跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.17) 您好!臺灣時間:2025/09/03 05:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李坤衡
研究生(外文):LEE, KUN-HENG
論文名稱:利用農業與工業廢棄物開發隔熱材料及氫氧基磷灰石之研究
論文名稱(外文):Development of Thermal Insulating Coating and Hydroxyapatite from Agricultural and Industrial Wastes
指導教授:吳建一
指導教授(外文):WU, JANE-YII
口試委員:吳建一、賴奇厚、顏裕鴻
口試委員(外文):WU, JANE-YII、LAY, CHYI-HOW、YEN,YUE-HORNG
口試日期:2019-07-30
學位類別:碩士
校院名稱:大葉大學
系所名稱:食品暨應用生物科技學系
學門:醫藥衛生學門
學類:藥學學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:262
中文關鍵詞:廢棄物隔熱塗料氫氧基磷灰石
外文關鍵詞:WasteEnvironmental insulation coatingHydroxyapatite
相關次數:
  • 被引用被引用:0
  • 點閱點閱:210
  • 評分評分:
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:0
本研究中,研究使用多項農工業廢棄物作為新型生物填料製備隔熱塗層的可行性,將回收回來的廢棄物高溫改質,之後將廢棄物研製作成初步的隔熱塗料,然後模擬陽光照射來測試隔熱塗料塗布前後鋼片之表面溫差,本研究分為兩個部分,第1 部分為測試多種農工業廢棄物的隔熱效果,期望開發出低成本且能取代市售常用隔熱塗料之高價顏填料。第2 部份是將部分殼類廢棄物用於氫氧基磷灰石的合成測試,期望能進一步開發出農工業廢棄物的附加價值。
在第1 部分的結果表明,使用實驗室開發的裝置進行隔熱性能測試時,在鋼片上使用1200°C 煅燒蛋殼粉(最低ΔT= 7.5°C)的塗層比使用其他塗層具有更好的降溫效果,這意味著它使塗層具有更好的隔熱性能。 另外,塗層使用1200°C 煅燒蛋殼的性能也具有最佳反射太陽輻射的能力。
在第二部分中,使用主要由碳酸鈣組成的廢殼粉末作為合成羥基磷灰石粉末的起始材料。通過在600℃和 1200℃下煅燒殼粉2 小時,使用 X 射線繞射(XRD)、傅里葉變換紅外光譜(FT-IR)分析確定分冸為CaCO3 和 Ca(OH)2,XRD 分析也證明與 ICDS標準卡號一致。使用得到的 CaCO3 和 Ca(OH)2 粉末與磷酸鹽反應,然後使用 DSHAP、WMSHAP 和 BHHAP 方法合成羥基磷灰石粉末。,根據XRD 和 FT-IR 結果,通過 DSHAP 和 BHHAP方法確實可以獲得羥基磷灰石粉末。
總結日照模擬帄台詴驗結果,基於隔熱塗料之屋外及屋內隔熱效果、隔熱塗料塗布後度之經濟效益,以及樣品反射率等效果之考量,本研究建議以1200℃煅燒蛋殼粉取代市售常用隔熱塗料之高價顏填料,並且在施工厚度上勿超過 3 層以上,此外,在 HAp可使用 DSHAP 及BHHAP 方法進行合成。
The feasibility of employing agricultural and industrial wastes as a new bio-filler to prepare thermal insulation coatings is demonstarted. The recovered wastes were modified with high temperature, and the modified wastes were made into a preliminary heat-insulating coating, and used to simulate the sunlight to test the surface temperature difference between the interior and the exterior of the house before and after coating. In this study have two parts, in first part, it is expected to develop high-priced pigments and fillers that are low-cost and can replace the commonly used thermal insulation coatings. In second part , is used some wastes shell for the synthesis test of hydroxyapatite, and it is expected to further increase the added value of industrial waste.
In the first section, the results show that thermal insulation performance tests were carried out by using a lab-developed setup, Which coating used 1200°C calcined eggshell powder(with the lowest ΔT = 7.5 °C) won out over the other coatings to cool the surface of steel plate, which means the better thermal insulation performance it renders the coating. In addition, the performance of coating use 1200°C calcined eggshell was also having best coatings' power of reflecting solar radiation.
In second section, waste shell powder which predominantly composed of calcium carbonate, was used as a staring material for synthesizing Hydroxyapatite powder. By calcinating the shell powder at 600℃ and 1200℃ for 2 h, respetivelly the CaCO3 and Ca(OH)2 characterized by X-ray Diffraction (XRD), Fourier transformed infrared spectroscopy (FT-IR) was obtained, The XRD pattern also agreed with the Standard ICDS file. The obtained CaCO3 and Ca (OH)2 powders was reacted with phosphate, then used DSHAP, WMSHAP and BHHAP method to form the Hydroxyapatite powder. From XRD and FT-IR results, the Hydroxyapatite powder was obtained by DSHAP and BHHAP method.
Summarize the test results of the sunshine simulation platform. Based on the effects of the thermal insulation coating on the exterior and indoor insulation, the economic benefits of the thermal insulation coating, and the reflectivity of the sample, this study proposes using 1200℃ calcined eggshell powder to replace the High-priced pigments and fillers are used in commercial insulation coatings, and should not exceed 3 layers in construction thickness. In addition, HAP can be synthesized by DSHAP and BHHAP methods.
