46, 791 (2014).
123. F.Y. Shu, S. Liu, H.Y. Zhao, W.X. He, S.H. Sui, J. Zhang, P. He, and B.S. Xu, " Structure and high-temperature property of amorphous composite coating synthesized by laser cladding FeCrCoNiSiB high-entropy alloy powder, " J. Alloys Compd. 731, 662 (2018).
124. H. Prasad, S. Singh, and B.B. Panigrahi, " Mechanical activated synthesis of alumina dispersed FeNiCoCrAlMn high entropy alloy, " J. Alloys Compd. 692, 720 (2017).
125. B. Zhang, Y. Duan, Y. Cui, G. Ma, T. Wang, and X. Dong, " Improving electromagnetic properties of FeCoNiSi0.4Al0.4 high entropy alloy powders via their tunable aspect ratio and elemental uniformity, " Mater. Des. 149, 173 (2018).
126. P. Yang, Y. Liu, X. Zhao, J. Cheng, and H. Li, " Electromagnetic wave absorption properties of mechanically alloyed FeCoNiCrAl high entropy alloy powders, " Adv. Powder Technol. 27, 1128 (2016).
127. W. Ji, J. Zhang, W. Wang, H. Wang, F. Zhang, Y. Wang, and Z. Fu, " Fabrication and properties of TiB2-based cermets by spark plasma sintering with CoCrFeNiTiAl high-entropy alloy as sintering aid, " J. Eur. Ceram. Soc. 35, 879 (2014).
128. G. Zhu, Y. Liu, and J. Ye, " Fabrication and properties of Ti(C, N)- based cermets with multi-component AlCoCrFeNi high-entropy alloys binder, " Mater. Lett. 113, 80 (2013).
129. Z. Tan, L. Wang, Y. Xue, P. Zhang, T. Cao, and X. Cheng, " High-entropy alloy particle reinforced Al-based amorphous alloy composite with ultrahigh strength prepared by spark plasma sintering, " Mater. Des. 109, 219 (2016).
130. S. Yang, X. Yan, K. Yang, and Z. Fu, " Effect of the addition of nano-Al2O3 on the microstructure and mechanical properties of twinned Al0.4FeCrCoNi1.2Ti0.3 alloys, " Vacuum 131, 69 (2016).
131. Yeh, J.W.; Chen, S.K.; Lin, S.J.; Gan, J.Y.; Chin, T.S.; Shun, T.T.; Tsau, C.H.; Chang, S.Y, "Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes, " Adv. Eng. Mater. 7, 6, 299–303(2004).
132. Yeh, J.-W.; Lin, S.-J.; Chin, T.-S.; Gan, J.-Y.; Chen, S.-K.; Shun, T.-T.; Tsau, C.-H.; Chou, S.-Y, " Formation of simple crystal structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V alloys with multiprincipal metallic elements, " Metall. Mater. Trans. A 35, 2533–2536 (2004).
133. Tong, C.-J.; Chen, Y.-L.; Yeh, J.-W.; Lin, S.-J.; Chen, S.-K.; Shun, T.-T.; Tsau, C.-H.; Chang, S.-Y, " Microstructure characterization of AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements, " Metall. Mater. Trans. A 36, 881–893(2005).
134. Chen, T.-K.; Shun, T.; Yeh, J.; Wong, M, " Nanostructured nitride films of multi-element high-entropy alloys by reactive DC sputtering, " Surf. Coat. Technol.188, 193–200(2004).
135. Tong, C.-J.; Chen, M.-R.; Yeh, J.-W.; Lin, S.-J.; Chen, S.-K.; Shun, T.-T.; Chang, S.-Y, " Mechanical performance of the AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements, " Metall. Mater.Trans. A 2005, 36, 1263–1271.
