|
[1] R.P. Baldwin, K.N. Thomsen, Chemically modified electrodes in liquid chromatography detection: A review, Talanta, 38 (1991) 1-16. [2] F.S. Marrikar, M. Brumbach, D.H. Evans, A. Lebrón-Paler, J.E. Pemberton, R.J. Wysocki, N.R. Armstrong, Modification of Indium−Tin Oxide Electrodes with Thiophene Copolymer Thin Films: Optimizing Electron Transfer to Solution Probe Molecules, Langmuir, 23 (2007) 1530-1542. [3] X. Liu, H. Zhu, X. Yang, An amperometric hydrogen peroxide chemical sensor based on graphene-Fe(3)O(4) multilayer films modified ITO electrode, Talanta, 87 (2011) 243-248. [4] J. Chen, H. Bai, Z. Li, J. Xia, Q. Cao, Stripping voltammetric determination of cerium in food using an electropolymerized poly-catechol and ion-imprinted membrane modified electrode, Journal of Electroanalytical Chemistry, 808 (2018) 41-49. [5] A.C. Torres, M.M. Barsan, C.M. Brett, Simple electrochemical sensor for caffeine based on carbon and Nafion-modified carbon electrodes, Food Chem, 149 (2014) 215-220. [6] J. Tashkhourian, S.F. Nami-Ana, A sensitive electrochemical sensor for determination of gallic acid based on SiO2 nanoparticle modified carbon paste electrode, Mater Sci Eng C Mater Biol Appl, 52 (2015) 103-110. [7] M. Zheng, F. Gao, Q. Wang, X. Cai, S. Jiang, L. Huang, F. Gao, Electrocatalytical oxidation and sensitive determination of acetaminophen on glassy carbon electrode modified with graphene-chitosan composite, Mater Sci Eng C Mater Biol Appl, 33 (2013) 1514-1520. [8] S. Palanisamy, T. Kokulnathan, S.-M. Chen, V. Velusamy, S.K. Ramaraj, Voltammetric determination of Sudan I in food samples based on platinum nanoparticles decorated on graphene-β-cyclodextrin modified electrode, Journal of Electroanalytical Chemistry, 794 (2017) 64-70. [9] H. Liu, T. Ying, K. Sun, H. Li, D. Qi, Reagentless amperometric biosensors highly sensitive to hydrogen peroxide, glucose and lactose based on N-methyl phenazine methosulfate incorporated in a Nafion film as an electron transfer mediator between horseradish peroxidase and an electrode, Analytica Chimica Acta, 344 (1997) 187-199. [10] Z. Wu, B. Wang, S. Dong, E. Wang, Amperometric glucose biosensor based on lipid film, Biosensors and Bioelectronics, 15 (2000) 143-147. [11] J. Wang, T. Golden, R. Li, Cobalt phthalocyanine/cellulose acetate chemically modified electrodes for electrochemical detection in flowing streams. Multifunctional operation based upon the coupling of electrocatalysis and permselectivity, Analytical Chemistry, 60 (1988) 1642-1645. [12] H. Liu, H. Li, T. Ying, K. Sun, Y. Qin, D. Qi, Amperometric biosensor sensitive to glucose and lactose based on co-immobilization of ferrocene, glucose oxidase, β-galactosidase and mutarotase in β-cyclodextrin polymer, Analytica Chimica Acta, 358 (1998) 137-144. [13] I. Mohammed, M. Nemakal, V.A. Sajjan, D.B. Puttappashetty, L.K. Sannegowda, Electropolymerized film of cobalt tetrabenzimidazolephthalocyanine for the amperometric detection of H2O2, Journal of Electroanalytical Chemistry, 826 (2018) 96-103. [14] C.R. Raj, K.V. Gobi, T. Ohsaka, Electrocatalytic oxidation of NADH at the self-assembled monolayer of nickel(II) macrocycle on gold electrode, Bioelectrochemistry, 51 (2000) 181-186. [15] B. Ogorevc, X. Cai, I. Grabec, Determination