封面內頁
簽名頁
中文摘要
ABSTRACT
誌謝
目錄
圖目錄
表目錄
符號說明

第一章 前言 1
1.1 研究動機 1
1.2 研究目的 4
第二章 文獻回顧 6
2.1都市熱島效應 6
2.2 建築隔熱的歷史發展 7
2.2.1 反照率、色彩及熱傳導與隔熱材料的關聯 10
2.2.2 廢棄物應用於隔熱材料 13
2.2.3 水產養殖業廢棄物用於隔熱塗料 14
2.2.4 農業廢棄物製作成混凝土用於建築行業 15
2.2.5 使用農業廢棄物作為新的建築物隔熱材料 16
2.2.6 各式農業廢棄物作為混凝土中的替代骨料 17
2.3 使用廢棄物製作隔熱材料之製造方法 22
2.4 氫氧基磷灰石 25
2.4.1 天然氫氧基磷灰石 27
2.4.2 氫氧基磷灰石的性質 28
2.4.3 磷酸鈣 30
2.4.4 天然HAp的海洋資源 35
2.4.5 生物廢棄殼作為天然HAp來源 39
2.4.6萃取HAp的最佳處理參數 44
2.4.7 蛋殼廢物使用球磨製備HAp的方法 47
第三章 實驗材料與方法 52
3.1 實驗材料 52
3.2 實驗藥品 59
3.3 實驗設備 61
3.3.1 高溫灰化爐 61
3.3.2 日照模擬平台 61
3.3.3 溫度擷取系統 62
3.3.4 光強度計 63
3.3.5 數位式千分測厚規 64
3.3.6 FE-SEM 熱場發射掃描電子顯微鏡 64
3.3.7 傅立葉紅外線光譜儀(FT-IR) 65
3.3.8 X光繞射結構分析儀(XRD) 66
3.3.9 紫外-可見-近紅外分光光譜儀 68
3.3.10 行星式球磨機 69
3.4實驗方法 70
3.4.1選定測試用錏平板種類 70
3.4.2 模擬陽光照射選出有潛力成為隔熱素材之廢棄物 71
3.4.3 模擬陽光照射不同百分比有潛力隔熱素材之廢棄物 71
3.4.4 模擬陽光照射不同層數有潛力隔熱素材之廢棄物 72
3.4.5 模擬陽光照射市售油漆混合有潛力隔熱素材之廢棄物 74
3.4.6 FE-SEM 熱場發射掃描電子顯微鏡實驗過程 76
3.4.7 X光繞射結構分析之成分分析(XRD) 77
3.4.8 反射率分析 79
3.5 合成氫氧基磷灰石 79
3.5.1 DSHAP方法合成HAp 80
3.5.2 WMSHAP方法合成HAp 80
3.5.3 BHHAP方法合成HAp 80
4.1 隔熱效果測試 82
4.2 各種類錏平板背景值試驗 83
4.2.1 錏平板長時間照射的溫度變化 83
4.2.2 熱電偶誤差測試 84
4.2.3錏平板於不同溫度下的溫差變化 85
4.2.4 雙霧面、雙亮面及霧亮面錏平板導熱測試 88
4.2.5 雙霧面及雙亮面錏平板塗布白漆導熱測試 90
4.2.6 雙霧面錏平板塗布樹脂導熱測試 92
4.3 模擬陽光照射有潛力成為隔熱素材之廢棄物 93
4.3.1 不同溫度煅燒的淺色系樣品隔熱效果試驗 94
4.3.2 不同煅燒溫度的暗色系樣品隔熱效果試驗 97
4.4 模擬陽光照射不同百分比有潛力成為隔熱素材之廢棄物 110
4.5模擬陽光照射不同層數有潛力成為隔熱素材之廢棄物 114
4.6模擬陽光照射市售油漆混合有潛力隔熱素材之廢棄物 120
4.7 FE-SEM 場發射掃描式電子顯微鏡分析 122
4.8 XRD晶體結構分析 133
4.9 農工業廢棄物煅燒改質粉末之反射率 141
4.9.1 市售防曬產品之填充料反射率測定 141
4.9.2農工業廢棄物煅燒改質粉末之反射率測定 144
4.10農工業廢棄物合成之HAp FTIR官能基分析 155
4.11農工業廢棄物合成之HAp XRD晶體結構分析 161
4.11.1 不同溫度煅燒蝸牛殼使用不同合成方法合成HAp之 X射線繞射光譜 161
4.11.2 不同溫度煅燒牡蠣殼使用不同合成方法合成HAp之X射線繞射光譜 167
4.11.3 不同溫度煅燒蛋殼使用不同合成方法合成HAp之X射線繞射光譜 171
4.11.4 不同溫度煅燒蛤蜊殼使用不同合成方法合成HAp之X射線繞射光譜 176
4.12農工業廢棄物合成之HAp 的SEM表面結構分析 181
4.12.1 使用DSHAP方法合成HAp之SEM型態分析 181
4.12.2 使用BHHAP方法合成HAp之SEM型態分析 187
4.13農工業廢棄物合成之HAp 反射率測定 192
第五章 結論 206
5.1結論 206
參考文獻 218

圖目錄
Figure 1-1. 研究架構 4
Figure 2-2. 至2016年每年生物隔熱相關領域研究論文數量 8
Figure 2-3. 與生物隔熱相關研究文獻 10
Figure 2-4. 各類工業廢棄物百分比 16
Figure 2-5. 花生殼破碎 19
Figure 2-6. 鋸木屑 20
Figure 2-7. 巨型蘆葦及其灰渣 21
Figure 2-8. 稻殼和其灰渣 22
Figure 2-9. 各類生物隔熱材料研究論文統計 24
Figure 2-10. 天然HAp合成方法總結 28
Figure 2-11. 從生物廢棄殼萃取的HAp之SEM圖 43
Figure 2-12. 球磨用於蛋殼廢棄物的文章數量 48
Figure 2-13. 蛋殼內部構造示意圖 49
Figure 2-14. 機械化學的各種應用 50
Figure 3-15. 各種廢棄物原料 53
Figure 3-16. 不同溫度煅燒蝸牛殼粉 53
Figure 3-17. 不同溫度煅燒牡蠣殼粉 54
Figure 3-18. 不同溫度煅燒珪藻土 54
Figure 3-19. 不同溫度煅燒蛋殼粉 55
Figure 3-20. 不同溫度煅燒玻璃粉 55
Figure 3-21. 不同溫度煅燒碳黑 56
Figure 3-22. 不同溫度煅燒咖啡渣 56
Figure 3-23. 不同溫度煅燒沉香子外殼 57
Figure 3-24. 不同溫度煅燒可哥豆夾 57
Figure 3-25. 虹牌白色調合漆及龍牌水性水泥漆 58
Figure 3-26. 日本GAINA隔熱塗料 58
Figure 3-27. 貓王B1-222白色抗熱防水膠 59
Figure 3-28. 虹牌0440200W隔熱防水漆 59
Figure 3-29. 高溫灰化爐 61
Figure 3-30. 日照模擬平台 62
Figure 3-31. 溫度擷取裝置及熱電偶式溫度計 63
Figure 3-32. 光強度計 63
Figure 3-33. 數位式千分測厚規 64
Figure 3-34. FE-SEM 熱場發射掃描電子顯微鏡外觀 65
Figure 3-35. 本實驗採用之日本島津FTIR-8400S 66
Figure 3-36. 高解析X光繞射儀 68
