跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.54) 您好!臺灣時間:2026/01/10 14:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:郭進平
研究生(外文):KUO, JIN-PING
論文名稱:以奈米碳黑/碳量子點結合金屬有機骨架配位化合物MIL-101(Cr)修飾電極偵測咖啡酸的方法開發與應用
論文名稱(外文):Studies on the Electrochemical Behaviors of Caffeic Acid with Carbon Black/Carbon Quantum Dot/Metal Organic Frameworks Modified Glassy Carbon Electrode
指導教授:李慧玲李慧玲引用關係
指導教授(外文):Lee, Hui-Ling
口試委員:李慧玲陳壽椿鄭淑華
口試委員(外文):Lee, Hui-LingChen, Show-ChuenCheng, Shu-Hua
口試日期:2019-07-26
學位類別:碩士
校院名稱:輔仁大學
系所名稱:化學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:105
中文關鍵詞:咖啡酸奈米碳黑碳量子點金屬有機骨架配位化合物修飾電極市售飲品
外文關鍵詞:caffeic acidnano carbon blackcarbon quantum dotsmetal organic frameworksmodified electrodescommercial beverages
相關次數:
  • 被引用被引用:0
  • 點閱點閱:153
  • 評分評分:
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:0
本研究以奈米碳黑(Nano carbon black)結合碳量子點(Carbon quantum dot,CQD)並混參金屬有機骨架配位化合物(Metal-organic frameworks,MOFs)修飾玻璃碳電極(Glassy carbon electrode,GCE),偵測咖啡酸,並探討此修飾電極的電化學特性。以X-射線繞射分析儀與傅立葉紅外線光譜儀鑑定金屬有機骨架配位化合物的合成,並以螢光光譜儀與穿透式電子顯微鏡鑑定碳量子點的合成,以掃描式電子顯微鏡(Scanning electron microscope,SEM)與能量散射光譜儀(Energy dispersive spectrometer,EDS)對修飾電極進行表面特徵與元素組成進行分析,證實修飾材料可成功的製備奈米碳黑/碳量子點/金屬有機骨架配位化合物修飾電極。在實驗最佳化的條件下,由差式脈波伏安法(Differential pulse voltammetry,DPV)與電化學交流阻抗分析(Electrochemical impedance spectroscopy,EIS),證實奈米碳黑/碳量子點/金屬有機骨架材料MIL-101(Cr) 有減少電傳阻抗與良好的電子傳遞特性。
奈米碳黑/碳量子點/金屬有機骨架配位化合物修飾電極於咖啡酸之檢量線(Calibration curve)範圍為0.1-20 μM,偵測極限 (Detection limit,S/N = 3)為20 nM。另外,修飾電極的重複性(Repeatability)以同日間 (Intra-day)與異日間(Inter-day)進行測量,其相對標準偏差(Relative standard deviation,RSD)分別小於6.93 %與1.15 %,證實此修飾電極具有良好的再現性。連續測量20次後電流保持率有94.52 %,在電極放置一週後的電流保持率仍有84.78 %,證實此修飾電極具有良好重複性與穩定性。
最後奈米碳黑/碳量子點/金屬有機骨架配位化合物修飾電極應用於偵測市售飲品中的咖啡酸,其回收率介於95.01 %至113.14 %之間。

In this study, using nano carbon black/carbon quantum dot (CQD)/metal-organic frameworks (MOFs) modified electrode detecting caffeic acid, and investigating the electrochemical properties of the modified electrode. The metal organic frameworks have been successfully scrutinized by using Fourier transform infrared spectroscopy (FT-IR) and powder X-ray diffraction (PXRD), transmission electron microscopy (TEM) and fluorescence spectrometer successful identify the CQD, scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) confirmed that carbon black/carbon quantum dots/metal-organic frameworks modified electrode can be successfully prepared.
In these optimal conditions, differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS) were used to confirm nano carbon black/carbon quantum dots/metal-organic frameworks modified electrode has excellent electron transfer characteristics, low electron transfer resistance and increase oxidation current signal characteristics.