of traces of copper by anodic stripping voltammetry after its preconcentration via an ion-exchange route at carbon paste electrodes modified with vermiculite, Analytica Chimica Acta, 305 (1995) 176-182. [16] A.J. Conesa, J.M. Pinilla, L. Hernández, Determination of mebendazole in urine by cathodic stripping voltammetry, Analytica Chimica Acta, 331 (1996) 111-116. [17] A.M. Sacara, C. Cristea, L.M. Muresan, Electrochemical detection of Malachite Green using glassy carbon electrodes modified with CeO 2 nanoparticles and Nafion, Journal of Electroanalytical Chemistry, 792 (2017) 23-30. [18] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov, Two-dimensional gas of massless Dirac fermions in graphene, Nature, 438 (2005) 197-200. [19] S.-J. Li, Y. Xing, G.-F. Wang, A graphene-based electrochemical sensor for sensitive and selective determination of hydroquinone, Microchimica Acta, 176 (2011) 163-168. [20] A.I. Rusanov, Thermodynamics of graphene, Surface Science Reports, 69 (2014) 296-324. [21] G. Mittal, V. Dhand, K.Y. Rhee, S.-J. Park, W.R. Lee, A review on carbon nanotubes and graphene as fillers in reinforced polymer nanocomposites, Journal of Industrial and Engineering Chemistry, 21 (2015) 11-25. [22] S.N. Kim, J.F. Rusling, F. Papadimitrakopoulos, Carbon Nanotubes for Electronic and Electrochemical Detection of Biomolecules, Adv Mater, 19 (2007) 3214-3228. [23] P. Kar, A. Choudhury, Carboxylic acid functionalized multi-walled carbon nanotube doped polyaniline for chloroform sensors, Sensors and Actuators B: Chemical, 183 (2013) 25-33. [24] 費定國,高昀成,中央大學化工研究所,工業材料 121 期,(86 年 1 月). [25] 陳志昇,輔仁大學化學研究所,碩士論文,(101 年 7 月). [26] M.M. Lounasvuori, D. Kelly, J.S. Foord, Carbon black as low-cost alternative for electrochemical sensing of phenolic compounds, Carbon, 129 (2018) 252-257. [27] N. Ben Messaoud, A. Ait Lahcen, C. Dridi, A. Amine, Ultrasound assisted magnetic imprinted polymer combined sensor based on carbon black and gold nanoparticles for selective and sensitive electrochemical detection of Bisphenol A, Sensors and Actuators B: Chemical, 276 (2018) 304-312. [28] D. Talarico, F. Arduini, A. Constantino, M. Del Carlo, D. Compagnone, D. Moscone, G. Palleschi, Carbon black as successful screen-printed electrode modifier for phenolic compound detection, Electrochemistry Communications, 60 (2015) 78-82. [29] D. Talarico, F. Arduini, A. Amine, D. Moscone, G. Palleschi, Screen-printed electrode modified with carbon black nanoparticles for phosphate detection by measuring the electroactive phosphomolybdate complex, Talanta, 141 (2015) 267-272. [30] F. Arduini, C. Zanardi, S. Cinti, F. Terzi, D. Moscone, G. Palleschi, R. Seeber, Effective electrochemical sensor based on screen-printed electrodes modified with a carbon black-Au nanoparticles composite, Sensors and Actuators B: Chemical, 212 (2015) 536-543. [31] L.-N. Wu, Y.-L. Tan, L. Wang, S.-N. Sun, Z.-Y. Qu, J.-M. Zhang, Y.