跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.213) 您好!臺灣時間:2025/11/08 14:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:楊婷婷
研究生(外文):Yang, Ting-Ting
論文名稱:運用眼動儀探討大一文理組學生科學素養線上測驗之認知歷程研究
論文名稱(外文):Use of Eye Movement to Explore College Students’ Cognitive Processes during Scientific Literacy Online Assessment
指導教授:佘曉清佘曉清引用關係
指導教授(外文):She, Hsiao-Ching
學位類別:碩士
校院名稱:國立交通大學
系所名稱:教育研究所
學門:教育學門
學類:綜合教育學類
論文種類:學術論文
論文出版年:2014
畢業學年度:103
語文別:中文
論文頁數:58
中文關鍵詞:科學素養多媒體後設認知眼動
外文關鍵詞:science literacymultimediametacongnitioneye movement
相關次數:
  • 被引用被引用:0
  • 點閱點閱:550
  • 評分評分:
  • 下載下載:52
  • 收藏至我的研究室書目清單書目收藏:0
本研究旨在探討不同學科背景(文、理)的大學生,在科學素養線上測驗表現有何差異,並探討其科學素養能力表現與眼動歷程之間的關係,此線上測驗可分為三大題型:「辨識科學問題」、「解釋科學現象」、「科學舉證」。此外,研究者也探討「後設認知介入」對學生「科學舉證」表現上的影響。研究對象為北部大學80位一年級學生(文組41人,理組39人),兩組學生皆參與此線上測驗,在測驗過程中,研究者利用「眼動儀」去紀錄學生認知歷程的資料。並在測驗結束後,運用後設認知介入,即給予學生機會去重新檢視在科學舉證題型上,自己作答的眼動歷程記錄,並修改答案。
研究結果顯示,理組學生在三種題型上的學習表現,皆顯著優於文組學生。在科學舉證題型中,經過後設認知的介入,文組與理組的學習表現皆有顯著進步。而在後設認知介入前,理組學生對於作答科學舉證題型的信心程度顯著高於文組學生。由眼動資料顯示理組學生因為花較多時間做深入處理關鍵頁面,以至於有較佳的表現。
眼動資料顯示,文組與理組學生,在後設認知介入後,因為在關鍵區花了較多時間做了更深入的處理,以致在科學舉證題型上,能有顯著的進步表現。而文組與理組學生表現持平,是由於未能針對重要關鍵區去做深入處理。研究證明後設認知的介入,會使文組與理組學生在科學舉證題型上表現進步,為其能有效判別搜尋與整合關鍵訊息,瞭解自己原本未注意的重要關鍵訊息,然後進行監控與自我調節學習,進而提升自己的學習表現。
The purpose of this study was to explore the performance of undergraduate students in two groups (Non-science group: 41 students had a non-science major; Science group: 39 students had a science major) in an online scientific literacy assessment, and collect their eye movement during the process. This assessment consisted of three aspects: (1) identifying scientific questions, (2) explaining scientific phenomena, and (3) using scientific evidence. In addition, the researcher explored the effects of metacognitive intervention on students' performance in using scientific evidence which allowed students to re-examine their eye movement records and modify their previous answers in “using scientific evidence”.
The results showed the students in the Science group performed significantly better than their peers in the Non-science group on the all three aspects of the assessment. It also indicated the metacognitive intervention could significantly improve students’ abilities of “using scientific evidence” in both groups. Before the metacognitive intervention, the Science group students had a higher level of self-confidence than their peers in using scientific evidence. The analysis of the eye movement data further showed the Science group had allocated greater attention and deeper processing on critical Web pages, therefore, they significantly outperformed than to the Non-science group on their use of scientific evidence.
中文摘要 i
英文摘要 iii
誌謝 v
目錄 vii
表目錄 ix
圖目錄 xi

第一章 緒論
第一節 研究背景與動機 1
第二節 研究目的 2
第三節 研究問題與研究假設 3
第四節 重要名詞釋義 3
第五節 研究範圍與限制 4
第二章 文獻探討
第一節 科學素養 5
第二節 多媒體與科學學 8
第三節 後設認知 10
第四節 眼動與科學學習 13
第三章 研究方法
第一節 研究對象 16
第二節 研究設計 16
第三節 研究流程 18
第四節 研究工具 19
第五節 科學素養測驗內容之設計 21
第六節 資料蒐集與分析 23
第四章 研究結果
第一節 不同學科背景的大學生在辨識科學問題、解釋科學現象、科學舉證等三類型問題之科學素養表現分析 25
第二節 不同學科背景的大學生在整合多媒體學習內容之眼動變化歷程分析 30
第三節 不同學科背景的大學生經由後設認知介入對科學舉證能力表現之眼動變化歷程分 39
第五章 結論與討論
第一節 結論與討論 47
參考文獻 51
附錄
附錄一:科學素養測驗 57
附錄二:科學素養試題編碼指南 58
中文部分
教育部(2014)。十二年國教草案。台北市:教育部。

英文部分
AAAS(1989). Project 2061. Science for all Amercian. New York: Oxford University Press.
