跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.213) 您好!臺灣時間:2025/11/08 00:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡貴丞
研究生(外文):Gui-Cheng Tsai
論文名稱:使用像素補償和細節重建之有效率的單圖消除反射演算法
論文名稱(外文):Efficient Reflection Removal Algorithm for Single Image by Pixel Compensation and Detail Reconstruction
指導教授:郭斯彥郭斯彥引用關係
口試委員:雷欽隆顏嗣鈞陳英一袁世一
口試日期:2017-07-18
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電子工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:英文
論文頁數:27
中文關鍵詞:單圖除反射像素補償細節重建
相關次數:
  • 被引用被引用:0
  • 點閱點閱:244
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
這篇論文提供了一個新穎的演算法,這個演算法可以用單張圖片去去除圖片中的反射。當我們拍照的時候,照片裡常常會出現不想要的反射在玻璃或窗戶上。這些反射會影響到我們真正想在照片上看到的東西。在現今的除反射演算法,他們通常假設穿透層的梯度會比不想要的反射層的梯度大得多,並且去除那些梯度很小的物件。
然而當這個假設違反時,演算法就會出現一些具有挑戰性的問題。此外,有些演算法在執行的過程往往會無法保留原圖的細節,或者會讓圖變得模糊。還有,有些演算法需要耗費很多的運算時間。因此我們基於像素補償和細節重建,發展出一套新的演算法來克服這些問題。
從實驗結果來看,我們提出的方法相較於其他的方法,可以有效率的加強穿透層,並且復原的圖片變得乾淨、清晰。最後,我們的方法的運算時間比起其他方法,可以說是相當的短。
This paper proposes a novel method for image reflection removal for singe input image. When taking photos, there is often an undesired reflection image on glass windows, which may degrade the vision. In current reflection removal methods, they usually assume that the gradient of the transmitted layer is larger than the undesired refection layer and remove the object with smaller gradient.
However, there is a challenging problem that these algorithms may remove the transmitted layer instead of the reflection layer when the assumption is violated.
Moreover, some algorithms may not well preserve the detail and the reconstructed images are blurred. Furthermore, most of the existing algorithms require a lot of consumption time. Thus, we develop a new method based on pixel compensation and detail reconstruction to address these problems.
By experimental results, the proposed method can enhance the transmitted layer effectively and the recovered images are clearer than other methods. In addition, the computation time is much less than that of prevailing methods.
口試委員審定書…………………………………………………………………………i
誌謝……………………………………………………………………………………...ii
摘要……………………………………………………………………………………..iii
ABSTRACT....................................................................................................................iv
TABLE of Contents…………………………………………………………………….v
List of Figures………………………………………………………………………….vi
List of Tables…………………………………………………………………………..vii
Chapter 1 Introduction………………………………………………………………...1
Chapter 2 Related Work……………………………………………………………….3
2.1 Reflection Removal by Using Multiple Images………………………………...3
2.2 Remove Reflection Based on Single Image……………………………………..3
Chapter 3 Proposed Method…………………………………………………………...5
3.1 Reflection Removal Algorithm Overview…………….. …………………….....5
3.2 Pixel Compensation……………………………………………………………..8
3.3 Detail Reconstruction……………………………………………………………9
3.4 Layer Separation……………………………………………………………….10
3.5 Normalization………………………………………………………………….11
3.6 Running Time Reduction………………………………………………………11
Chapter 4 Experimental Result………………………………………………………13
4.1 Recovered Results……………………………………………………………..13
4.2 Computation Time……………………………………………………………..21
Chapter 5 Conclusion…………………………………………………………………23
Bibliography…………………………………………………………………………...24
Publication List…...…………………………………………………………………...27
[1] X. Guo, X. Cao, and Y. Ma, “Robust separation of reflection from multiple images,” in Proc. of Computer Vision and Pattern Recognition (CVPR),2014, pp. 2195–2202
[2] T. Xue, M. Rubinstein, C. Liu, and W. T. Freeman. A Computational Approach for Obstruction-free Photography. ACM Transactions on Graphics, 34(4):79:1–79:11, 2015
[3] Y. Li and M. S. Brown, “Exploiting reflection change for automatic reflection removal,” in Proc. of International Conference on Computer Vision (ICCV),2013, pp.2432–2439.
