跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.14) 您好!臺灣時間:2025/12/25 02:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:戴永惇
研究生(外文):Yong-Dun Dai
論文名稱:以雙金屬氧化物電極提昇電動力法進行奈米碳管再生之研究
論文名稱(外文):Enhancement of electrokinetic regeneration of carbon nanotubs by binary metallic oxide electrode
指導教授:袁菁袁菁引用關係
指導教授(外文):Ching Yuan
學位類別:碩士
校院名稱:國立高雄大學
系所名稱:土木與環境工程學系碩士班
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:200
中文關鍵詞:雙金屬氧化電極電動力法壬基苯酚奈米碳管再生
外文關鍵詞:binary metallic oxide electrodeelectrokineticnonylphenolcarbon nanotuberegeneration
相關次數:
  • 被引用被引用:2
  • 點閱點閱:360
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究為解決傳統電動力技術僅利用惰性電極進行污染物之移除,而非降解破壞污染物,因此研製雙氧化金屬電極結合電動力技術(BMOE-EK)進行奈米碳管再生試驗,將可有效徹底解決污染,縮短時程,將使傳統電動力技術成為環境永續特性之新技術。為解決壬基酚與奈米碳管間之吸附機制,首先進行奈米碳管吸附壬基酚之試驗;後進行電動力試驗再生吸附飽和壬基酚之奈米碳管,考量電極種類,操作流質種類、電位坡降、操作時間等影響參數,並探討其去除機制及再生效率。
首先探討液相中NP與奈米碳管之吸附行為,結果顯示pH值愈小之環境下吸附量愈高,於NP濃度為2.5 mg/L、pH=4.0時吸附量可達353.4 mg/g。經等溫吸附實驗後進行模擬與迴歸運算後,顯示奈米碳管對於NP之等溫吸附較符合以BET等溫吸附方程式;藉由吸附動力方程式模擬後得知,本吸附試驗是遵循擬二階動力方程式。經由熱力學參數得知奈米碳管吸附壬基酚是自發性的吸熱反應。
本實驗製備之電極,在1V/cm進行8小時之處理,其處理效果與傳統電動力所使用之C棒做為陽極電極相較下皆可提昇1.6~1.8倍之處理效果,代表雙金屬電極其降解效能遠大於傳統電動力法之碳棒。針對不同操作流質處理效率之影響其操作條件電位坡降為2 V/cm、處理時間為8 hr以及陽極電極為RT 時,其處理效率分別為:0.1 M氯化鈉(69.0%) > 0.2 M氫氧化鈉(54.8%) > 0.06 M檸檬酸(48.7%),此結果顯示當氯化鈉為操作流質時效果較佳,其可能原因是因為氯化鈉在電解過程中會產生OCl-,其具有強氧化性,因同時具有OCl-以及氫氧自由基可以有效降解壬基酚,比操作流質為氫氧化鈉藉由氫氧自由基降解壬基酚效果更佳。
當操作條件電位坡降為2 V/cm、處理時間為8 hr不同之操作流質處理效率分別為本實驗中比較PbO2/Ti、PbO2-Co/Ti及PbO2/SnO2+Sb2O3/Ti由操作流質中發現,PT容易在檸檬酸中剝落,導致其效果略差於經鍍上中間層之PSST,以及在PT製程中加入Co2+可以提昇其壬基苯酚降解效果。
本研究主要移除機制可能為離子遷移,系統中之NP幾乎都由陽極端所收集。使用NaOH為操作流質時其降解效果73.2%電力耗損約於9.64 kwh/m3,其相對高於使用氫氧化鈉60.2%之7.02 kwh/m3。同時本研究採TOC定量礦化率。針對再生效果較佳之RT電極及NaCl操作流質進行NP礦化率分析,結果顯示礦化率均為65%以上,代表雙金屬氧化電極對於NP之氧化有一定之成效。
以吸附飽和壬基酚之奈米碳管,反覆進行液相吸附-脫附實驗,經再生10次後CNT吸附量仍在340 mg/g約為首次吸附353.4 mg/g之96.2%;而固相再生次數為10次時其CNT吸附量48 mg/g為首次吸附150 mg/g之32%,為顯示奈米碳管可重複利用性質,其有高度經濟效益。
  整體結果顯示,以雙金屬電極結合電動力法再生奈米碳管時,可藉由操作流質及電極材料條件之擇選,提昇奈米碳管之再生效率。
This study was focused tradition electrokinetic technology, it only except pollutant, but not degrade and destroy it. Using binary metallic oxide electrode combine the electrokinetic (BMOE-EK) technology to regeneration carbon nanotubs. It can effective to solve pollution, shortening completely to go on, will make traditional electrokinetic technology become the new technology that the environment continues the characteristic forever.
Test regeneration and absorb enduring the carbon nanotubes and is in charge of of saturation nonylphenol, consider the electrode kind in electrokinetic, it influences the parameter to operate liquid kind, electric potential slope lowering, operating time,etc., Dr.eye: probe into it and get rid of the mechanism and recycled efficiency.