After the optimization process, the electrochemical detection of CA in a wide concentration range, from 0.1 μM to 20 μM concentration range, with the limit of detection (S/N = 3) of 20 nM.
In addition, the repeatability of the CB/CQD/MOFs/GCE was measured in the intra-day and inter-day and the relative standard deviation (RSD) was less than 6.93 % and 1.15 %, respectively. Stability remained above 94.52 % after 20 scan by DPV, long-term stability remained above 84.78 %, which confirmed that the modified electrode has good repeatability and stability.
Finally, CB/CQD/MOFs/GCE applied in determination of caffeic acid in commercial beverages. The recovery was between 95.01 to 113.14 %, which shows the feasible detection of CA in real sample.
摘要 I
Abstract III
目錄 IV
圖目錄 VIII
表目錄 XI
一、緒論 1
1-1修飾電極介紹 1
1-1-1修飾電極的方式 2
1-2修飾電極的特性與應用 5
1-2-1電催化 5
1-2-2預濃縮 6
1-2-3薄膜阻隔 7
1-3 碳材簡介 9
1-3-1石墨烯 9
1-3-2奈米碳管 10
1-3-3 奈米碳黑 11
1-4金屬有機骨架配位化合物 (Metal-organic frameworks,MOFs) 14
1-5 碳量子點 (Carbon quantum dot,CQD) 17
1-6 分析物簡介 20
1-6-1咖啡酸 20
第二章、研究方法 21
2-1實驗基本架構 21
2-2實驗藥品 22
2-3實驗儀器與設備 23
2-4 實驗步驟 24
2-4-1 金屬有機骨架配位化合物之製備 24
2-4-2碳量子點之製備 24
2-4-3修飾劑之製備 25
2-4-3玻璃碳修飾電極之製備 25
2-5 儀器參數 26
2-5-1 循環伏安法 (Cyclic voltammetry) 26
2-5-3 差式脈波伏安法 (Differential pulse voltammetry,DPV) 26
2-6 材料鑑定 27
2-6-1 傅立葉紅外光譜儀 (Fourier transform infrared spectrometry, FT-IR) 27
2-6-2 粉末X-射線繞射分析儀 (Powder X-ray diffraction, PXRD) 28
2-6-3 螢光光譜儀 (Fluorescence spectrometer) 29
2-6-4 接觸角 (Contact angle) 29
2-6-5 穿透式電子顯微鏡 (Transmission electron microscope, TEM) 30
2-6-6 掃描式電子顯微鏡 (Scanning electron microscope, SEM) 31
2-6-7 能量散射光譜儀 (Energy dispersive spectrometer, EDS) 32
三、結果與討論 33
3-1 修飾電極及咖啡酸之電化學特性 33
3-2 修飾電極的最佳化探討 35
3-2-1 探討奈米碳黑比例之最佳化 35
3-2-2 探討碳量子點比例之最佳化 37
3-2-3 探討金屬有機骨架配位化合物的比例最佳化 39
3-2-4三維平面曲線圖探討修飾材料比例最佳化 41
3-2-5 探討修飾劑之最佳化劑量 43
3-2-6 探討緩衝溶液之最佳化pH值 44
3-3 材料鑑定 47
3-3-1 MIL-101(Cr)官能基之鑑定 47
3-3-2 MIL-101(Cr)晶格結構之鑑定 48
3-3-3 碳量子點螢光之鑑定 49
3-3-4 碳量子點尺寸之鑑定 51
3-3-5 MIL-101(Cr)與修飾電極表面型態之觀測 52
3-3-6 修飾電極表面元素之鑑定 54
3-3-7 接觸角 56
3-4 修飾電極之電化學特性探討 57
3-4-1 擴散與吸附之特性 57
3-4-2 電化學交流阻抗分析 62
3-4-3 探討修飾電極之活性面積 64
3-4-4 修飾電極之傳導係數及電子轉移速率 67
3-5 方法建立與確效 69
3-5-1 檢量線建立 69
3-5-2 干擾物 71
3-5-3 修飾電極的重複性與穩定性探討 77
3-5-4 真實樣品測試 80
第四章、結論 83
第六章、參考文獻 85

[1] R.P. Baldwin, K.N. Thomsen, Chemically modified electrodes in liquid chromatography detection: A review, Talanta, 38 (1991) 1-16.