Figure 3-37. UV-2600分光光度計 68
Figure 3-38. FRITSCH PULVERISETTE 6 行星式球磨機 69
Figure 3-39. 實驗所使用之錏平板 70
Figure 3-40. 雙亮面錏平板塗布不同層數市售隔熱漆 73
Figure 3-41. 市售油漆混合1200℃煅燒蝸牛殼粉 74
Figure 3-42. 市售油漆混合未煅燒珪藻土 75
Figure 3-43. 市售油漆混合未煅燒蛋殼粉 75
Figure 3-44. 市售油漆混合1200℃煅燒蛋殼粉 76
Figure 3-45. SEM拍攝過程之局部照片 77
Figure 3-46. 檢測分析流程 78
Figure 4-1. 錏平板長時間照射的溫度變化 84
Figure 4-2. 錏平板長時間照射的溫度平均偏差 85
Figure 4-3. 錏平板於40℃的導熱測試 86
Figure 4-4. 錏平板於50℃的導熱測試 87
Figure 4-5. 錏平板於60℃的導熱測試 87
Figure 4-6. 雙霧面及雙亮面錏平板導熱測試 89
Figure 4-7. 霧亮面錏平板導熱測試 89
Figure 4-8. 雙霧面錏平板塗布白漆導熱測試 91
Figure 4-1. 錏平板長時間照射的溫度變化 84
Figure 4-2. 錏平板長時間照射的溫度平均偏差 85
Figure 4-3. 錏平板於40℃的導熱測試 86
Figure 4-4. 錏平板於50℃的導熱測試 87
Figure 4-5. 錏平板於60℃的導熱測試 87
Figure 4-6. 雙霧面及雙亮面錏平板導熱測試 89
Figure 4-7. 霧亮面錏平板導熱測試 89
Figure 4-8. 雙霧面錏平板塗布白漆導熱測試 91
Figure 4-9. 雙亮面錏平板塗布白漆導熱測試 91
Figure 4-10. 雙霧面錏平板塗布樹脂導熱測試 92
Figure 4-11. 日本隔熱漆隔熱效果測試 99
Figure 4-12. 錏平板塗布不同溫度煅燒之蝸牛殼粉前後隔熱效果 100
Figure 4-13. 錏平板塗布不同溫度煅燒之牡蠣殼粉隔熱效果測試 101
Figure 4-14. 錏平板塗布不同溫度煅燒之蛋殼粉隔熱效果測試 102
Figure 4-15. 錏平板塗布不同溫度煅燒之咖啡渣隔熱效果測試 103
Figure 4-16. 錏平板塗布不同溫度煅燒之沉香子外殼隔熱效果測試 104
Figure 4-17. 錏平板塗布不同溫度煅燒之可可豆夾隔熱效果測試 105
Figure 4-18. 錏平板塗布不同溫度煅燒之珪藻土前後隔熱效果測試 106
Figure 4-19. 錏平板塗布不同溫度煅燒之玻璃粉隔熱效果測試 107
Figure 4-20. 錏平板塗布不同溫度煅燒之碳黑隔熱效果測試 108
Figure 4-21. 錏平板塗布不同樣品前後屋外隔熱溫差比較 109
Figure 4-22. 錏平板塗布不同樣品前後屋內隔熱溫差比較 109
Figure 4-23. 雙霧面錏平板塗布不同百分比不同煅燒溫度蝸牛殼粉隔熱效果測試 111
Figure 4-24. 雙霧面錏平板塗布不同百分比1200℃煅燒牡蠣殼粉隔熱效果測試 112
Figure 4-25. 雙霧面錏平板塗布不同百分比不同煅燒溫度珪藻土隔熱效果測試 112
Figure 4-26. 雙霧面錏平板塗布不同百分比不同煅燒溫度蛋殼粉隔熱效果測試 113
Figure 4-27. 使用過雙霧面錏平板 113
Figure 4-28. 雙霧面錏平板使用前後塗布1200℃煅燒蛋殼粉隔熱效果測試 114
Figure 4-29. 雙亮面錏平板塗布不同層數(厚度)樣品隔熱效果測試(均溫) 117
Figure 4-30. 雙亮面錏平板塗布不同層數(厚度)樣品隔熱效果測試(溫差) 118
Figure 4-31. 熱能與隔熱層隔熱機制示意 119
Figure 4-32. 隔熱塗料隔熱機制示意 119
Figure 4-33. 隔熱材料與市售由漆混合隔熱效果 121
Figure 4-34. 隔熱材料與調合漆混合之凝結現象 121
Figure 4-35. 不同溫度煅燒蝸牛殼粉之SEM影像 124
Figure 4-36. 不同溫度煅燒牡蠣殼粉之SEM影像 125
Figure 4-9. 雙亮面錏平板塗布白漆導熱測試 91
Figure 4-10. 雙霧面錏平板塗布樹脂導熱測試 92
Figure 4-11. 日本隔熱漆隔熱效果測試 99
Figure 4-12. 錏平板塗布不同溫度煅燒之蝸牛殼粉前後隔熱效果 100
Figure 4-13. 錏平板塗布不同溫度煅燒之牡蠣殼粉隔熱效果測試 101
Figure 4-14. 錏平板塗布不同溫度煅燒之蛋殼粉隔熱效果測試 102
Figure 4-15. 錏平板塗布不同溫度煅燒之咖啡渣隔熱效果測試 103
Figure 4-16. 錏平板塗布不同溫度煅燒之沉香子外殼隔熱效果測試 104
Figure 4-17. 錏平板塗布不同溫度煅燒之可可豆夾隔熱效果測試 105
Figure 4-18. 錏平板塗布不同溫度煅燒之珪藻土前後隔熱效果測試 106
Figure 4-19. 錏平板塗布不同溫度煅燒之玻璃粉隔熱效果測試 107
Figure 4-1. 錏平板長時間照射的溫度變化 84
Figure 4-2. 錏平板長時間照射的溫度平均偏差 85
Figure 4-3. 錏平板於40℃的導熱測試 86
Figure 4-4. 錏平板於50℃的導熱測試 87
Figure 4-5. 錏平板於60℃的導熱測試 87
Figure 4-6. 雙霧面及雙亮面錏平板導熱測試 89
Figure 4-7. 霧亮面錏平板導熱測試 89
Figure 4-8. 雙霧面錏平板塗布白漆導熱測試 91
Figure 4-9. 雙亮面錏平板塗布白漆導熱測試 91
Figure 4-10. 雙霧面錏平板塗布樹脂導熱測試 92
Figure 4-11. 日本隔熱漆隔熱效果測試 99
Figure 4-12. 錏平板塗布不同溫度煅燒之蝸牛殼粉前後隔熱效果 100
Figure 4-13. 錏平板塗布不同溫度煅燒之牡蠣殼粉隔熱效果測試 101
Figure 4-14. 錏平板塗布不同溫度煅燒之蛋殼粉隔熱效果測試 102
Figure 4-15. 錏平板塗布不同溫度煅燒之咖啡渣隔熱效果測試 103
Figure 4-16. 錏平板塗布不同溫度煅燒之沉香子外殼隔熱效果測試 104
Figure 4-17. 錏平板塗布不同溫度煅燒之可可豆夾隔熱效果測試 105
Figure 4-18. 錏平板塗布不同溫度煅燒之珪藻土前後隔熱效果測試 106