Probe into the liquid and take a fancy to NP and endure the behavior of absorbing that the carbon nanotubes is in charge of at first, the result shows pH value was decreased and the absorbing amount is the higher. When 2.5 mg/L and pH 4 in NP, the absorbing amount can reach 353.4 mg/g after 14 hr.

After imitating and returning to operation after waiting for and absorbing the experiment warmly, is it endure carbon nanotubes in charge of to wait for warm to is it is it wait with BET warm to absorb equation preface to accord with relatively to absorb NP to show; Learn by absorbing the equation preface simulation of motive force, originally absorb and test and follow and draft two stepses of motive force equation preface.

Electrode prepared of this experiment, carrying on the treatment of 8 hr in 1V/cm, its C used to degrade the result and traditional electrokinetic makes and relatively makes and can a multiple 1.68 of treatment results for the electrode looks of anode excellently, it is excellent to represent it of one BMOE and degrade carbon nanotubes that efficiency is far greater than the law of traditional electrokinetic.

Learn experimental result operate by liquid being at electrode for at the time of RuO2/Ti different operation liquid degrade efficiency of been for degrading influence of efficiency including: Sodium chloride (69.0%) >NaOH (54.8%) >Citric acid (48.7%) ,It show have getting better more relatively results at being for operate liquiding at sodium chloride, not may sodium chloride produce OCl of in the electrolytic course -, it have strong person who oxidize, have OCl at the same time - and the oxyhydrogen free radical can degrade the base phenol of Ren effectively, than operate liquid degrade Ren to be base phenol result good for NaOH by oxyhydrogen free radical.

The amount of TOC utilized examines and endures the carbon nanotubes NP ore rate that manages with quantization BMOE-EK technological regeneration, the result shows ore rates are more than 65%, represent a pair of metal and oxidize the oxidizing certain effect to NP of electrode.

It is in charge of utilizing regeneration of law of electrokinetic to have feasibility demonstrating and enduring the carbon nanotubes at the same time.

Compare PbO2/Ti, PbO2-Co/Ti and PbO2/SnO2 +Sb2O3/Ti to find from the liquid of operating in this experiment, PbO2/Ti is easy to peel off the citric acid, cause slightly bad to on PbO2/SnO2 +Sb2O3/Ti, make Cheng put Co2+ can promote their nonylphenol degrade the result in PbO2/Ti result its.

Absorb the liquid phase repeatedly by absorbing enduring the carbon nanotubes and is in charge of of saturation nonylphenol - take off the experiment of enclosing, CNT absorbing amount still about absorb 96.2% for the first time in 340 mg/g, show that endures the carbon nanotubes and is in charge of re-utilizing nature after 10 times by regeneration, it has high economic benefits.

