|
1.Li, B.; Duan, Y.; Luebke, D.; Morreale, B., Advances in CO2 capture technology: A patent review. Applied Energy 2013, 102, 1439-1447. 2.Song, C., Global challenges and strategies for control, conversion and utilization of CO2 for sustainable development involving energy, catalysis, adsorption and chemical processing. Catalysis Today 2006, 115 (1), 2-32. 3.Yeh, J. T.; Pennline, H. W.; Resnik, K. P., Study of CO2 Absorption and Desorption in a Packed Column. Energy & Fuels 2001, 15 (2), 274-278. 4.Powell, C. E.; Qiao, G. G., Polymeric CO2/N2 gas separation membranes for the capture of carbon dioxide from power plant flue gases. Journal of Membrane Science 2006, 279 (1), 1-49. 5.Liu, W.; An, H.; Qin, C.; Yin, J.; Wang, G.; Feng, B.; Xu, M., Performance Enhancement of Calcium Oxide Sorbents for Cyclic CO2 Capture—A Review. Energy & Fuels 2012, 26 (5), 2751-2767. 6.Lasheras, A.; Ströhle, J.; Galloy, A.; Epple, B., Carbonate looping process simulation using a 1D fluidized bed model for the carbonator. International Journal of Greenhouse Gas Control 2011, 5 (4), 686-693. 7.Kierzkowska, A. M.; Poulikakos, L. V.; Broda, M.; Müller, C. R., Synthesis of calcium-based, Al2O3-stabilized sorbents for CO2 capture using a co-precipitation technique. International Journal of Greenhouse Gas Control 2013, 15, 48-54. 8.Tsai, W.-T.; Hsien, K.-J.; Hsu, H.-C.; Lin, C.-M.; Lin, K.-Y.; Chiu, C.-H., Utilization of ground eggshell waste as an adsorbent for the removal of dyes from aqueous solution. Bioresource Technology 2008, 99 (6), 1623-1629. 9.行政院環境保護署基管會, 資源回收好用心 全民合作享綠金. 2018. 10.熊其娟, 廢鐵的春天!開發城市礦山. 2016. 11.Mühle, J.; Ganesan, A. L.; Miller, B. R.; Salameh, P. K.; Harth, C. M.; Greally, B. R.; Rigby, M.; Porter, L. W.; Steele, L. P.; Trudinger, C. M.; Krummel, P. B.; O''Doherty, S.; Fraser, P. J.; Simmonds, P. G.; Prinn, R. G.; Weiss, R. F., Perfluorocarbons in the global atmosphere: tetrafluoromethane, hexafluoroethane, and octafluoropropane. Atmos. Chem. Phys. 2010, 10 (11), 5145-5164. 12.Anastas, P. T. W., J. C., Green Chemistry: Theory and Practice. Oxford 2000. 13.Ho, S.-H.; Chen, C.-Y.; Lee, D.-J.; Chang, J.-S., Perspectives on microalgal CO2-emission mitigation systems — A review. Biotechnology Advances 2011, 29 (2), 189-198. 14.Sridharan, K., Emerging Trends of Nanotechnology in Environment and Sustainability A Review-Based Approach. 2018. 15.Blueskieadmin, Carbon Dioxide at 400 ppm: What Does It Mean? 2015. 16.Deluisi, B., Measuring & Analyzing Greenhouse Gases: Behind the Scenes. 2009. 17.Napp, T. A.; Gambhir, A.; Hills, T. P.; Florin, N.; Fennell, P. S., A review of the technologies, economics and policy instruments for decarbonising energy-intensive manufacturing industries. Renewable and Sustainable Energy Reviews 2014, 30, 616-640. 18.Fytianos, G.; Ucar, S.; Grimstvedt, A.; Hyldbakk, A.; Svendsen, H. F.; Knuutila, H. K., Corrosion and degradation in MEA based post-combustion CO2 capture. International Journal of Greenhouse Gas Control 2016, 46, 48-56. 19.Afkhamipour, M.; Mofarahi, M., Review on the mass transfer performance of CO2 absorption by amine-based solvents in low- and high-pressure absorption packed columns. RSC Advances 2017, 7 (29), 17857-17872. 20.Aaron, D.; Tsouris, C., Separation of CO2 from Flue Gas: A Review. Separation Science and Technology 2005, 40 (1-3), 321-348. 21.談駿嵩、王志盈, 二氧化碳捕獲. 科學發展 2015, 6. 22.Erans, M.; Manovic, V.; Anthony, E. J., Calcium looping sorbents for CO2 capture. Applied Energy 2016, 180, 722-742. 