[2] F.S. Marrikar, M. Brumbach, D.H. Evans, A. Lebrón-Paler, J.E. Pemberton, R.J. Wysocki, N.R. Armstrong, Modification of Indium−Tin Oxide Electrodes with Thiophene Copolymer Thin Films:  Optimizing Electron Transfer to Solution Probe Molecules, Langmuir, 23 (2007) 1530-1542.
[3] X. Liu, H. Zhu, X. Yang, An amperometric hydrogen peroxide chemical sensor based on graphene-Fe(3)O(4) multilayer films modified ITO electrode, Talanta, 87 (2011) 243-248.
[4] J. Chen, H. Bai, Z. Li, J. Xia, Q. Cao, Stripping voltammetric determination of cerium in food using an electropolymerized poly-catechol and ion-imprinted membrane modified electrode, Journal of Electroanalytical Chemistry, 808 (2018) 41-49.
[5] A.C. Torres, M.M. Barsan, C.M. Brett, Simple electrochemical sensor for caffeine based on carbon and Nafion-modified carbon electrodes, Food Chem, 149 (2014) 215-220.
[6] J. Tashkhourian, S.F. Nami-Ana, A sensitive electrochemical sensor for determination of gallic acid based on SiO2 nanoparticle modified carbon paste electrode, Mater Sci Eng C Mater Biol Appl, 52 (2015) 103-110.
[7] M. Zheng, F. Gao, Q. Wang, X. Cai, S. Jiang, L. Huang, F. Gao, Electrocatalytical oxidation and sensitive determination of acetaminophen on glassy carbon electrode modified with graphene-chitosan composite, Mater Sci Eng C Mater Biol Appl, 33 (2013) 1514-1520.
[8] S. Palanisamy, T. Kokulnathan, S.-M. Chen, V. Velusamy, S.K. Ramaraj, Voltammetric determination of Sudan I in food samples based on platinum nanoparticles decorated on graphene-β-cyclodextrin modified electrode, Journal of Electroanalytical Chemistry, 794 (2017) 64-70.
[9] H. Liu, T. Ying, K. Sun, H. Li, D. Qi, Reagentless amperometric biosensors highly sensitive to hydrogen peroxide, glucose and lactose based on N-methyl phenazine methosulfate incorporated in a Nafion film as an electron transfer mediator between horseradish peroxidase and an electrode, Analytica Chimica Acta, 344 (1997) 187-199.
[10] Z. Wu, B. Wang, S. Dong, E. Wang, Amperometric glucose biosensor based on lipid film, Biosensors and Bioelectronics, 15 (2000) 143-147.
[11] J. Wang, T. Golden, R. Li, Cobalt phthalocyanine/cellulose acetate chemically modified electrodes for electrochemical detection in flowing streams. Multifunctional operation based upon the coupling of electrocatalysis and permselectivity, Analytical Chemistry, 60 (1988) 1642-1645.
[12] H. Liu, H. Li, T. Ying, K. Sun, Y. Qin, D. Qi, Amperometric biosensor sensitive to glucose and lactose based on co-immobilization of ferrocene, glucose oxidase, β-galactosidase and mutarotase in β-cyclodextrin polymer, Analytica Chimica Acta, 358 (1998) 137-144.
[13] I. Mohammed, M. Nemakal, V.A. Sajjan, D.B. Puttappashetty, L.K. Sannegowda, Electropolymerized film of cobalt tetrabenzimidazolephthalocyanine for the amperometric detection of H2O2, Journal of Electroanalytical Chemistry, 826 (2018) 96-103.
[14] C.R. Raj, K.V. Gobi, T. Ohsaka, Electrocatalytic oxidation of NADH at the self-assembled monolayer of nickel(II) macrocycle on gold electrode, Bioelectrochemistry, 51 (2000) 181-186.