Figure 4-19. 錏平板塗布不同溫度煅燒之玻璃粉隔熱效果測試 107
Figure 4-20. 錏平板塗布不同溫度煅燒之碳黑隔熱效果測試 108
Figure 4-21. 錏平板塗布不同樣品前後屋外隔熱溫差比較 109
Figure 4-22. 錏平板塗布不同樣品前後屋內隔熱溫差比較 109
Figure 4-23. 雙霧面錏平板塗布不同百分比不同煅燒溫度蝸牛殼粉隔熱效果測試 111
Figure 4-24. 雙霧面錏平板塗布不同百分比1200℃煅燒牡蠣殼粉隔熱效果測試 112
Figure 4-25. 雙霧面錏平板塗布不同百分比不同煅燒溫度珪藻土隔熱效果測試 112
Figure 4-26. 雙霧面錏平板塗布不同百分比不同煅燒溫度蛋殼粉隔熱效果測試 113
Figure 4-27. 使用過雙霧面錏平板 113
Figure 4-28. 雙霧面錏平板使用前後塗布1200℃煅燒蛋殼粉隔熱效果測試 114
Figure 4-29. 雙亮面錏平板塗布不同層數(厚度)樣品隔熱效果測試(均溫) 117
Figure 4-30. 雙亮面錏平板塗布不同層數(厚度)樣品隔熱效果測試(溫差) 118
Figure 4-31. 熱能與隔熱層隔熱機制示意 119
Figure 4-32. 隔熱塗料隔熱機制示意 119
Figure 4-33. 隔熱材料與市售由漆混合隔熱效果 121
Figure 4-34. 隔熱材料與調合漆混合之凝結現象 121
Figure 4-35. 不同溫度煅燒蝸牛殼粉之SEM影像 124
Figure 4-36. 不同溫度煅燒牡蠣殼粉之SEM影像 125
Figure 4-37. 不同溫度煅燒珪藻土之SEM影像 126
Figure 4-38. 不同溫度煅燒蛋殼粉之SEM影像 127
Figure 4-39. 不同溫度煅燒玻璃粉之SEM影像 128
Figure 4-40. 不同溫度煅燒咖啡渣之SEM影像 129
Figure 4-41. 不同溫度煅燒沉香子外殼之SEM影像 130
Figure 4-42. 不同溫度煅燒可哥豆夾之SEM影像 131
Figure 4-43. 不同溫度煅燒碳黑之SEM影像 132
Figure 4-44. 未煅燒蝸牛殼之X射線衍射光譜 135
Figure 4-45. 600℃煅燒蝸牛殼之X射線衍射光譜 135
Figure 4-46. 1200℃煅燒蝸牛殼之X射線衍射光譜 136
Figure 4-47. 未煅燒牡蠣殼之X射線衍射光譜 136
Figure 4-48. 600℃煅燒牡蠣殼之X射線衍射光譜 137
Figure 4-49. 1200℃煅燒牡蠣殼之X射線衍射光譜 137
Figure 4-50. 未煅燒蛋殼之X射線衍射光譜 138
Figure 4-51. 600℃煅燒蛋殼之X射線衍射光譜 138
Figure 4-52. 1200℃煅燒蛋殼之X射線衍射光譜 139
Figure 4-53. 未煅燒珪藻土之X射線衍射光譜 139
Figure 4-54. 600℃煅燒珪藻土之X射線衍射光譜 140
Figure 4-55. 1200℃煅燒珪藻土之X射線衍射光譜 140
Figure 4-56. 不同市售防曬材料反射率測定 143
Figure 4-57. 不同市售美妝防曬材料反射率測定 144
Figure 4-58. 不同溫度處理蝸牛殼粉反射率測定 150
Figure 4-59. 不同溫度處理牡蠣殼粉反射率測定 151
Figure 4-60. 不同溫度處理珪藻土反射率測定 151
Figure 4-61. 不同溫度處理蛋殼粉反射率測定 152
Figure 4-62. 不同溫度處理玻璃粉反射率測定 152
Figure 4-63. 不同溫度處理碳黑反射率測定 153
Figure 4-64. 不同溫度處理咖啡渣反射率測定 153
Figure 4-65. 不同溫度處理沉香子外殼反射率測定 154
Figure 4-66. 不同溫度處理可哥豆夾反射率測定 154
Figure 4-67. 不同溫度煅燒蝸牛殼粉使用不同合成方法合成HAp顆粒之FTIR吸收光譜 157
Figure 4-68. 不同溫度煅燒牡蠣殼粉使用不同合成方法合成HAp顆粒之FTIR吸收光譜 158
Figure 4-69. 不同溫度煅燒蛋殼粉使用不同合成方法合成HAp顆粒之FTIR吸收光譜 159
Figure 4-70. 不同溫度煅燒蛤蜊殼粉使用不同合成方法合成HAp顆粒之FTIR吸收光譜 160
Figure 4-71. 未煅燒蝸牛殼粉使用不同方法合成HAp之X射線繞射光譜 165
Figure 4-72. 600℃煅燒蝸牛殼粉使用不同方法方法合成HAp之X射線繞射光譜 166
Figure 4-73. 1200℃煅燒蝸牛殼粉使用不同方法合成HAp之X射線繞射光譜 166
Figure 4-74. 未煅燒牡蠣殼粉使用不同方法合成HAp之X射線繞射光譜 170
Figure 4-75. 600℃煅燒牡蠣殼粉使用不同方法合成HAp之X射線繞射光譜 170
Figure 4-76. 1200℃煅燒牡蠣殼粉使用不同方法合成HAp之X射線繞射光譜 171
Figure 4-77. 未煅燒蛋殼粉使用不同方法合成HAp之X射線繞射光譜 175
Figure 4-78. 600℃煅燒蛋殼粉使用DSHAP方法合成HAp之X射線繞射光譜 175
Figure 4-79. 1200℃煅燒蛋殼粉使用DSHAP方法合成HAp之X射線繞射光譜 176
Figure 4-80. 未煅燒蛤蜊殼粉使用不同方法合成HAp之X射線繞射光譜 180
Figure 4-81. 600℃煅燒蛤蜊殼粉使用不同方法合成HAp之X射線繞射光譜 180
Figure 4-82. 1200℃煅燒蛤蜊殼粉使用不同方法合成HAp之X射線繞射光譜 181
Figure 4-83. 不同溫度煅燒蝸牛殼粉使用DSHAP方法合成Hap之SEM圖 183
Figure 4-84. 不同溫度煅燒牡犡殼粉使用DSHAP方法合成Hap之SEM圖 184
Figure 4-85. 不同溫度煅燒蛋殼粉使用DSHAP方法合成Hap之SEM圖 185
Figure 4-86. 不同溫度煅燒蛤蜊殼粉使用DSHAP方法合成Hap之SEM圖 186
Figure 4-87. 不同溫度煅燒蝸牛殼粉使用BHHAP方法合成Hap之SEM圖 188
Figure 4-88. 不同溫度煅燒牡犡殼粉使用BHHAP方法合成Hap之SEM圖 189
Figure 4-89. 不同溫度煅燒蛋殼粉使用BHHAP方法合成Hap之SEM圖 190
Figure 4-90. 不同溫度煅燒蛤蜊殼粉使用BHHAPP方法合成Hap之SEM圖 191