23.Valverde, J. M.; Sanchez-Jimenez, P. E.; Perez-Maqueda, L. A., Calcium-looping for post-combustion CO2 capture. On the adverse effect of sorbent regeneration under CO2. Applied Energy 2014, 126, 161-171. 24.Perejón, A.; Romeo, L. M.; Lara, Y.; Lisbona, P.; Martínez, A.; Valverde, J. M., The Calcium-Looping technology for CO2 capture: On the important roles of energy integration and sorbent behavior. Applied Energy 2016, 162, 787-807. 25.Zhao, M.; Minett, A. I.; Harris, A. T., A review of techno-economic models for the retrofitting of conventional pulverised-coal power plants for post-combustion capture (PCC) of CO2. Energy & Environmental Science 2013, 6 (1), 25-40. 26.Abanades, J. C., 21 - Calcium looping for CO2 capture in combustion systems. In Fluidized Bed Technologies for Near-Zero Emission Combustion and Gasification, Scala, F., Ed. Woodhead Publishing: 2013; pp 931-970. 27.Tian, S.; Jiang, J.; Yan, F.; Li, K.; Chen, X.; Manovic, V., Highly efficient CO2 capture with simultaneous iron and CaO recycling for the iron and steel industry. Green Chemistry 2016, 18 (14), 4022-4031. 28.Yan, F.; Jiang, J.; Li, K.; Liu, N.; Chen, X.; Gao, Y.; Tian, S., Green Synthesis of Nanosilica from Coal Fly Ash and Its Stabilizing Effect on CaO Sorbents for CO2 Capture. Environmental Science & Technology 2017, 51 (13), 7606-7615. 29.Wang, K.; Zhao, P.; Guo, X.; Han, D.; Chao, Y., High-temperature CO2 capture cycles of hydrated limestone prepared with aluminum (hydr)oxides derived from kaolin. Energy Conversion and Management 2014, 86, 1147-1153. 30.Phromprasit, J.; Powell, J.; Assabumrungrat, S., Metals (Mg, Sr and Al) modified CaO based sorbent for CO2 sorption/desorption stability in fixed bed reactor for high temperature application. Chemical Engineering Journal 2016, 284, 1212-1223. 31.陳奕岑, 以改質氧化鈣捕獲二氧化碳氣體之循環再生能力研究. 2008. 32.Przepiórski, J.; Skrodzewicz, M.; Morawski, A. W., High temperature ammonia treatment of activated carbon for enhancement of CO2 adsorption. Applied Surface Science 2004, 225 (1), 235-242. 33.Majchrzak-Kucęba, I.; Nowak, W., A thermogravimetric study of the adsorption of CO2 on zeolites synthesized from fly ash. Thermochimica Acta 2005, 437 (1), 67-74. 34.Xu, X.; Song, C.; Miller, B. G.; Scaroni, A. W., Adsorption separation of carbon dioxide from flue gas of natural gas-fired boiler by a novel nanoporous “molecular basket” adsorbent. Fuel Processing Technology 2005, 86 (14), 1457-1472. 35.Abanades, J. C.; Alvarez, D., Conversion Limits in the Reaction of CO2 with Lime. Energy & Fuels 2003, 17 (2), 308-315. 36.Feng, B.; An, H.; Tan, E., Screening of CO2 Adsorbing Materials for Zero Emission Power Generation Systems. Energy & Fuels 2007, 21 (2), 426-434. 37.Y.J. Wang, L. Q., and W.J. Jiang, "CO2 absorption of Li4SiO4 at high temperature". Chinese Journal of Inorganic Chemistry 2006, Vol.22(2), 268-272. 38.Xiong, R.; Ida, J.; Lin, Y. S., Kinetics of carbon dioxide sorption on potassium-doped lithium zirconate. Chemical Engineering Science 2003, 58 (19), 4377-4385. 39.Gupta, K.; Singh, S.; Ramachandra Rao, M. S., Fast, reversible CO2 capture in nanostructured Brownmillerite CaFeO2.5. Nano Energy 2015, 11, 146-153. 40.Liu, W.; Feng, B.; Wu, Y.; Wang, G.; Barry, J.; Diniz da Costa, J. C., Synthesis of Sintering-Resistant Sorbents for CO2 Capture. Environmental Science & Technology 2010, 44 (8), 3093-3097. 