-J. Fan, Dopamine sensor based on a hybrid material composed of cuprous oxide hollow microspheres and carbon black, Microchimica Acta, 182 (2015) 1361-1369. [32] G. Ibanez-Redin, D. Wilson, D. Goncalves, O.N. Oliveira, Jr., Low-cost screen-printed electrodes based on electrochemically reduced graphene oxide-carbon black nanocomposites for dopamine, epinephrine and paracetamol detection, J Colloid Interface Sci, 515 (2018) 101-108. [33] O.K. Farha, C.E. Wilmer, I. Eryazici, B.G. Hauser, P.A. Parilla, K. O'Neill, A.A. Sarjeant, S.T. Nguyen, R.Q. Snurr, J.T. Hupp, Designing higher surface area metal-organic frameworks: are triple bonds better than phenyls?, J Am Chem Soc, 134 (2012) 9860-9863. [34] L.J. Murray, M. Dinca, J.R. Long, Hydrogen storage in metal-organic frameworks, Chem Soc Rev, 38 (2009) 1294-1314. [35] J.R. Li, R.J. Kuppler, H.C. Zhou, Selective gas adsorption and separation in metal-organic frameworks, Chem Soc Rev, 38 (2009) 1477-1504. [36] L.E. Kreno, K. Leong, O.K. Farha, M. Allendorf, R.P. Van Duyne, J.T. Hupp, Metal-organic framework materials as chemical sensors, Chem Rev, 112 (2012) 1105-1125. [37] J. Lee, O.K. Farha, J. Roberts, K.A. Scheidt, S.T. Nguyen, J.T. Hupp, Metal-organic framework materials as catalysts, Chem Soc Rev, 38 (2009) 1450-1459. [38] J. An, N.L. Rosi, Tuning MOF CO2 Adsorption Properties via Cation Exchange, Journal of the American Chemical Society, 132 (2010) 5578-5579. [39] C.Y. Lee, O.K. Farha, B.J. Hong, A.A. Sarjeant, S.T. Nguyen, J.T. Hupp, Light-harvesting metal-organic frameworks (MOFs): efficient strut-to-strut energy transfer in bodipy and porphyrin-based MOFs, J Am Chem Soc, 133 (2011) 15858-15861. [40] P. Horcajada, R. Gref, T. Baati, P.K. Allan, G. Maurin, P. Couvreur, G. Ferey, R.E. Morris, C. Serre, Metal-organic frameworks in biomedicine, Chem Rev, 112 (2012) 1232-1268. [41] Z. Liang, C. Qu, W. Guo, R. Zou, Q. Xu, Pristine Metal-Organic Frameworks and their Composites for Energy Storage and Conversion, Adv Mater, 30 (2018) e1702891. [42] Y. Li, C. Huangfu, H. Du, W. Liu, Y. Li, J. Ye, Electrochemical behavior of metal–organic framework MIL-101 modified carbon paste electrode: An excellent candidate for electroanalysis, Journal of Electroanalytical Chemistry, 709 (2013) 65-69. [43] Z. Peng, Z. Jiang, X. Huang, Y. Li, A novel electrochemical sensor of tryptophan based on silver nanoparticles/metal–organic framework composite modified glassy carbon electrode, RSC Advances, 6 (2016) 13742-13748. [44] G. Férey, C. Mellot-Draznieks, C. Serre, F. Millange, J. Dutour, S. Surblé, I. Margiolaki, A Chromium Terephthalate-Based Solid with Unusually Large Pore Volumes and Surface Area, Science, 309 (2005) 2040. [45] Z. Wang, G. Yu, J. Xia, F. Zhang, Q. Liu, One-step synthesis of a Methylene Blue@ZIF-8-reduced graphene oxide nanocomposite and its application to electrochemical sensing of rutin, Mikrochim Acta, 185 (2018) 279. [46] Q. Chen, X. Li, X. Min, D. Cheng, J. Zhou, Y. Li, Z. Xie, P. Liu, W. Cai, C. Zhang, Determination of catechol and hydroquinone with high sensitivity using MOF-graphene composites modified electrode, Journal of Electroanalytical Chemistry, 789 (2017) 114-122. [47] J. Zhou, X. Li, L. Yang, S. Yan, M. Wang, D. Cheng, Q. Chen, Y. Dong, P. Liu, W. Cai, C. Zhang, The Cu-MOF-199/single-walled carbon nanotubes modified electrode for simultaneous determination of hydroquinone and catechol with extended linear ranges and lower detection limits, Anal Chim Acta, 899 (2015) 57-65. [48] P. Arul, S.A. John, Size controlled synthesis of Ni-MOF using polyvinylpyrrolidone: New electrode