Azevedo, R., & Cromley, J. G. (2004). Does training on self-regulated learning facilitate students’ learning with hypermedia? Journal of Educational Psychology, 96(3), 523-535.
Baddeley, A. D., & Hitch, G. J. (1974). Working memory. In The Psychology of Learning and Motivation(G. E. Bower, Ed.), Academic Press, New York, 47- 89.
Baddeley, A. D. (2000). The episodic buffer: A new component of working memory? Trends in cognitive sciences, 4, 417-423.
Baddeley, A. D. (2002). Is working memory still working? European Psychologist, 7(2), 85-97.
Bannert, M., Hildebrand, M., & Mengelkamp, C. (2009). Effects of a metacognitive support device in learning environments. Computers in Human Behavior, 25(98), 829-835.
Brown, A. L., Kane, M. J., & Echols, C. H. (1987).Young children's mental models determine analogical transfer across problems with a common goal structure, Cognitive Development, 1, 103-121.
Chen, S. C., She, H. C., Chuang, M. H., Wu, J. Y., Tsai, J. L., & Jung, T. P. (2014). Eye movements predict students’ computer-based assessment performance of physics concepts in different presentation modalities. Computers & Education, 74, 61-72.
Collette, A. T., & Chiappetta, E. L. (1984). Science instruction in the middle and secondary schools. Upper Saddle River, NJ: Merrill.
Cook, M. P. (2006). Surface and semantic processing of cellular transport representations by high school students with low and high prior knowledge. North Carolina State University.
Cook, M., Carter, G., & Wiebe, E. N. (2008). The interpretation of cellular transport graphics by students with low and high prior knowledge. International Journal of Science Education, 30, 239-261.
Cornsweet, T. N. (1958). New technique for the measurement of small eye movements. Journal of the Optical Society of America, 48(11), 808-811.
Conner, L. N. (2007). Cueing metacognition to improve researching and essay writing in a final year high school biology class. Research In Science Education, 37(1), 1-16.
Cross, D. R., & Paris, S. G. (1988). Developmental and instructional analyses of children’s metacognition and reading comprehension. Journal of Educational Psychology, 80(2),131-142.
De Koning, B., Tabbers, H., Rikers, R., & Paas, F. (2010). Attention guidance in learning from a complex animation: Seeing is understanding? Learning and Instruction, 20(2), 111–122.
Duchowski, A. T. (2002). A breadth-first survey of eye tracking applications. Behavior Research Methods. Instruments and Computers, 34(4), 455-470.
Fensham, P. J., (2009). Real world contexts in PISA science: Implications for context-based science education. Journal of Research in Science Teaching, 46(8), 884-896.
Flavell, J. H. (1979). Metacognition and cognitive monitoring: A new area of cognitive developmental inquiry. American Psychologists, 34(10), 906-911.
Hegarty, M., Mayer, R. E., & Green, C. E. (1992). Comprehension of arithmetic word problems: Evidence from students’ eye fixations. Journal of Educational Psychology, 84, 76-84.
Henderson, J. M., & Hollingworth, A. (1999). High-level scene perception. Annual Review of Psychology, 50, 243-271.
Hyona, J., Lorch, R. F., & Kaakinen, J. K. (2002). Individual differences in reading to summarize expository text: Evidence from eye fixation patterns. Journal of Educational Psychology, 94(1), 44-55.
Just, M. A, & Carpenter, P. A. (1976). Eye fixations and cognitive processes. Cognitive Psychology 8(4), 441-480.
Just, M. A., & Carpenter, P. A. (1980). A theory of reading: From eye fixations to comprehension. Psychological Review, 87, 329-354.
Liversedge, S. P., & Findlay, J. M. (2000). Saccadic eye movements and cognition. Trends in Cognitive Sciences, 4, 6-14.
Mason, L., Tornatora, M. C., & Pluchino, P. (2013). Do fourth graders integrate text and picture in processing and learning from an illustrated science text? Evidence from eye-movement patterns. Computers & Education, 60, 95-109.