41.Chen, M.; Wang, N.; Yu, J.; Yamaguchi, A., Effect of porosity on carbonation and hydration resistance of CaO materials. Journal of the European Ceramic Society 2007, 27 (4), 1953-1959. 42.Lysikov, A. I.; Salanov, A. N.; Okunev, A. G., Change of CO2 Carrying Capacity of CaO in Isothermal Recarbonation−Decomposition Cycles. Industrial & Engineering Chemistry Research 2007, 46 (13), 4633-4638. 43.Okazaki, J.; Ikeda, T.; Tanaka, D. A. P.; Sato, K.; Suzuki, T. M.; Mizukami, F., An investigation of thermal stability of thin palladium–silver alloy membranes for high temperature hydrogen separation. Journal of Membrane Science 2011, 366 (1), 212-219. 44.Chotirach, M.; Tantayanon, S.; Tungasmita, S.; Kriausakul, K., Zr-based intermetallic diffusion barriers for stainless steel supported palladium membranes. Journal of Membrane Science 2012, 405-406, 92-103. 45.Broda, M.; Kierzkowska, A. M.; Müller, C. R., 4 - Synthetic calcium oxide-based carbon dioxide sorbents for calcium looping processes. In Calcium and Chemical Looping Technology for Power Generation and Carbon Dioxide (CO2) Capture, Fennell, P.; Anthony, B., Eds. Woodhead Publishing: 2015; 51-72. 46.Islam, A.; Teo, S. H.; Chan, E. S.; Taufiq-Yap, Y. H., Enhancing the sorption performance of surfactant-assisted CaO nanoparticles. RSC Advances 2014, 4 (110), 65127-65136. 47.Wang, S.; Fan, L.; Li, C.; Zhao, Y.; Ma, X., Porous Spherical CaO-based Sorbents via PSS-Assisted Fast Precipitation for CO2 Capture. ACS Applied Materials & Interfaces 2014, 6 (20), 18072-18077. 48.Materic, V.; Hyland, M.; Jones, M. I.; Northover, B., High Temperature Carbonation of Ca(OH)2: The Effect of Particle Surface Area and Pore Volume. Industrial & Engineering Chemistry Research 2014, 53 (8), 2994-3000. 49.Manovic, V.; Anthony, E. J., Thermal Activation of CaO-Based Sorbent and Self-Reactivation during CO2 Capture Looping Cycles. Environmental Science & Technology 2008, 42 (11), 4170-4174. 50.Broda, M.; Kierzkowska, A. M.; Müller, C. R., Development of Highly Effective CaO-based, MgO-stabilized CO2 Sorbents via a Scalable “One-Pot” Recrystallization Technique. Advanced Functional Materials 2014, 24 (36), 5753-5761. 51.Liu, F.-Q.; Li, W.-H.; Liu, B.-C.; Li, R.-X., Synthesis, characterization, and high temperature CO2 capture of new CaO based hollow sphere sorbents. Journal of Materials Chemistry A 2013, 1 (27), 8037-8044. 52.Diana, F.; Vignesh, K.; Sreekantan, S.; Mohamed, A., Improved CO2 adsorption capacity and cyclic stability of CaO sorbents incorporated with MgO. 2015; Vol. 40. 53.Zhao, M.; Shi, J.; Zhong, X.; Tian, S.; Blamey, J.; Jiang, J.; Fennell, P. S., A novel calcium looping absorbent incorporated with polymorphic spacers for hydrogen production and CO2 capture. Energy & Environmental Science 2014, 7 (10), 3291-3295. 54.Jeong, J.-S.; 이영석, T. A. L. Y.-S.; Ryu, S. K., 2009, 10. 55.陳到達,熱分析,渤海堂文化事業有限公司,台北,1992 56.Loganathan, S.; Ravi babu, V.; Mishra, R.; Pugazhenthi, G.; Thomas, S., Thermogravimetry Analysis for Characterization of Nanomaterials. 2017. 57.Young, R. A.; Kalin, R. V., Scanning Electron Microscopic Techniques for Characterization of Semiconductor Materials. In Microelectronics Processing: Inorganic Materials Characterization, American Chemical Society: 1986; Vol. 295, pp 49-74. 58.Reimschuessel, A. C., Scanning electron microscopy - Part I. Journal of Chemical Education 1972, 49 (8), A413. 