material for the trace level determination of nitrobenzene, Journal of Electroanalytical Chemistry, 829 (2018) 168-176. [49] X. Zhang, Y. Xu, B. Ye, An efficient electrochemical glucose sensor based on porous nickel-based metal organic framework/carbon nanotubes composite (Ni-MOF/CNTs), Journal of Alloys and Compounds, 767 (2018) 651-656. [50] X. Xu, R. Ray, Y. Gu, H.J. Ploehn, L. Gearheart, K. Raker, W.A. Scrivens, Electrophoretic Analysis and Purification of Fluorescent Single-Walled Carbon Nanotube Fragments, Journal of the American Chemical Society, 126 (2004) 12736-12737. [51] S.Y. Lim, W. Shen, Z. Gao, Carbon quantum dots and their applications, Chemical Society Reviews, 44 (2015) 362-381. [52] H.M. Goncalves, A.J. Duarte, J.C. Esteves da Silva, Optical fiber sensor for Hg(II) based on carbon dots, Biosens Bioelectron, 26 (2010) 1302-1306. [53] G.A. Posthuma-Trumpie, J.H. Wichers, M. Koets, L.B. Berendsen, A. van Amerongen, Amorphous carbon nanoparticles: a versatile label for rapid diagnostic (immuno)assays, Anal Bioanal Chem, 402 (2012) 593-600. [54] V.N. Mehta, S. Jha, S.K. Kailasa, One-pot green synthesis of carbon dots by using Saccharum officinarum juice for fluorescent imaging of bacteria (Escherichia coli) and yeast (Saccharomyces cerevisiae) cells, Mater Sci Eng C Mater Biol Appl, 38 (2014) 20-27. [55] H. Tao, K. Yang, Z. Ma, J. Wan, Y. Zhang, Z. Kang, Z. Liu, In vivo NIR fluorescence imaging, biodistribution, and toxicology of photoluminescent carbon dots produced from carbon nanotubes and graphite, Small, 8 (2012) 281-290. [56] H. Li, R. Liu, S. Lian, Y. Liu, H. Huang, Z. Kang, Near-infrared light controlled photocatalytic activity of carbon quantum dots for highly selective oxidation reaction, Nanoscale, 5 (2013) 3289-3297. [57] W.A. Saidi, Oxygen Reduction Electrocatalysis Using N-Doped Graphene Quantum-Dots, The Journal of Physical Chemistry Letters, 4 (2013) 4160-4165. [58] X. Jian, X. Liu, H.-m. Yang, M.-m. Guo, X.-l. Song, H.-y. Dai, Z.-h. Liang, Graphene quantum dots modified glassy carbon electrode via electrostatic self-assembly strategy and its application, Electrochimica Acta, 190 (2016) 455-462. [59] G. Wang, G. Shi, X. Chen, R. Yao, F. Chen, A glassy carbon electrode modified with graphene quantum dots and silver nanoparticles for simultaneous determination of guanine and adenine, Microchimica Acta, 182 (2014) 315-322. [60] M. Algarra, A. Gonzalez-Calabuig, K. Radotic, D. Mutavdzic, C.O. Ania, J.M. Lazaro-Martinez, J. Jimenez-Jimenez, E. Rodriguez-Castellon, M. Del Valle, Enhanced electrochemical response of carbon quantum dot modified electrodes, Talanta, 178 (2018) 679-685. [61] N. Amini, M. Shamsipur, M.B. Gholivand, A. Barati, A glassy carbon electrode modified with carbon quantum dots and polyalizarin yellow R dyes for enhanced electrocatalytic oxidation and nanomolar detection of l-cysteine, Microchemical Journal, 131 (2017) 9-14. [62] J. Tashkhourian, S.F. Nami-Ana, M. Shamsipur, Designing a modified electrode based on graphene quantum dot-chitosan application to electrochemical detection of epinephrine, Journal of Molecular Liquids, 266 (2018) 548-556. [63] N. Hashemzadeh, M. Hasanzadeh, N. Shadjou, J. Eivazi-Ziaei, M. Khoubnasabjafari, A. Jouyban, Graphene quantum dot modified