[15] B. Ogorevc, X. Cai, I. Grabec, Determination of traces of copper by anodic stripping voltammetry after its preconcentration via an ion-exchange route at carbon paste electrodes modified with vermiculite, Analytica Chimica Acta, 305 (1995) 176-182.
[16] A.J. Conesa, J.M. Pinilla, L. Hernández, Determination of mebendazole in urine by cathodic stripping voltammetry, Analytica Chimica Acta, 331 (1996) 111-116.
[17] A.M. Sacara, C. Cristea, L.M. Muresan, Electrochemical detection of Malachite Green using glassy carbon electrodes modified with CeO 2 nanoparticles and Nafion, Journal of Electroanalytical Chemistry, 792 (2017) 23-30.
[18] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov, Two-dimensional gas of massless Dirac fermions in graphene, Nature, 438 (2005) 197-200.
[19] S.-J. Li, Y. Xing, G.-F. Wang, A graphene-based electrochemical sensor for sensitive and selective determination of hydroquinone, Microchimica Acta, 176 (2011) 163-168.
[20] A.I. Rusanov, Thermodynamics of graphene, Surface Science Reports, 69 (2014) 296-324.
[21] G. Mittal, V. Dhand, K.Y. Rhee, S.-J. Park, W.R. Lee, A review on carbon nanotubes and graphene as fillers in reinforced polymer nanocomposites, Journal of Industrial and Engineering Chemistry, 21 (2015) 11-25.
[22] S.N. Kim, J.F. Rusling, F. Papadimitrakopoulos, Carbon Nanotubes for Electronic and Electrochemical Detection of Biomolecules, Adv Mater, 19 (2007) 3214-3228.
[23] P. Kar, A. Choudhury, Carboxylic acid functionalized multi-walled carbon nanotube doped polyaniline for chloroform sensors, Sensors and Actuators B: Chemical, 183 (2013) 25-33.
[24] 費定國,高昀成,中央大學化工研究所,工業材料 121 期,(86 年 1 月).
[25] 陳志昇,輔仁大學化學研究所,碩士論文,(101 年 7 月).
[26] M.M. Lounasvuori, D. Kelly, J.S. Foord, Carbon black as low-cost alternative for electrochemical sensing of phenolic compounds, Carbon, 129 (2018) 252-257.
[27] N. Ben Messaoud, A. Ait Lahcen, C. Dridi, A. Amine, Ultrasound assisted magnetic imprinted polymer combined sensor based on carbon black and gold nanoparticles for selective and sensitive electrochemical detection of Bisphenol A, Sensors and Actuators B: Chemical, 276 (2018) 304-312.
[28] D. Talarico, F. Arduini, A. Constantino, M. Del Carlo, D. Compagnone, D. Moscone, G. Palleschi, Carbon black as successful screen-printed electrode modifier for phenolic compound detection, Electrochemistry Communications, 60 (2015) 78-82.
[29] D. Talarico, F. Arduini, A. Amine, D. Moscone, G. Palleschi, Screen-printed electrode modified with carbon black nanoparticles for phosphate detection by measuring the electroactive phosphomolybdate complex, Talanta, 141 (2015) 267-272.
[30] F. Arduini, C. Zanardi, S. Cinti, F. Terzi, D. Moscone, G. Palleschi, R. Seeber, Effective electrochemical sensor based on screen-printed electrodes modified with a carbon black-Au nanoparticles composite, Sensors and Actuators B: Chemical, 212 (2015) 536-543.
[31] L.-N. Wu, Y.-L. Tan, L. Wang, S.-N. Sun, Z.-Y. Qu, J.-M. Zhang, Y.-J. Fan, Dopamine sensor based on a hybrid material composed of cuprous oxide hollow microspheres and carbon black, Microchimica Acta, 182 (2015) 1361-1369.
[32] G. Ibanez-Redin, D. Wilson, D. Goncalves, O.N. Oliveira, Jr., Low-cost screen-printed electrodes based on electrochemically reduced graphene oxide-carbon black nanocomposites for dopamine, epinephrine and paracetamol detection, J Colloid Interface Sci, 515 (2018) 101-108.