136. Huang, P.K.; Yeh, J.W.; Shun, T.T.; Chen, S.K, " Multi-Principal-Element Alloys with Improved Oxidation and Wear Resistance for Thermal Spray Coating, " Adv. Eng. Mater. 6, 74–78(2004).
137. Chen, Y.; Duval, T.; Hung, U.; Yeh, J.; Shih, H, " Microstructure and electrochemical properties of high entropy alloys-A comparison with type-304 stainless steel, " Corros. Sci.47, 2257–2279 (2005).
138. Chen, Y.; Hong, U.; Shih, H.; Yeh, J.; Duval, T, " Electrochemical kinetics of the high entropy alloys in aqueous environments-A comparison with type 304 stainless steel, " Corros. Sci. 47, 2679–2699 (2005).
139. Hsu, C.-Y.; Yeh, J.-W.; Chen, S.-K.; Shun, T.-T , " Wear resistance and high-temperature compression strength of Fcc CuCoNiCrAl0.5Fe alloy with boron addition, " Metall. Mater. Trans. A 35, 1465–1469 (2004).
140. Yang, X.; Zhang, Y.; Liaw, P , " Microstructure and compressive properties of NbTiVTaAlx high entropy alloys, " Proced. Eng. 36, 292–298(2012).
141. Senkov, O.; Scott, J.; Senkova, S.; Miracle, D.;Woodward, C, " Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy , " J. Alloy. Compd. 509, 6043–6048 (2011).
142. Lilensten, L.; Couzinié, J.; Perrière, L.; Bourgon, J.; Emery, N.; Guillot, I , " New structure in refractory high-entropy alloys, " Mater. Lett.132, 123–125 (2014).
143. C. Sawangrat, O. Yamaguchi, S.K. Vajpai, K. Ameyama, "Application of Harmonic Structure Design to Biomedical Co–Cr–Mo Alloy for Improved Mechanical Properties" Mater. Trans. 55, 99 (2014).
144. R. Feng, M.C. Gao, C. Lee, M. Mathes, T. Zuo, S. Chen, J.A. Hawk, Y. Zhang, P.K. Liaw, "Design of light-weight high-entropy alloys", Entropy.18(9), 333, (2016).
145. Li, Z.; Ludwig, A.; Savan, A.; Springer, H.; Raabe, D, " Combinatorial metallurgical synthesis and processing of high-entropy alloys, " J. Mater. Res. 33, 3156 −3169 (2018 ).
146. Stepanov, N.; Yurchenko, N.Y.; Shaysultanov, D.; Salishchev, G.; Tikhonovsky, M, " Effect of Al on structure and mechanical properties of AlxNbTiVZr (x = 0, 0.5, 1, 1.5) high entropy alloys, " Mater. Sci. Technol.31, 1184–1193 (2015).
147. Stepanov, N.; Shaysultanov, D.; Salishchev, G.; Tikhonovsky, M, " Structure and mechanical properties of a light-weight AlNbTiV high entropy alloy, " Mater. Lett. 142, 153–155 (2015).
148. Youssef KM , " A novel low-density, high-hardness, high-entropy alloy with close-packed single-phase nanocrystalline structures, " Materials Research Letters 3(2). 95-99 (2015).
149. M. Vaidya, S. Armugam, S. Kashyap, and B.S.S. Murty, " Amorphization in equiatomic high entropy alloys, " J. Non-Cryst. Solids. 413, 8 (2015).
150. Z. Fu, W. Chen, H. Wen, Z. Chen, and E.J. Lavernia, " Effects of Co and sintering method on microstructure and mechanical behavior of a high-entropy Al0.6NiFeCrCo alloy prepared by powder metallurgy, " J. Alloys Compd. 646, 175 (2015).
151. Y. Zhang, B. Zhang, K. Li, G.L. Zhao, and S.M. Guo, " Electromagnetic interference shielding effectiveness of high entropy AlCoCrFeNi alloy powder laden composites, " J. Alloys Compd. 734, 220 (2018).