Figure 4-91. 未煅燒蝸牛殼粉生產之氫氧基磷灰石反射率測定 199
Figure 4-92. 600℃煅燒蝸牛殼粉生產之氫氧基磷灰石反射率測定 200
Figure 4-93. 1200℃煅燒蝸牛殼粉生產之氫氧基磷灰石反射率測定 200
Figure 4-94. 未煅燒牡蠣殼粉生產之氫氧基磷灰石反射率測定 201
Figure 4-95. 600℃煅燒牡蠣殼粉生產之氫氧基磷灰石反射率測定 201
Figure 4-96. 1200℃煅燒牡蠣殼粉生產之氫氧基磷灰石反射率測定 202
Figure 4-97. 未煅燒蛋殼粉生產之氫氧基磷灰石反射率測定 202
Figure 4-98. 600℃煅燒蛋殼粉生產之氫氧基磷灰石反射率測定 203
Figure 4-99. 1200℃煅燒蛋殼粉生產之氫氧基磷灰石反射率測定 203
Figure 4-100. 未煅燒蛤蜊殼粉生產之氫氧基磷灰石反射率測定 204
Figure 4-101. 600℃煅燒蛤蜊殼粉生產之氫氧基磷灰石反射率測定 204
Figure 4-102. 1200℃煅燒蛤蜊殼粉生產之氫氧基磷灰石反射率測定 205

表目錄
Table 2‑1從不同天然來源萃取的HAp特性 30
Table 2‑2 從海洋來源萃取HAp的方法 38
Table 2‑3 從水生或海洋來源使用不同方法萃取的HAp的性質 38
Table 2‑4從廢棄生物殼萃取HAp的方法 43
Table 2‑5用於萃取純HAp的煅燒溫度 45
Table 2‑6用於萃取純HAp的氫氧化鈉濃度 46
Table 2‑7用於萃取HAp的組合方法 46
Table 2‑8 利用蛋殼和球磨合成HAp的基本實驗條件 51
Table 4‑1 不同市售防曬產品之填充料反射率 142
Table 4‑2 不同市售美妝防曬材料反射率測定 143
Table 4‑3 不同溫度煅燒蝸牛殼粉之反射率 146
Table 4‑4 不同溫度煅燒牡蠣殼粉之反射率 146
Table 4‑5 不同溫度煅燒珪藻土之反射率 147
Table 4‑6 不同溫度煅燒蛋殼粉之反射率 147
Table 4‑7 不同溫度煅燒玻璃粉之反射率 148
Table 4‑8 不同溫度煅燒碳黑之反射率 148
Table 4‑9 不同溫度煅燒咖啡渣之反射率 149
Table 4‑10 不同溫度煅燒沉香子外殼之反射率 149
Table 4‑11 不同溫度煅燒可哥豆夾之反射率 150
Table 4‑12 未煅燒蝸牛殼使用不同方法合成HAp反射率 193
Table 4‑13 600℃煅燒蝸牛殼使用不同方法合成HAp反射率 194
Table 4‑14 1200℃煅燒蝸牛殼使用不同方法合成HAp反射率 194
Table 4‑15 未煅燒牡蠣殼使用不同方法合成HAp反射率 195
Table 4‑16 600℃煅燒牡蠣殼使用不同方法合成HAp反射率 195
Table 4‑17 1200℃煅燒牡蠣殼使用不同方法合成HAp反射率 196
Table 4‑18 未煅燒蛋殼使用不同方法合成HAp反射率 196
Table 4‑19 600℃煅燒蛋殼使用不同方法合成HAp反射率 197
Table 4‑20 1200℃煅燒蛋殼使用不同方法合成HAp反射率 197
Table 4‑21 未煅燒蛤蜊殼使用不同方法合成HAp反射率 198
Table 4‑22 600℃煅燒蛤蜊殼使用不同方法合成HAp反射率 198
Table 4‑23 1200℃煅燒蛤蜊殼使用不同方法合成HAp反射率 199


1.陸象豫。2016。都市熱島效應。林業研究專訊23(2) : 59-61。
2.郭志成、趙任元、陳義華。2011。新型水性隔熱塗料隔熱效果研究。鑛冶: 中國鑛冶工程學會會刊214: 47-54。
3.李欣倫。2011。隔熱塗料應用於屋頂鋪面之熱特性探討。第102頁。明志科技大學生化工程研究所碩士論文。新北市,台灣。
4.蔡定翰。2013。牡蠣灰環保隔熱塗料之開發及熱特性之研究。第73頁。明志科技大學環境與資源工程研究所碩士論文。新北市,台灣。
5.賴家煒。2010。牡蠣殼之再利用研究。第14頁。國立新竹教育大學應用科學系碩士論文。新竹市,台灣。
6.黃育承。2013。多層式複合材料應用於屋頂隔熱之研究。第37-38頁。崑山科技大學機械工程研究所碩士論文。台南市,台灣。
7.Agoudjil, B., Benchabane, A., Boudenne, A., Ibos, L. and Fois, M. 2011. Renewable Materials to Reduce Building Heat Loss: Characterization of Date Palm Wood. Energy and Buildings. 43(2-3): 491-497.
8.Akbari, H., Bretz, S., Kurn, D. M. and Hanford, J. 1997. Peak Power and Cooling Energy Savings of High-Albedo Roofs. Energy and Buildings. 25(2): 117-126.
9.Akbari, H., Levinson, R., Miller, W. and Berdahl, P. 2005. Cool Colored Roofs to Save Energy and Improve Air Quality.
10.Akbari, H., Pomerantz, M. and Taha, H. 2001. Cool Surfaces and Shade Trees to Reduce Energy Use and Improve Air Quality in Urban Areas. Solar energy. 70(3): 295-310.
11.Akindapo, J. O., Binni, U. A. and Sanusi, O. M. 2015. Development of Roofing Sheet Material Using Groundnut Shell Particles and Epoxy Resin as Composite Material.
12.Akram, M., Ahmed, R., Shakir, I., Ibrahim, W. A. W. and Hussain, R. 2014. Extracting Hydroxyapatite and Its Precursors from Natural Resources. Journal of Materials Science. 49(4): 1461-1475.