[33] O.K. Farha, C.E. Wilmer, I. Eryazici, B.G. Hauser, P.A. Parilla, K. O'Neill, A.A. Sarjeant, S.T. Nguyen, R.Q. Snurr, J.T. Hupp, Designing higher surface area metal-organic frameworks: are triple bonds better than phenyls?, J Am Chem Soc, 134 (2012) 9860-9863.
[34] L.J. Murray, M. Dinca, J.R. Long, Hydrogen storage in metal-organic frameworks, Chem Soc Rev, 38 (2009) 1294-1314.
[35] J.R. Li, R.J. Kuppler, H.C. Zhou, Selective gas adsorption and separation in metal-organic frameworks, Chem Soc Rev, 38 (2009) 1477-1504.
[36] L.E. Kreno, K. Leong, O.K. Farha, M. Allendorf, R.P. Van Duyne, J.T. Hupp, Metal-organic framework materials as chemical sensors, Chem Rev, 112 (2012) 1105-1125.
[37] J. Lee, O.K. Farha, J. Roberts, K.A. Scheidt, S.T. Nguyen, J.T. Hupp, Metal-organic framework materials as catalysts, Chem Soc Rev, 38 (2009) 1450-1459.
[38] J. An, N.L. Rosi, Tuning MOF CO2 Adsorption Properties via Cation Exchange, Journal of the American Chemical Society, 132 (2010) 5578-5579.
[39] C.Y. Lee, O.K. Farha, B.J. Hong, A.A. Sarjeant, S.T. Nguyen, J.T. Hupp, Light-harvesting metal-organic frameworks (MOFs): efficient strut-to-strut energy transfer in bodipy and porphyrin-based MOFs, J Am Chem Soc, 133 (2011) 15858-15861.
[40] P. Horcajada, R. Gref, T. Baati, P.K. Allan, G. Maurin, P. Couvreur, G. Ferey, R.E. Morris, C. Serre, Metal-organic frameworks in biomedicine, Chem Rev, 112 (2012) 1232-1268.
[41] Z. Liang, C. Qu, W. Guo, R. Zou, Q. Xu, Pristine Metal-Organic Frameworks and their Composites for Energy Storage and Conversion, Adv Mater, 30 (2018) e1702891.
[42] Y. Li, C. Huangfu, H. Du, W. Liu, Y. Li, J. Ye, Electrochemical behavior of metal–organic framework MIL-101 modified carbon paste electrode: An excellent candidate for electroanalysis, Journal of Electroanalytical Chemistry, 709 (2013) 65-69.
[43] Z. Peng, Z. Jiang, X. Huang, Y. Li, A novel electrochemical sensor of tryptophan based on silver nanoparticles/metal–organic framework composite modified glassy carbon electrode, RSC Advances, 6 (2016) 13742-13748.
[44] G. Férey, C. Mellot-Draznieks, C. Serre, F. Millange, J. Dutour, S. Surblé, I. Margiolaki, A Chromium Terephthalate-Based Solid with Unusually Large Pore Volumes and Surface Area, Science, 309 (2005) 2040.
[45] Z. Wang, G. Yu, J. Xia, F. Zhang, Q. Liu, One-step synthesis of a Methylene Blue@ZIF-8-reduced graphene oxide nanocomposite and its application to electrochemical sensing of rutin, Mikrochim Acta, 185 (2018) 279.
[46] Q. Chen, X. Li, X. Min, D. Cheng, J. Zhou, Y. Li, Z. Xie, P. Liu, W. Cai, C. Zhang, Determination of catechol and hydroquinone with high sensitivity using MOF-graphene composites modified electrode, Journal of Electroanalytical Chemistry, 789 (2017) 114-122.
[47] J. Zhou, X. Li, L. Yang, S. Yan, M. Wang, D. Cheng, Q. Chen, Y. Dong, P. Liu, W. Cai, C. Zhang, The Cu-MOF-199/single-walled carbon nanotubes modified electrode for simultaneous determination of hydroquinone and catechol with extended linear ranges and lower detection limits, Anal Chim Acta, 899 (2015) 57-65.