glassy carbon electrode for the determination of doxorubicin hydrochloride in human plasma, J Pharm Anal, 6 (2016) 235-241. [64] J. Ju, W. Chen, In situ growth of surfactant-free gold nanoparticles on nitrogen-doped graphene quantum dots for electrochemical detection of hydrogen peroxide in biological environments, Anal Chem, 87 (2015) 1903-1910. [65] G. Jiang, T. Jiang, H. Zhou, J. Yao, X. Kong, Preparation of N-doped carbon quantum dots for highly sensitive detection of dopamine by an electrochemical method, RSC Advances, 5 (2015) 9064-9068. [66] L. Li, D. Liu, K. Wang, H. Mao, T. You, Quantitative detection of nitrite with N-doped graphene quantum dots decorated N-doped carbon nanofibers composite-based electrochemical sensor, Sensors and Actuators B: Chemical, 252 (2017) 17-23. [67] J. Chen, P. He, H. Bai, S. He, T. Zhang, X. Zhang, F. Dong, Poly(β-cyclodextrin)/carbon quantum dots modified glassy carbon electrode: Preparation, characterization and simultaneous electrochemical determination of dopamine, uric acid and tryptophan, Sensors and Actuators B: Chemical, 252 (2017) 9-16. [68] J. Li, J. Jiang, M. Liu, Z. Xu, P. Deng, D. Qian, C. Tong, H. Xie, C. Yang, Facile synthesis of MnO2-embedded flower-like hierarchical porous carbon microspheres as an enhanced electrocatalyst for sensitive detection of caffeic acid, Anal Chim Acta, 985 (2017) 155-165. [69] S.N. Robledo, J.C. López, A.M. Granero, M.A. Zensich, G.M. Morales, H. Fernández, M.A. Zon, Characterization of the surface redox process of caffeic acid adsorbed at glassy carbon electrodes modified with partially reduced graphene oxide, Journal of Electroanalytical Chemistry, 783 (2016) 258-267. [70] M. Sakthivel, S. Ramaraj, S.M. Chen, B. Dinesh, H.V. Ramasamy, Y.S. Lee, Entrapment of bimetallic CoFeSe2 nanosphere on functionalized carbon nanofiber for selective and sensitive electrochemical detection of caffeic acid in wine samples, Anal Chim Acta, 1006 (2018) 22-32. [71] J. Xia, G. He, L. Zhang, X. Sun, X. Wang, Hydrogenation of nitrophenols catalyzed by carbon black-supported nickel nanoparticles under mild conditions, Applied Catalysis B: Environmental, 180 (2016) 408-415. [72] M. Arvand, S. Hemmati, Analytical methodology for the electro-catalytic determination of estradiol and progesterone based on graphene quantum dots and poly(sulfosalicylic acid) co-modified electrode, Talanta, 174 (2017) 243-255. [73] L. Su, Y. Xiong, H. Yang, P. Zhang, F. Ye, Prussian blue nanoparticles encapsulated inside a metal–organic framework via in situ growth as promising peroxidase mimetics for enzyme inhibitor screening, Journal of Materials Chemistry B, 4 (2016) 128-134. [74] N. Shadjou, M. Hasanzadeh, F. Talebi, A.P. Marjani, Graphene quantum dot functionalized by beta-cyclodextrin: a novel nanocomposite toward amplification ofl-cysteine electro-oxidation signals, Nanocomposites, 2 (2016) 18-28. [75] X. Huang, Q. Hu, L. Gao, Q. Hao, P. Wang, D. Qin, Adsorption characteristics of metal–organic framework MIL-101(Cr) towards sulfamethoxazole and its persulfate oxidation regeneration, RSC Advances, 8 (2018) 27623-27630. [76] H. Furukawa, K.E. Cordova, M. O'Keeffe, O.M. Yaghi, The chemistry and applications of metal-organic frameworks, Science, 341 (2013) 1230444.
|