13.Al-Juruf, R., Ahmed, F., Alam, I. and Abdel-Rahman, H. 1988. Development of Heat Insulating Materials Using Date Palm Leaves. Journal of Thermal Insulation. 11(3): 158-164.
14.Alparslan, Y., Baygar, T. and Baygar, T. 2017. Extraction, Characterization and Antimicrobial Activity of Hydroxyapatite from Seabass and Seabream Scale. FOOD and HEALTH. 3(3): 90-96.
15.Apalangya, V., Rangari, V., Jeelani, S., Dankyi, E., Yaya, A. and Darko, S. 2018. Rapid Microwave Synthesis of Needle-Liked Hydroxyapatite Nanoparticles Via Template Directing Ball-Milled Spindle-Shaped Eggshell Particles. Ceramics International. 44(6): 7165-7171.
16.Balamurugan, A., Rebelo, A., Lemos, A., Rocha, J., Ventura, J. and Ferreira, J. 2008. Suitability Evaluation of Sol–Gel Derived Si-Substituted Hydroxyapatite for Dental and Maxillofacial Applications through in Vitro Osteoblasts Response. Dental Materials. 24(10): 1374-1380.
17.Baláž, M. 2018. Ball Milling of Eggshell Waste as a Green and Sustainable Approach: A Review. Advances in colloid and interface science. 256: 256-275.
18.Baláž, P. 2008. Mechanochemistry in Minerals Engineering Mechanochemistry in Nanoscience and Minerals Engineering p. 257-296. Springer.
19.Baláž, P., Achimovičová, M., Baláž, M., Billik, P., Cherkezova-Zheleva, Z., Criado, J. M. and Gotor, F. J. 2013. Hallmarks of Mechanochemistry: From Nanoparticles to Technology. Chemical Society Reviews. 42(18): 7571-7637.
20.Balázsi, C., Wéber, F., Kövér, Z., Horváth, E. and Németh, C. 2007. Preparation of Calcium–Phosphate Bioceramics from Natural Resources. Journal of the European Ceramic Society. 27(2-3): 1601-1606.
21.Bardhan, R., Mahata, S. and Mondal, B. 2011. Processing of Natural Resourced Hydroxyapatite from Eggshell Waste by Wet Precipitation Method. Advances in Applied Ceramics. 110(2): 80-86.
22.Bederina, M., Marmoret, L., Mezreb, K., Khenfer, M., Bali, A. and Quéneudec, M. 2007. Effect of the Addition of Wood Shavings on Thermal Conductivity of Sand Concretes: Experimental Study and Modelling. Construction and Building Materials. 21(3): 662-668.
23.Benmansour, N., Agoudjil, B., Boudenne, A. and Garnier, B. 2014a. Numerical Investigation of Heat Transfer of Silver-Coated Glass Particles Dispersed in Ethylene Vinyl Acetate Matrix. International Journal of Thermophysics. 35(9-10): 1803-1816.
24.Benmansour, N., Agoudjil, B., Gherabli, A., Kareche, A. and Boudenne, A. 2014b. Thermal and Mechanical Performance of Natural Mortar Reinforced with Date Palm Fibers for Use as Insulating Materials in Building. Energy and Buildings. 81: 98-104.
25.Berdahl, P. and Bretz, S. E. 1997. Preliminary Survey of the Solar Reflectance of Cool Roofing Materials. Energy and Buildings. 25(2): 149-158.
26.Berzina-Cimdina, L. and Borodajenko, N. 2012. Research of Calcium Phosphates Using Fourier Transform Infrared Spectroscopy Infrared Spectroscopy-Materials Science, Engineering and Technology: IntechOpen.
27.Sada, B., Amartey, Y. and Bako, S. 2013. An Investigation into the Use of Groundnut Shell.
28.as Fine Aggregate Replacement. Nigerian Journal of Technology. 32: 54-60.
29.Billiet, T., Vandenhaute, M., Schelfhout, J., Van Vlierberghe, S. and Dubruel, P. 2012. A Review of Trends and Limitations in Hydrogel-Rapid Prototyping for Tissue Engineering. Biomaterials. 33(26): 6020-6041.
30.Boldyreva, E. 2013. Mechanochemistry of Inorganic and Organic Systems: What Is Similar, What Is Different? Chemical Society Reviews. 42(18): 7719-7738.
31.Boskey, A. 2013. Natural and Synthetic Hydroxyapatites. Biomaterials Science: An Introduction to Materials: Publisher Name: Elsevier.
32.Bouguerra, A., Ait-Mokhtar, A., Amiri, O. and Diop, M. 2001. Measurement of Thermal Conductivity, Thermal Diffusivity and Heat Capacity of Highly Porous Building Materials Using Transient Plane Source Technique. International Communications in Heat and Mass Transfer. 28(8): 1065-1078.
33.Bouguerra, A., Ledhem, A., De Barquin, F., Dheilly, R. and Queneudec, M. 1998. Effect of Microstructure on the Mechanical and Thermal Properties of Lightweight Concrete Prepared from Clay, Cement, and Wood Aggregates. Cement and concrete research. 28(8): 1179-1190.
34.Brady Jr, R. F. and Wake, L. V. 1992. Principles and Formulations for Organic Coatings with Tailored Infrared Properties. Progress in Organic coatings. 20: 1-25.
35.Braga, D., Maini, L. and Grepioni, F. 2013. Mechanochemical Preparation of Co-Crystals. Chemical Society Reviews. 42(18): 7638-7648.
36.Bretz, S., Akbari, H. and Rosenfeld, A. 1998. Practical Issues for Using Solar-Reflective Materials to Mitigate Urban Heat Islands. Atmospheric environment. 32(1): 95-101.
37.Buari, T., Ademola, S. and Ayegbokiki, S. 2013. Characteristics Strength of Groundnut Shell Ash (Gsa) and Ordinary Portland Cement (Opc) Blended Concrete in Nigeria. IOSR Journal of Engineering (IOSRJEN). 3(7): 1-7.
38.Burkhart, G., Detrie, T. and Swiler, D. 2001. When Black Is White. Paint & Coatings Industry. 17(1): 30-36.
39.Capuccini, C., Torricelli, P., Sima, F., Boanini, E., Ristoscu, C., Bracci, B. and Bigi, A. 2008. Strontium-Substituted Hydroxyapatite Coatings Synthesized by Pulsed-Laser Deposition: In Vitro Osteoblast and Osteoclast Response. Acta biomaterialia. 4(6): 1885-1893.
40.Chikhi, M., Agoudjil, B., Haddadi, M. and Boudenne, A. 2013. Numerical Modelling of the Effective Thermal Conductivity of Heterogeneous Materials. Journal of Thermoplastic Composite Materials. 26(3): 336-345.