[48] P. Arul, S.A. John, Size controlled synthesis of Ni-MOF using polyvinylpyrrolidone: New electrode material for the trace level determination of nitrobenzene, Journal of Electroanalytical Chemistry, 829 (2018) 168-176.
[49] X. Zhang, Y. Xu, B. Ye, An efficient electrochemical glucose sensor based on porous nickel-based metal organic framework/carbon nanotubes composite (Ni-MOF/CNTs), Journal of Alloys and Compounds, 767 (2018) 651-656.
[50] X. Xu, R. Ray, Y. Gu, H.J. Ploehn, L. Gearheart, K. Raker, W.A. Scrivens, Electrophoretic Analysis and Purification of Fluorescent Single-Walled Carbon Nanotube Fragments, Journal of the American Chemical Society, 126 (2004) 12736-12737.
[51] S.Y. Lim, W. Shen, Z. Gao, Carbon quantum dots and their applications, Chemical Society Reviews, 44 (2015) 362-381.
[52] H.M. Goncalves, A.J. Duarte, J.C. Esteves da Silva, Optical fiber sensor for Hg(II) based on carbon dots, Biosens Bioelectron, 26 (2010) 1302-1306.
[53] G.A. Posthuma-Trumpie, J.H. Wichers, M. Koets, L.B. Berendsen, A. van Amerongen, Amorphous carbon nanoparticles: a versatile label for rapid diagnostic (immuno)assays, Anal Bioanal Chem, 402 (2012) 593-600.
[54] V.N. Mehta, S. Jha, S.K. Kailasa, One-pot green synthesis of carbon dots by using Saccharum officinarum juice for fluorescent imaging of bacteria (Escherichia coli) and yeast (Saccharomyces cerevisiae) cells, Mater Sci Eng C Mater Biol Appl, 38 (2014) 20-27.
[55] H. Tao, K. Yang, Z. Ma, J. Wan, Y. Zhang, Z. Kang, Z. Liu, In vivo NIR fluorescence imaging, biodistribution, and toxicology of photoluminescent carbon dots produced from carbon nanotubes and graphite, Small, 8 (2012) 281-290.
[56] H. Li, R. Liu, S. Lian, Y. Liu, H. Huang, Z. Kang, Near-infrared light controlled photocatalytic activity of carbon quantum dots for highly selective oxidation reaction, Nanoscale, 5 (2013) 3289-3297.
[57] W.A. Saidi, Oxygen Reduction Electrocatalysis Using N-Doped Graphene Quantum-Dots, The Journal of Physical Chemistry Letters, 4 (2013) 4160-4165.
[58] X. Jian, X. Liu, H.-m. Yang, M.-m. Guo, X.-l. Song, H.-y. Dai, Z.-h. Liang, Graphene quantum dots modified glassy carbon electrode via electrostatic self-assembly strategy and its application, Electrochimica Acta, 190 (2016) 455-462.
[59] G. Wang, G. Shi, X. Chen, R. Yao, F. Chen, A glassy carbon electrode modified with graphene quantum dots and silver nanoparticles for simultaneous determination of guanine and adenine, Microchimica Acta, 182 (2014) 315-322.
[60] M. Algarra, A. Gonzalez-Calabuig, K. Radotic, D. Mutavdzic, C.O. Ania, J.M. Lazaro-Martinez, J. Jimenez-Jimenez, E. Rodriguez-Castellon, M. Del Valle, Enhanced electrochemical response of carbon quantum dot modified electrodes, Talanta, 178 (2018) 679-685.
[61] N. Amini, M. Shamsipur, M.B. Gholivand, A. Barati, A glassy carbon electrode modified with carbon quantum dots and polyalizarin yellow R dyes for enhanced electrocatalytic oxidation and nanomolar detection of l-cysteine, Microchemical Journal, 131 (2017) 9-14.
[62] J. Tashkhourian, S.F. Nami-Ana, M. Shamsipur, Designing a modified electrode based on graphene quantum dot-chitosan application to electrochemical detection of epinephrine, Journal of Molecular Liquids, 266 (2018) 548-556.