The result shows that, while combining the regeneration of electrokinetic and enduring the carbon nanotubes and is in charge of with one pair of metal electrodes, can promote and endure the recycled efficiency that the carbon nanotubes is in charge of by operating the selecting and selecting of the liquid and electrode material condition.
第一章 前言 ………………………………………………………… 1
1.1研究源起 ………………………………………………………… 1
1.2研究目的 ………………………………………………………… 2
1.3研究內容 ………………………………………………………… 3

第二章 文獻回顧 …………………………………………………… 5
2.1 壬基苯酚之環境特性 ……………………………………… 5
2.1.1壬基苯酚基本特性………………………………………… 6
2.1.2壬基苯酚在環境中流佈…………………………………… 7
2.2 奈米碳管之特性及改質影響 ………………………………… 9
2.2.1 奈米碳管基本特性………………………………………… 9
2.2.2 製造程序 ………………………………………………… 10
2.2.3改質技術對於吸附之影響 ……………………………… 11
2.3 吸附原理 ……………………………………………………… 13
2.3.1 物理吸附(physical adsorption)…………………………… 14
2.3.2 化學吸附(chemical adsorption)………………………… 15
2.4再生處理技術 ………………………………………………… 16
2.4.1超音波震盪技術 ………………………………………… 16
2.4.2 微波加熱技術 …………………………………………… 18
2.4.3 濕式氧化法 ……………………………………………… 18
2.4.4 熱處理技術 ……………………………………………… 19
2.4.5 Fenton法 ………………………………………………… 19
2.4.6 電動力法 ………………………………………………… 20
2.4.7 再生效益評估 …………………………………………… 21
2.5 電動力法復育技術 (Electrokinetic process, EK) …………… 22
2.5.1 電動力復育技術原理 …………………………………… 23
2.5.2 電動力復育技術影響因子 ……………………………… 25
2.5.2.1 電流密度 …………………………………………… 25
2.5.2.2 pH 值 ……………………………………………… 25
2.5.2.3 操作流質 …………………………………………… 25
2.6 電化學法 ……………………………………………………… 26
2.6.1 電極種類之影響 ………………………………………… 26
2.6.2 電解液種類之影響 ……………………………………… 33

第三章 研究方法 …………………………………………………… 35
3.1 研究架構 …………..………………….…………………… 35
3.2實驗材料及設備 ……………………………………… 35
3.2.1儀器與設備 ………………………………………………35
3.2.2 實驗材料 ……………………………………………… 37
3.3 壬基苯酚分析方法 …………………………………………… 38
3.4 奈米碳管之純化 ……………………………………………… 39
3.5 電極之製備 …………………………………………………… 39
3.5.1 MnO2/Ti (MT)電極 ……………………………………… 39
3.5.2 Ru/Ti (RT)電極 …………………………………………… 40
3.5.3 PbO2/Ti (PT)電極 ………………………………………… 40
3.5.4 PbO2-Co/Ti (PCT)電極 …………………………………… 41
3.5.5 PbO2/SnO2+Sb2O3/Ti (PSST)電極 ……………………… 41
3.6 循環伏安法(Cyclic Voltammetry,CV) ………..…………………… 43
3.7 奈米碳管吸附實驗 …………………………………………… 45
3.7.1 最佳吸附量試驗 ………………………………………… 45
3.7.2 動力吸附試驗…………………………………………… 45
3.7.3等溫吸附實驗 …………………………………………… 49
3.7.4 吸附熱力學參數計算 …………………………………… 51
3.8 電化學再生試驗 ……………………………………………… 53
3.8.1 壬基苯酚液相萃取程序 ………………………………… 53
3.8.2 壬基苯酚固相萃取程序 ………………………………… 55
3.8.3 再生奈米碳管配製及裝填 ……………………………… 56
3.8.4 電動力管柱實驗 ………………………………………… 56
3.8.5電動力實驗分析項目 …………………………………… 57
3.8.6電動力試驗監測項目 …………………………………… 58
3.9 實驗之品保品管 ……………………………………………… 58