41.Chowdhury, S. and Saha, P. 2010. Sea Shell Powder as a New Adsorbent to Remove Basic Green 4 (Malachite Green) from Aqueous Solutions: Equilibrium, Kinetic and Thermodynamic Studies. Chemical Engineering Journal. 164(1): 168-177.
42.Chowdhury, S. and Saha, P. D. 2012. Fixed-Bed Adsorption of Malachite Green onto Binary Solid Mixture of Adsorbents: Seashells and Eggshells. Toxicological & Environmental Chemistry. 94(7): 1272-1282.
43.Dalbeck, P. and Cusack, M. 2006. Crystallography (Electron Backscatter Diffraction) and Chemistry (Electron Probe Microanalysis) of the Avian Eggshell. Crystal Growth & Design. 6(11): 2558-2562.
44.Doulas, L., Santamouris, M. and Livada, I. 2004. Passive Cooling of Outdoor Urban Spaces. The Role of Material Solar Energy. 77: 231-249.
45.Doulos, L., Santamouris, M. and Livada, I. 2004. Passive Cooling of Outdoor Urban Spaces. The Role of Materials. Solar energy. 77(2): 231-249.
46.El-Sherbiny, S., El-Sheikh, S. and Barhoum, A. 2015. Preparation and Modification of Nano Calcium Carbonate Filler from Waste Marble Dust and Commercial Limestone for Papermaking Wet End Application. Powder Technology. 279: 290-300.
47.Fombuena, V., Bernardi, L., Fenollar, O., Boronat, T. and Balart, R. 2014. Characterization of Green Composites from Biobased Epoxy Matrices and Bio-Fillers Derived from Seashell Wastes. Materials & Design. 57: 168-174.
48.Food, Administration, D. and Code, F. F. 2009. Annex 3—Public Health Reasons/Administrative Guidelines—Chapter 2, Management and Personnel.
49.Francis, A. and Rahman, M. A. 2016. The Environmental Sustainability of Calcined Calcium Phosphates Production from the Milling of Eggshell Wastes and Phosphoric Acid. Journal of Cleaner Production. 137: 1432-1438.
50.Freivalde, L., Kukle, S., Andžs, M., Bukšāns, E. and Grāvītis, J. 2014. Flammability of Raw Insulation Materials Made of Hemp. Composites Part B: Engineering. 67: 510-514.
51.Ganiron, T. U. and Jr. 2014. Effect of Sawdust as Fine Aggregate in Concrete Mixture for Building Construction. International Journal of Advanced Science and Technology. 63: 73-82.
52.Gergely, G., Wéber, F., Lukács, I., Illés, L., Tóth, A. L., Horváth, Z. E. and Balázsi, C. 2010a. Nano-Hydroxyapatite Preparation from Biogenic Raw Materials. Central European Journal of Chemistry. 8(2): 375-381.
53.Gergely, G., Wéber, F., Lukács, I., Tóth, A. L., Horváth, Z. E., Mihály, J. and Balázsi, C. 2010b. Preparation and Characterization of Hydroxyapatite from Eggshell. Ceramics International. 36(2): 803-806.
54.Ghosh, P. R., Fawcett, D., Sharma, S. B. and Poinern, G. E. J. 2016. Progress Towards Sustainable Utilisation and Management of Food Wastes in the Global Economy. International journal of food science. 2016.
55.Gibert, B., Schilling, F. R., Tommasi, A. and Mainprice, D. 2003. Thermal Diffusivity of Olivine Single‐Crystals and Polycrystalline Aggregates at Ambient Conditions—a Comparison. Geophysical Research Letters. 30(22).
56.Givi, A. N., Rashid, S. A., Aziz, F. N. A. and Salleh, M. A. M. 2010. Assessment of the Effects of Rice Husk Ash Particle Size on Strength, Water Permeability and Workability of Binary Blended Concrete. Construction and Building Materials. 24(11): 2145-2150.
57.Goloshchapov, D., Kashkarov, V., Rumyantseva, N., Seredin, P., Lenshin, A., Agapov, B. and Domashevskaya, E. 2013. Synthesis of Nanocrystalline Hydroxyapatite by Precipitation Using Hen's Eggshell. Ceramics International. 39(4): 4539-4549.
58.Groote, R., Jakobs, R. T. and Sijbesma, R. P. 2013. Mechanocatalysis: Forcing Latent Catalysts into Action. Polymer Chemistry. 4(18): 4846-4859.
59.Guo, X., Xiang, D., Duan, G. and Mou, P. 2010. A Review of Mechanochemistry Applications in Waste Management. Waste management. 30(1): 4-10.
60.Hamidi, A., Salimi, M. and Yusoff, A. 2017. Synthesis and Characterization of Eggshell-Derived Hydroxyapatite Via Mechanochemical Method: A Comparative Study. Paper presented at the AIP Conference Proceedings.
61.Heimann, R. B. 2002. Materials Science of Crystalline Bioceramics: A Review of Basic Properties and Applications. CMU J. 1(1): 23-46.
62.Hendi, A. 2017. Hydroxyapatite Based Nanocomposite Ceramics. Journal of Alloys and Compounds. 712: 147-151.
63.Hoffmann, J., Hoffmann, K., Skut, J. and Huculak-Mączka, M. 2011. Modification of Manufacturing Process of Feed Phosphates. Chemik. 65(3): 184-191.
64.Hsu, T. C. 2009. Experimental Assessment of Adsorption of Cu2+ and Ni2+ from Aqueous Solution by Oyster Shell Powder. Journal of hazardous materials. 171(1-3): 995-1000.
65.Hunton, P. 2005. Research on Eggshell Structure and Quality: An Historical Overview. Brazilian Journal of Poultry Science. 7(2): 67-71.
66.Ismail, Z. Z. and Jaeel, A. J. 2014. A Novel Use of Undesirable Wild Giant Reed Biomass to Replace Aggregate in Concrete. Construction and Building Materials. 67: 68-73.
67.James, S. L., Adams, C. J., Bolm, C., Braga, D., Collier, P., Friščić, T. and Jones, W. 2012. Mechanochemistry: Opportunities for New and Cleaner Synthesis. Chemical Society Reviews. 41(1): 413-447.
68.Jauberthie, R., Rendell, F., Tamba, S. and Cissé, I. K. 2003. Properties of Cement—Rice Husk Mixture. Construction and Building Materials. 17(4): 239-243.
69.Kanagalakshmi, A. S., Velu, S. and Tamilnathan, R. 2015. Study of Peanut Shell Beams on Shear and Flexure. Int. Conf. Eng. Trend Sci. Humani. 32-44.