Mayer, R. E. (1998). Cognitive, meta-cognitive, and motivational aspects of problem solving. Instructional Science, 26, 49-63.
Mayer, R. E. (2003). Multimedia learning. New York, Cambridge University Press.
Mayer, R. E., & Anderson, R. B. (1991). Animation needs narrations: An experimental test of a dual-coding hypothesis. Journal of Educational Psychology, 83(4), 484-490.
Mayer, R. E., & Sims, V. K. (1994). For whom is a picture worth a thousand words? Extensions of a dual-coding theory of multimedia learning. Journal of educational psychology, 86(3), 389-401.
Michalsky, T., Mevarech, Z. R., & Haibi, L. (2009). Elementary school children reading scientific texts: Effects of metacognitive instruction. Journal of Educational Research, 102, 363-376.
Michalsky, T., Zion, M., & Mevarech, Z. R. (2007). Developing students' metacognitive awareness in asynchronous learning networks in comparison to face-to-face discussion groups . Journal of Educational Computing Research, 36, 395-424.
Mittlefehldt, S., & Grotzer, T. A. (2003, March). Using metacognition to facilitate the transfer of causal models in learning density and pressure. Paper presented at the National Association of Research in Science Teaching(NARST) Conference , Philadelphia, PA.
Organisation for Economic Co-operation and Development (OECD). (2006). Assessing scientific, reading and mathematical literacy: A framework for PISA 2006. Paris: OECD.
Organisation for Economic Co-operation and Development (OECD). (2013). Draft PISA 2015 Science Framework. Paris: OECD
Paivio, A. (1986). Mental representations: A dual coding approach. Oxford. England: Oxford University Press.
Palincsar, A. S. (1986). Metacognitive strategy instruction. Exceptional Children, 53(2), 118-124.
Patrick, M., Carter, G., & Wiebe, E. (2005). Visual representations of DNA replication: Middle grades students' perceptions and interpretations. Journal of Science Education & Technology, 14(3), 353-365.
Poole, A., & Ball, L. J. (2006). Eye tracking in human-computer interaction and usability research: Current status and future prospects. In C. Ghaoui (Ed.), Encyclopedia of human computer interaction, pp. 211-219. Hershey, Pennsylvania: Idea Group.
Radach, R., & Kennedy, A. (2004). Theoretical perspectives on eye movements in reading: Past controversies, current issues, and an agenda for future research. European Journal of Cognitive Psychology, 16, 3-26.
Rayner, K. (1998). Eye movements in reading and information processing: 20 years of research. Psychological Bulletin, 124(3), 372-422.
Rayner, K., & Juhasz, B. J. (2004). Eye movement in reading: Old questions and new directions. European Journal of Cognitive Psychology, 16, 340-352.
Rayner, K., & Rotello, C. M. (2001). Integrating text and pictorial information: Eye movements when looking at print advertisements. Journal of Experimental Psychology, 3, 219-226.
Roderer, T., & Roebers, C. (2010). Explicit and implicit confidence judgments and developmental differences in metamemory: An eye-tracking approach. Metacognition and Learning, 5, 229-250.
Sadler, T. D., & Zeidler, D. L. (2009). Scientific literacy, PISA, and socioscientific discourse: Assessment for progressive aims of science education. Journal of Research in Science Teaching, 46(8), 909-921.
Schraw, G., Crippen, K. J., & Hartley, K. (2006). Promoting self-regulation in science education: Metacognition as part of a broader perspective on learning. Research in Science Education, 36, 111-139.
She, H. C., & Chen, Y. Z. (2009). The impact of multimedia effect on science learning: Evidence from eye movements. Computers & Education, 53, 1297-1307.
Tsai, J. L., Kliegl, R., & Yan, M. (2012). Parafoveal semantic information extraction in traditional Chinese reading. Acta Psychologica, 141, 17-23.
Wang, M. C., Haertel, G. D., & Walberg, H. J. (1990). What influences learning? A content analysis of review literature. Journal of Educational Research,84(1), 30-43.
Zabrucky, K. M., Agler, L.-M. L., &; Moore, D. (2009). Metacognition in Taiwan: Students' calibration of comprehension and performance. International Journal of Psychology, 44(4), 305-312.
Zion, M., Michalsky, T., & Mevarech, Z. (2005). The effects of metacognitive instruction embedded within an asynchronous learning network on scientific inquiry skills. International Journal of Science Education, 27, 957-983.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