第四章 結果與討論 …………………………………………….……… 60
4.1 奈米碳管特性分析 ……………………………………………… 60
4.2 活性碳特性分析 ………………………………………………… 60
4.3雙金屬氧化物電極製備有效性評估 ……………………………… 63
4.3.1 循環伏安法 ……………………………………………… 63
4.3.1.1 以DI Water為操作流質……………………………… 64
4.3.1.2 以檸檬酸為操作流質 ……………………………… 64
4.3.1.3 以氫氧化鈉為操作流質 …………………………… 67
4.3.1.4 以氯化鈉為操作流質 ……………………………… 70
4.3.2 電極表面特性量測(SEM-EDS) ……………………… 73
4.4 NP液相吸附試驗 …………………………………………… 82
4.4.1 最佳吸附量試驗 ………………………………………… 82
4.4.2動力吸附試驗 …………………………………………… 84
4.4.3 等溫吸附試驗 …………………………………………… 88
4.4.4 熱力學參數分析 ………………………………………… 89
4.5 奈米碳管再生試驗 …………………………………………… 91
4.5.1電極與操作流質之測試 ………………………………… 93
4.5.1.1 以DI Water為操作流質……………………………… 95
4.5.1.2 以檸檬酸為操作流質 ……………………………… 97
4.5.1.3 以氫氧化鈉為操作流質 …………………………… 102
4.5.1.4 以氯化鈉為操作流質 ……………………………… 106
4.5.1.5 小結 ………………………………………………… 109
4.5.2電位坡降對於再生效率之影響………………………… 112
4.5.3處理時間對於再生效率之影響………………………… 112
4.6 NP去除機制及礦化率分析 ……………………………… 113
4.7 奈米碳管再生效益之評估 ………………………………… 115
4.8 經濟效益 ………..…………………………………………… 117

第五章 結論與建議 ……………………………………………… 123
5.1 結論 ………………………………………………………… 123
5.2 建議 ………………………………………………………… 125

參考文獻 …………………………………………………………… 126
附錄A NP檢量線及萃取率分析 …………...……………………… 138
附錄B 吸附實驗試驗數據 ………………………………………… 141
附錄C 電動力實驗原始數據 …….……………………………….. 143
參考文獻