[4] R. Szeliski, S. Avidan, and P. Anandan. Layer extraction from multiple images containing reflections and transparency. In IEEE Conference on Computer Vision and Pattern Recognition, volume 1, pages 246–253 vol.1, 2000.
[5] Y. Y. Schechner, J. Shamir, and N. Kiryati,“Polarization-based decorrelation of
transparent layers: The inclination angle of an invisible surface,” in Proc. of International Conference on Computer Vision(ICCV), 1999, vol. 2, pp. 814–819.
[6] A. Agrawal, R. Raskar, S. K. Nayar, and Y. Li, “Removing photography artifacts using gradient projection and flash-exposure sampling,” in ACM Trans. on Graphics, vol. 24, no. 3, 2005, pp. 828–835.
[7] B. Sarel and M. Irani. “Separating Transparent Layers through Layer Information Exchange.” In European Conference on Computer Vision(ECCV), pages 328–341, 2004.
[8] K. Gai, Z. Shi, and C. Zhang, “Blind separation of superimposed moving images using image statistics,” IEEE Trans. on Pattern Analysis and Machine Intelligence,
vol. 34, no. 1, pp. 19–32, 2012.
[9] H. Farid and E. H. Adelson, “Separating reflections from images by use of independent component analysis,” Journal of the Optical Society of America, vol.
16, no. 9, pp. 2136–2145, 1999.
[10] Y. Li and M. S. Brown. “Single Image Layer Separation Using Relative Smoothness.” In IEEE Conference on Computer Vision and Pattern Recognition, pages 2752–2759, 2014.
[11] R. Wan, B. Shi, T. A. Hwee, and A. C. Kot. “Depth of field guided reflection removal.” In IEEE International Conference on Image Processing, pages 21–25, 2016.
[12] A. Nikolaos, R. Achanta, and S. Süsstrunk. “Single Image Reflection Suppression.” Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017.
[13] A. K. Agrawal, R. Raskar, S. K. Nayar, and Y. Li. “Removing photogrphy artifacts using gradient projection and flashexposure sampling.” ToG, 24(3):828–835, 2005.
[14] Y. Li and M. S. Brown. “Exploiting reflection change for automatic reflection removal.” Computer Vision (ICCV), 2013 IEEE International Conference on. IEEE,
2013.
[15] C. Sun, S. Liu, T. Yang, Bing. Z, Z. Wang and G. Liu. “Automatic reflection removal using gradient intensity and motion cues.” Proceedings of the 2016 ACM
on Multimedia Conference. ACM, 2016.
[16] R. Szeliski, S. Avidan, and P. Anandan. “Layer extraction from multiple images containing reflections and transparency.” In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), volume 1, pages 246–253, 2000.
[17] N. Kong, Y.-W. Tai and J. S. Shin, “A Physically-based approach to reflection separation: from physical modeling to constrained optimization,” IEEE Trans.
PAMI 36:209-221, 2014.
[18] S B. Sarel and M. Irani. “Separating transparent layers through layer information exchange.” In European Conference on Computer Vision (ECCV), pages 328–341,
2004.
[19] A. Levin and Y. Weiss. User assisted separation of reflections from a single image using a sparsity prior. IEEE Transactions on Pattern Analysis and Machine
Intelligence (PAMI), 29(9):1647–1654, 2007.
[20] S. N. Sinha, J. Kopf, M. Goesele, D. Scharstein, and R. Szeliski. “Image-based rendering for scenes with reflections.” ACM Trans. Graph., 2012.
[21] Y. Shih, D. Krishnan, F. Durand, and W. T. Freeman. “Reflection removal using ghosting cues.” In IEEE Conf. Computer Vision and Pattern Recognition, 2015.
[22] M. Bertalmio, G. Sapiro, V. Caselles, and C. Ballester, “Image inpainting,” in Proceedings of the 27th annual conference on Computer graphics and interactive
techniques,2000,pp.417–424.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top