59.Redecke, L.; Nass, K.; DePonte, D. P.; White, T. A.; Rehders, D.; Barty, A.; Stellato, F.; Liang, M.; Barends, T. R. M.; Boutet, S.; Williams, G. J.; Messerschmidt, M.; Seibert, M. M.; Aquila, A.; Arnlund, D.; Bajt, S.; Barth, T.; Bogan, M. J.; Caleman, C.; Chao, T.-C.; Doak, R. B.; Fleckenstein, H.; Frank, M.; Fromme, R.; Galli, L.; Grotjohann, I.; Hunter, M. S.; Johansson, L. C.; Kassemeyer, S.; Katona, G.; Kirian, R. A.; Koopmann, R.; Kupitz, C.; Lomb, L.; Martin, A. V.; Mogk, S.; Neutze, R.; Shoeman, R. L.; Steinbrener, J.; Timneanu, N.; Wang, D.; Weierstall, U.; Zatsepin, N. A.; Spence, J. C. H.; Fromme, P.; Schlichting, I.; Duszenko, M.; Betzel, C.; Chapman, H. N., Natively Inhibited Trypanosoma brucei Cathepsin B Structure Determined by Using an X-ray Laser. Science 2013, 339 (6116), 227. 60.Brunauer, S., P. H. Emmett, E. J. Teller. J. Am. Chem. Soc 1938,60. 61.F. Rouquerol, J. R. a. K. S., Adsorption by powders and porous solids. Academic Press 1999. 62.Wang, W.; Liu, P.; Zhang, M.; Hu, J.; Xing, F., The Pore Structure of Phosphoaluminate Cement. Open Journal of Composite Materials 2012, Vol.02No.03, 9. 63.Mohamed Faycal Atitar, H. B., Ralf Dillert and Detlef W. Bahnemann, The Relevance of ATR-FTIR Spectroscopy in Semiconductor Photocatalysis. 2015. 64.Gedda, G.; Pandey, S.; Lin, Y.-C.; Wu, H.-F., Antibacterial effect of calcium oxide nano-plates fabricated from shrimp shells. Green Chemistry 2015, 17 (6), 3276-3280. 65.Mhamane, D.; Kim, H.-K.; Aravindan, V.; Roh, K. C.; Srinivasan, M.; Kim, K.-B., Rusted iron wire waste into high performance anode (α-Fe2O3) for Li-ion batteries: an efficient waste management approach. Green Chemistry 2016, 18 (5), 1395-1404. 66.Vadiyar, M. M.; Liu, X.; Ye, Z., Utilizing Waste Thermocol Sheets and Rusted Iron Wires to Fabricate Carbon–Fe3O4 Nanocomposite-Based Supercapacitors: Turning Wastes into Value-Added Materials. ChemSusChem 2018, 11 (14), 2410-2420. 67.張馨云, 由廢鋁罐製備明礬. 2016. 68.Roy, A.; Gauri, S. S.; Bhattacharya, M.; Bhattacharya, J., Antimicrobial Activity of CaO Nanoparticles. Journal of Biomedical Nanotechnology 2013, 9 (9), 1570-1578. 69.Barhoum, A.; Rahier, H.; Abou-Zaied, R. E.; Rehan, M.; Dufour, T.; Hill, G.; Dufresne, A., Effect of Cationic and Anionic Surfactants on the Application of Calcium Carbonate Nanoparticles in Paper Coating. ACS Applied Materials & Interfaces 2014, 6 (4), 2734-2744. 70.Witoon, T., Polyethyleneimine-loaded bimodal porous silica as low-cost and high-capacity sorbent for CO2 capture. Materials Chemistry and Physics 2012, 137 (1), 235-245. 71.Sompech, S.; Dasri, T.; Thaomola, S., Preparation and Characterization of Amorphous Silica and Calcium Oxide from Agricultural Wastes. Oriental Journal of Chemistry 2016, 32 (4), 1923-1928. 72.Kalinkin, A. M.; Kalinkina, E. V.; Zalkind, O. A.; Makarova, T. I., Chemical Interaction of Calcium Oxide and Calcium Hydroxide with CO2 during Mechanical Activation. Inorganic Materials 2005, 41 (10), 1073-1079. 73.Xiao, Y.; Zai, J.; Li, X.; Gong, Y.; Li, B.; Han, Q.; Qian, X., Polydopamine functionalized graphene/NiFe2O4 nanocomposite with improving Li storage performances. Nano Energy 2014, 6, 51-58. 74.Deng, M.; Zhao, H.; Zhang, S.; Tian, C.; Zhang, D.; Du, P.; Liu, C.; Cao, H.; Li, H., High catalytic activity of immobilized laccase on core–shell magnetic nanoparticles by dopamine self-polymerization. Journal of Molecular Catalysis B: Enzymatic 2015, 112, 15-24. 75.Slabaugh, W. H., A short textbook of colloid chemistry (Jirgensons, B.; Straumanis, M. E.). Journal of Chemical Education 1962, 39 (12), 656.
|