Abdelwahaba, O., Amin,N.K. and El-Ashtoukhy, E-S.Z. (2009) Electrochemical removal of phenol from oil refinery wastewater. J. Hazard. Mater. 163, 711–716
Ahel, M., Mcevoy, J. and W. Giger., (1993) Bioaccumulation of the lipophilic metabolites of nonionic surfactants in fresh-water Organisms. Environ. Pollut., 79, 243-248.
Awad, H. S., Galwa, N.A. (2005) Electrochemical degradation of Acid Blue and Basic Brown dyes on Pb/PbO2 electrode in the presence of different conductive electrolyte and effect of various operating factors. Chemosphere, 61, 1327–1335.
Ayoub, K.J. and Roberto, M.N. (2005) Electrochemical reactivation of granular activated carbon: pH dependence. J. Environ. Eng. Sci. 4, 187–194.
Ball, H. A., Reinhard, M. and McCarty, P. L., (1989) Biotransformation of halogenated and nonhalogenated octylphenol polyethoxylate residues under aerobic and anaerobic conditions. Environ. Sci.Technol., 23, 951-961.
Boscoletto, A.B., Gottardi,, F., Milan, L., Pannocchia, P., Tartari, V., Tavan, M., (1994) Electrochemical treatment of bisphenol A containing wastewater, J. Appl. Electrochem., 24, 1052–1058.
Brown, N.W., Roberts, E.P.L., Garfort,A.A. and Dryfe, R.A.W. (2004) Electrochemical regeneration of a carbon-based adsorbent loaded with crystal violet dye. Electrochim. Acta., 49, 3269–3281.
Campbell, C.G., Borglin, S.E., Green, F.B., Grayson, A., Wozei, E. and Stringfellow, W.T. (2006) Biologically directed environmental monitoring, fate, and transport of estrogenic endocrine disrupting compounds in water: A review. Chemosphere 65, 1265–1280
Chen, C. and Wang, X. (2006) Adsorption of Ni(II) from aqueou solution using oxidized multiwall carbon nanotubes. Ind. Eng. Chem. Res. 45, 9144–9149.
Cravotto, G., Carlo, S.D., Binello, A., Mantegna, S., Girlanda, M.,Lazzari, A.,(2008) Integrated sonochemical and microbial treatment for decontamination of nonylphenol-polluted water. Water Air Soil Pollut., 187, 353-359.
Das, D., Sen, P.K.and Das, K. (2006) Electrodeposited MnO2 as electrocatalyst for carbohydrate oxidation. J. Appl. Electrochem., 36, 685– 690.
Dresselhaus, M.S.; Dresselhaus, G.; Satio, R. (1995), Physics of carbon nanotubes. Carbon, 33, 883-891.
Gent, D. B., Bricka, R. M. Akram, N. A., Larson. S. L., Fabian, G. and Granade, S. (2004) Bench- and field-scale evaluation of chromium and cadmium extraction by electrokinetic. J. Hazard. Mater., 110, 53-62.
Giger, W., Brunnen, P. H. and Schaffner, C., (1984) 4-nonylphenol in sewage sludge: accumulation of toxic metabolites from nonionic surfactants. Science, 225, 623-625.
Hamed, J. T. and Bhadra, A. (1997) Influence of Current Density and pH on Electrokinetics. J. Hazard. Mater., 55, (3), 294-297.
Iijima, S. (1991), Helical microtubules of graphitic carbon. Nature, 354, 56.
Jobling, S. and Sumpter, J.P (1993) Detergent components in sewage effluent are weakly estrogenic to fish: an in vitro study using rainbow trout (Oncorhynchus mykiss) hepatocytes. Aquat. Toxicol., 27, 361- 372.
Jobling, S., Sheahan D., Osborne D.A., Matthiessen P., Sumpter J.P. (1996) Inhibition of testiculary growth in rainbow trout (Oncorhynchus mykiss) exposed to estrogenic. Environ. Toxicol. Chem., 15, 2, 194-202.
Jobling, S., Nolan, M., Tyler, C.R., Brighty, G. and Sumpter, J.P (1998) Widespread sexual disruption in wild fish. Environ SCI Technol. 32, 2498-2506.
Kim, J., Korshin, G. V. and Velichenko, A. B. (2005) Comparative study of electrochemical degradation and ozonation of nonylphenol. Water Res. 39, 2527–2534.
Krauss, H., R. Zorn, R. Haus, and K. Czurda (2001) Electroosmotic Transport in Fine Grained Sediments With Respect to Pore Throats, 3rd Symposium and Status Reports on Electrokinetic Remediation.
Kuramitz, H., Matsushita, M., Tanaka, S, (2004), Electrochemical removal of bisphenol A based on the anodic polymerization using a column type carbon fiber electrode.Water Res. 38, 2331–2338.
Kvestak, R. and Ahel, M., (1994) Occurrence of toxic metabolites from nonionic surfactants in the Krka river estuary. Ecotoxicol. Environ. Saf., 28, 25-34.
Lee, H. H., and Yeng, J. W. (2000) A New Method to Control Electrolytes pH by Circulation System in Electrokinetic Soil Remediation. J. Hazard. Mater., B77, 227-240.