[63] N. Hashemzadeh, M. Hasanzadeh, N. Shadjou, J. Eivazi-Ziaei, M. Khoubnasabjafari, A. Jouyban, Graphene quantum dot modified glassy carbon electrode for the determination of doxorubicin hydrochloride in human plasma, J Pharm Anal, 6 (2016) 235-241.
[64] J. Ju, W. Chen, In situ growth of surfactant-free gold nanoparticles on nitrogen-doped graphene quantum dots for electrochemical detection of hydrogen peroxide in biological environments, Anal Chem, 87 (2015) 1903-1910.
[65] G. Jiang, T. Jiang, H. Zhou, J. Yao, X. Kong, Preparation of N-doped carbon quantum dots for highly sensitive detection of dopamine by an electrochemical method, RSC Advances, 5 (2015) 9064-9068.
[66] L. Li, D. Liu, K. Wang, H. Mao, T. You, Quantitative detection of nitrite with N-doped graphene quantum dots decorated N-doped carbon nanofibers composite-based electrochemical sensor, Sensors and Actuators B: Chemical, 252 (2017) 17-23.
[67] J. Chen, P. He, H. Bai, S. He, T. Zhang, X. Zhang, F. Dong, Poly(β-cyclodextrin)/carbon quantum dots modified glassy carbon electrode: Preparation, characterization and simultaneous electrochemical determination of dopamine, uric acid and tryptophan, Sensors and Actuators B: Chemical, 252 (2017) 9-16.
[68] J. Li, J. Jiang, M. Liu, Z. Xu, P. Deng, D. Qian, C. Tong, H. Xie, C. Yang, Facile synthesis of MnO2-embedded flower-like hierarchical porous carbon microspheres as an enhanced electrocatalyst for sensitive detection of caffeic acid, Anal Chim Acta, 985 (2017) 155-165.
[69] S.N. Robledo, J.C. López, A.M. Granero, M.A. Zensich, G.M. Morales, H. Fernández, M.A. Zon, Characterization of the surface redox process of caffeic acid adsorbed at glassy carbon electrodes modified with partially reduced graphene oxide, Journal of Electroanalytical Chemistry, 783 (2016) 258-267.
[70] M. Sakthivel, S. Ramaraj, S.M. Chen, B. Dinesh, H.V. Ramasamy, Y.S. Lee, Entrapment of bimetallic CoFeSe2 nanosphere on functionalized carbon nanofiber for selective and sensitive electrochemical detection of caffeic acid in wine samples, Anal Chim Acta, 1006 (2018) 22-32.
[71] J. Xia, G. He, L. Zhang, X. Sun, X. Wang, Hydrogenation of nitrophenols catalyzed by carbon black-supported nickel nanoparticles under mild conditions, Applied Catalysis B: Environmental, 180 (2016) 408-415.
[72] M. Arvand, S. Hemmati, Analytical methodology for the electro-catalytic determination of estradiol and progesterone based on graphene quantum dots and poly(sulfosalicylic acid) co-modified electrode, Talanta, 174 (2017) 243-255.
[73] L. Su, Y. Xiong, H. Yang, P. Zhang, F. Ye, Prussian blue nanoparticles encapsulated inside a metal–organic framework via in situ growth as promising peroxidase mimetics for enzyme inhibitor screening, Journal of Materials Chemistry B, 4 (2016) 128-134.
[74] N. Shadjou, M. Hasanzadeh, F. Talebi, A.P. Marjani, Graphene quantum dot functionalized by beta-cyclodextrin: a novel nanocomposite toward amplification ofl-cysteine electro-oxidation signals, Nanocomposites, 2 (2016) 18-28.
[75] X. Huang, Q. Hu, L. Gao, Q. Hao, P. Wang, D. Qin, Adsorption characteristics of metal–organic framework MIL-101(Cr) towards sulfamethoxazole and its persulfate oxidation regeneration, RSC Advances, 8 (2018) 27623-27630.
[76] H. Furukawa, K.E. Cordova, M. O'Keeffe, O.M. Yaghi, The chemistry and applications of metal-organic frameworks, Science, 341 (2013) 1230444.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