Lim, J. and Okada, M. (2005) Regeneration of granular activated carbon using ultrasound. Ultrason. Sonochem., 12, 277-282.
Liang, P., Liu,Y., Guo,L., Zeng,J. and Hanbing (2004) Multiwalled carbon nanotubes as solid-phase extraction adsorbent for the preconcentration of trace metal ions and their determination by inductively coupled plasma atomic emission spectrometry. J. Anal. At. Spectrom 19, 1489–1492.
Lisowski, W., Keim, E.G., Berg ,A.H.J. and Smithers, M.A. (2006) Thermal desorption of deuterium from modified carbon nanotubes and its correlation to the microstructure. Carbon 44 974–982.
Liu, X., Yu, G. and Han, W., (2007) Granular activated carbon adsorption and microwave regeneration for the treatment of 2,4,5-trichlorobiphenyl in simulated soil-washing solution. J. Hazard. Mater. 147, 746-751.
Li, Y.H., Wang, S., Wei, J., Zhang, X., Xu, C., Luan, Z., Wu, D. And Wei, B. (2002) Lead adsorption on carbon nanotubes. Chem. Phys. Lett. 357, 263–266.
Li, Y.H., Wang, S., Luan, Z., Ding, J., Xu, C. and Wu, D. (2003) Adsorption of cadmium (II) from aqueous solution by surface oxidized carbon nanotubes. Carbon 41, 1057–1062.
Li, Y.H., Di,Z., Ding,J., Wu,D., Luan,Z. and Zhu,Y. (2005) Adsorption thermodynamic, kinetic and desorption studies of Pb2+ on carbon nanotubes. Wat. Res. 39, 605–609.
Li,Y.H., Di, Z.J., Wu, D.D., Luan, Z. and Zhu, Y. (2007) Adsorption thermodynamic, kinetic and desorption studies of Pb 2+ on carbon nanotubes. Mater. Sci. Eng., A, 466, 201–206.
Liu, Y. and Liu, H. (2008) Comparative studies on the electrocatalytic properties of modified PbO2 anodes. Electrochim. Acta, 53, 5077–5083.
Liu, X., Quan, X., Bo, L. Chen,S. and Zhao, Y. (2004) Simultaneous pentachlorophenol decomposition and granular activated carbon regeneration assisted by microwave irradiation Carbon 42, 415–422
Lu, C. and Liu, C. (2006) Removal of nickel (II) from aqueous solution by carbon Nanotubes. J. Chem. Technol. Biotechnol. 81, 1932–1940.
Lu, C. and Chiu, H. (2006) Adsorption of zinc (II) from water with purified carbon Nanotubes. Chem. Eng. Sci. 611138–1145.
Lu, C., Chiu, H. and Liu, C. (2006) Removal of zinc(II) from aqueous solution by purifiedcarbon nanotubes: kinetics and equilibrium studies. Ind. Eng. Chem. Res. 45 2850–2855.
Lu, C.S., Chung, Y.L. and Chang, K.F. (2005) Adsorption of trihalomethanes from water with carbon nanotubes. Water Res. 39, 1183–1189.
Martins, A.F., Wilde, M.L., Tibiric��Vasconcelos, G. and Henriques, D.M. (2006) Nonylphenol polyethoxylate degradation by means of electrocoagulation and electrochemical Fenton. Sep. Purif. Technol.,50, 249–255
Miguel, G. O., Francisco, M., Angeles, M. L., Emilia, M. and Jose, L.V., (2005) Electrochemical Regeneration of Activated Carbon Saturated with Toluene.J. Appl. Electrochem. 35, 319–325.
Neamtu, M. and Frimmel,F. H. (2006) Photodegradation of endocrine disrupting chemical nonylphenol by simulated solar UV-irradiation. Sci. Total Environ., 369, 295-306.
Nevskaia1 D. M.and Guerrero-Ruiz A. (2001) Comparative Study of the Adsorption from Aqueous Solutions and the Desorption of Phenol and Nonylphenol Substrates on Activated Carbons. J. Colloid Interface Sci. 234, 316–321.
Ngundi, M. M., Sadik, O.A., Yamaguchi, T. and Suye, S. (2003) First comparative reaction mechanisms of b-estradiol and selected environmental hormones in a redox environment. Electrochem. Commun. 5, 61–67
Okamoto, K.; Yamamoto, Y.; Hanaka, H., Tanaka, M. (1985), Hetrogeneous photocatalytic decomposition of phenol over TiO2 powder. Bull. Chem. Soc. Jpn., 58, 2015.
Panizza, M. Sires, I. and Cerisola G.(2008) Anodic oxidation of mecoprop herbicide at lead dioxide. J. Appl. Electrochem. 38, 923– 929
Rao, G.P., Lu, C.S. and Su, F. (2007) Sorption of divalent metal ions from aqueous solution by carbon nanotubes: A review. Sep. Purif. Technol. 58, 224–231.
Ruoff, R.S., Tersoff, J., Lorents, D.C, Subramoney, S. and Chen, B. (1993) Radial deformation of carbon nanotubes by Van-der-Waals forces. Nature, 364, 514.
Sabio, E., Gonzalez, E., Gonzalez, J.F., Gonzalez-Garcia, C.M., Ramiro, A. and Ganan,J. (2004) Thermal regeneration of activated carbon saturated with p-nitrophenol. Carbon 42, 2285-2293.
Stafiej, A. and Pyrzynska, K. (2007) Adsorption of heavy metal ions with carbon nanotubes. Sep. Purif. Technol. 58, 49–52.
Shahrani, S. S. A. and Roberts, E. P. L. (2005) Electrokinetic remediation of clayey soils containing copper(II)-oxinate using humic acid as a surfactant. J. Hazard. Mater. B122, 91-101.
Sharpe, R.M., Fisher J.S., Millar M.M., Jobling S., Sumptwe J.P. (1995) Gestational and lactational exposure of rats to xenoestrogens results in reduced testicular size and sperm production. Environ. Health Perspect, 103, 1136-1143.
Shelimov, K.B., Esenaliev, R.O. and Rinzler, A.G. (1998) Purification of singlewall carbon nanotubes by ultrasonically assisted filtration. J. Chem. Phys. Let. 282, 429.
Shende, R. V. and Mahajani, V. V. (2002) Wet oxidative regeneration of activated carbon loaded with reactive dye. Waste Management, 22, 73-83
Song, Y., Wei,Ga. and Xiong, R. (2007) Structure and properties of PbO2–CeO2 anodes on stainless steel. Electrochim. Acta, 52,7022–7027.
Soto, A. M., Justicia,H. Wray, J. W. and Sonnenschein, C. (1991) p-Nonyl-phenol: An estrogenic xenobiotic released from modified polystyrene. Environ. Health Perspect., 92, 167-173.
Tabira, Y., Nakai, M., Asai, D., Yadabe, Y., Tahara,Y. Shinmyozu, T., Noguchi, M., Takatsuki M. and Shimohigshi,Y. (1999) Structural requirements of para-alkyphenols to bind to estrogen receptor. Eur. J. Biochem 262,240-245
Tanaka, S., Nakata, Y., Kuramitz, H., Kawasaki, M., (1999) Electrochemical decomposition of bisphenol A and nonylphenol using a Pt/Ti electrode, Chem. Lett. 943–944.
Tanaka, S., Nakata, Y., Kimura, Yustiawati, T., Kawasaki, M., Kuramits, H., (2002) Electrochemical decomposition of bisphenol A using Pt/Ti and SnO2/Ti anodes. J. Appl. Electrochem., 32, 197–201.
Tohji, K., Goto, T. and Takahashi, H. (1996) Purifying single-walled carbon nanotubes. Nature. 383, 679.
Tran, L.H., Drogui, Patrick, Mercier, Guy and Blais, Jean-Francois (2009) Electrochemical degradation of polycyclic aromatic Hydrocarbons in creosote solution using ruthenium oxide on titanium expanded mesh anode. J. Hazard. Mater. 164, 1118–1129
Velichenko, A.B., Amadelli,R., Baranova,E.A., Girenko, D.V.and Danilov, F.I. (2002) Electrodeposition of Co-doped lead dioxide and its physicochemical properties. J. Electroanal. Chem., 527, 56-/64
Vinodgopal, K., Ashokkumar M., Grieser, F., 2001. Sonchemical degradation oa a polydisperse nonylphenol ethoxylate in aqueous solution. J. Phys. Chem. 105, 3338-3342.
Wu, M., Zhao, G., Li, M., Liu, L. and Li, D. (2009) Applicability of boron-doped diamond electrode to the degradation of chloridemediated and chloride-free wastewaters, 163, (1), 26-31.
Yang, C.H., Lee, C.C., and Wen, T. C. (2000) Hypochlorite generation on Ru-Pt binary oxide for treatment of dye wastewater. J. Appl. Electrochem. 30, 1043-1051.
Yang, K. and Xing, B. (2007) Desorption of polycyclic aromatic hydrocarbons from carbon nanomaterials in water. Environ. Pollut., 145, 529-537.
Yeh, K. L. and Wu, R. S. (2000) Electro-kinetic Removal Of Oil From A Contaminated Soil. J. Chin. Inst. Chem. Eng., 23,61-69.
Yim B., Yoo, Y., Maeda, Y., (2003) Sonolysis of alkylphenols in aqueous soilution with Fe(II) and Fe(III). Chemosphere 50, 1015-1023.
Yuan, S.Y., Yu, C.H. and Chang, B.V. (2004) Biodegradation of nonylphenol in river sediment Environ. Pollut., 127, 425–430
Yuan, C. and Weng, C. H. (2006) Electrokinetic remediation of Cu ontaminated red soil by conditioning catholyte pH with different enhancing chemical reagent. Chemosphere, 61, 964-971.
Yu, Y., Yu, J.C., Chan, C.Y., Che, Y.K., Zhao, J.C., Ding, L., Ge, W.K. and Wong, P.K.(2005) Enhancement of adsorption and photocatalytic activity of TiO2 by using carbon nanotubes for the treatment of azo dye. Appl. Catal., B, 61, 1/2, 1-11
Zhang, H., Zuehlke, S., Guenther, K. and Spiteller, M. (2007) Enantio-selective separation and determination of single nonylphenol isomers Chemosphere 66, 594–602
Zhang, H. (2002) Regeneration of exhausted activated carbon by electrochemical method. Chem. Eng. J. 85, 81–85.

工業技術研究 http://newwww.itri.org.tw/
王正雄(2000) 壬基苯酚環境荷爾蒙對環境生態之影響,環境檢驗通訊雜誌,2039,5-8
江姿幸 (2005) 滲透性反應牆對於砷污染土壤進行電動力復育影響之 研究,國立中山大學環境工程研究所碩士論文。
李琬萍 (2003) 人體血漿中壬基苯酚、辛基苯酚及丁基苯酚之同時測定方法研究,國立陽明大學環境衛生研究所碩士論文。
胡啟章(2002),電化學原理及方法、五南圖書出版股份有限公司、台灣。
金相燦,環境毒性有機物污染化學,1998 年
袁菁、翁誌煌、江姿幸 (2002) 零價鐵粉提昇電動力處理四氯乙烯污染土壤之初步研究,第十七屆廢棄物處理技術研討會,雲林。
袁菁、劉瑋婷 (2006) 酸液改質之奈米碳管對於液相氯苯吸附現象之探討,第三屆環境保護與奈米科技學術研討會。
陳琨焯(2008),環境介質中壬基苯酚聚乙氧基醇(NPnEO)類之光觸媒催化降解及電動力復育處理技術之研究,碩士論文,國立高雄大學土木與環境工程學系。
徐銘謙( 2007),電動力技術再生顆粒及粉末活性碳可行性之研究,碩士論文,義守大學土木與生態工程系。
張竟育、洪肇嘉、謝淑惠、楊博名、洪靖惠(2007) ,利用微波及鹼洗再生已吸附染料酸的粒狀活性碳與商用奈米碳管之研究,環工年會,廢水處理技術研討會,雲林科技大學。
張小萍 (2002) 壬基苯酚(NP)清潔劑的代謝物對河川生態之影響,環境檢驗雙月刊,40,3-7。
黃琬鈴(2008),應用二氧化鈦複合奈米碳管於甲基第三丁基醚(MtBE)光催化分解反應特性研究,碩士論文,國立高雄大學土木與環境工程學系。
賴龍標(2001),鉑奈米結構電極之製備,國立成功大學化學工程系博士論文
蔡在唐 (2002) 以電動力法復育受油品污染土壤,國立屏東科技大學環境工程與科學系碩士論文。
蔡東翰(2004),改進活性碳之再生研究,碩士論文,國立中正大學。
劉俊延(2007),過硫酸鹽再生活性碳及氧化甲基第三丁基醚研究,碩士論文,國立成功大學環境工程學系。
楊惠珠(2008),利用奈米碳管吸附水中壬基苯酚之研究,碩士論文,國立台灣大學環境工程研究所。
楊琇瑩(2000),環境荷爾蒙物質對水生生物的影響,環境荷爾蒙研討會論文集,生技中心,第43-49頁。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top