70.Kinouchi, T., Yoshinaka, T., Fukae, N. and Kanda, M. 2004a. Development of Cool Pavement with Dark Coloured High Albedo Coating: Fifth Conference for the Urban Environment. Vancouver, Canada: 38.
71.Kinouchi, T., Yoshinaka, T., Fukae, N. and Kanda, M. 2004b. Development of Cool Pavement with Dark Colored High Albedo Coating.
72.Kong, D., Xiao, X., Qiu, X., Zhang, W., Hu, Y., Zhang, S. and Yang, Y. 2015. Synthesis and Characterization of Europium Ions Doping of Hydroxyapatite Nanorods by the Simple Two Step Method. Functional Materials Letters. 8(06): 1550075.
73.Kongsri, S., Janpradit, K., Buapa, K., Techawongstien, S. and Chanthai, S. 2013. Nanocrystalline Hydroxyapatite from Fish Scale Waste: Preparation, Characterization and Application for Selenium Adsorption in Aqueous Solution. Chemical Engineering Journal. 215: 522-532.
74.Konopacki, S. J. and Akbari, H. 2001. Measured Energy Savings and Demand Reduction from a Reflective Roof Membrane on a Large Retail Store in Austin. Retrieved from
75.Kuo, W. T., Wang, H. Y., Shu, C. Y. and Su, D. S. 2013. Engineering Properties of Controlled Low-Strength Materials Containing Waste Oyster Shells. Construction and Building Materials. 46: 128-133.
76.Landsberg, H. E. 1981. The Urban Climate (Vol. 28): Academic press.
77.Ledhem, A., Dheilly, R., Benmalek, M. and Quéneudec, M. 2000. Properties of Wood-Based Composites Formulated with Aggregate Industry Waste. Construction and Building Materials. 14(6-7): 341-350.
78.Lee, S. J., Yoon, Y. S., Lee, M. H. and Oh, N. S. 2007. Highly Sinterable Β-Tricalcium Phosphate Synthesized from Eggshells. Materials Letters. 61(6): 1279-1282.
79.Lee, S. and Oh, S. 2003. Fabrication of Calcium Phosphate Bioceramics by Using Eggshell and Phosphoric Acid. Materials Letters. 57(29): 4570-4574.
80.Levinson, R., Berdahl, P. and Akbari, H. 2005a. Solar Spectral Optical Properties of Pigments—Part I: Model for Deriving Scattering and Absorption Coefficients from Transmittance and Reflectance Measurements. Solar energy materials and solar cells. 89(4): 319-349.
81.Levinson, R., Berdahl, P. and Akbari, H. 2005b. Solar Spectral Optical Properties of Pigments—Part Ii: Survey of Common Colorants. Solar energy materials and solar cells. 89(4): 351-389.
82.Li, Z., Wang, X. and Wang, L. 2006. Properties of Hemp Fibre Reinforced Concrete Composites. Composites part A: applied science and manufacturing. 37(3): 497-505.
83.Lide, D. R. 2004. Crc Handbook of Chemistry and Physics (Vol. 85): CRC press.
84.Limam, A., Zerizer, A., Quenard, D., Sallee, H. and Chenak, A. 2016. Experimental Thermal Characterization of Bio-Based Materials (Aleppo Pine Wood, Cork and Their Composites) for Building Insulation. Energy and Buildings. 116: 89-95.
85.Liu, L., Li, H., Lazzaretto, A., Manente, G., Tong, C., Liu, Q. and Li, N. 2017. The Development History and Prospects of Biomass-Based Insulation Materials for Buildings. Renewable and Sustainable Energy Reviews. 69: 912-932.
86.Loh, Y., Sujan, D., Rahman, M. and Das, C. 2013. Sugarcane Bagasse—the Future Composite Material: A Literature Review. Resources, Conservation and Recycling. 75: 14-22.
87.Madandoust, R., Ranjbar, M. M., Moghadam, H. A. and Mousavi, S. Y. 2011. Mechanical Properties and Durability Assessment of Rice Husk Ash Concrete. Biosystems engineering. 110(2): 144-152.
88.Madurwar, M. V., Ralegaonkar, R. V. and Mandavgane, S. A. 2013. Application of Agro-Waste for Sustainable Construction Materials: A Review. Construction and Building Materials. 38: 872-878.
89.Mageswari and Vidivelli. 2009. The Use of Sawdust Ash as Fine Aggregate.
90.Replacement in Concrete Journal of Environmental Research And Development. 7: 720-726.
91.Mahmoud, H., Belel, Z. and Nwakaire, C. 2012. Groundnut Shell Ash as a Partial Replacement of Cement in Sandcrete Blocks Production. International Journal of Development and Sustainability. 1(3): 1026-1032.
92.May, P. A. and Moore, J. S. 2013. Polymer Mechanochemistry: Techniques to Generate Molecular Force Via Elongational Flows. Chemical Society Reviews. 42(18): 7497-7506.
93.Miller, G. D. and Fuller, M. J. 1993. Kenaf Core as a Board Raw Material. Forest products journal. 43(7, 8): 69.
94.Milovac, D., Ferrer, G. G., Ivankovic, M. and Ivankovic, H. 2014. Pcl-Coated Hydroxyapatite Scaffold Derived from Cuttlefish Bone: Morphology, Mechanical Properties and Bioactivity. Materials Science and Engineering: C. 34: 437-445.
95.Minh, D. P., Rio, S., Sharrock, P., Sebei, H., Lyczko, N., Tran, N. D. and Nzihou, A. 2014. Hydroxyapatite Starting from Calcium Carbonate and Orthophosphoric Acid: Synthesis, Characterization, and Applications. Journal of Materials Science. 49(12): 4261-4269.
96.Modani, P. O. and Vyawahare, M. 2013. Utilization of Bagasse Ash as a Partial Replacement of Fine Aggregate in Concrete. Procedia Engineering. 51: 25-29.
97.Mondal, B., Mondal, S., Mondal, A. and Mandal, N. 2016. Fish Scale Derived Hydroxyapatite Scaffold for Bone Tissue Engineering. Materials Characterization. 121: 112-124.
98.Mondal, S., Bardhan, R., Mondal, B., Dey, A., Mukhopadhyay, S. S., Roy, S. and Roy, K. 2012. Synthesis, Characterization and in Vitro Cytotoxicity Assessment of Hydroxyapatite from Different Bioresources for Tissue Engineering Application. Bulletin of materials science. 35(4): 683-691.
99.Moustafa, H., Youssef, A. M., Duquesne, S. and Darwish, N. A. 2017. Characterization of Bio‐Filler Derived from Seashell Wastes and Its Effect on the Mechanical, Thermal, and Flame Retardant Properties of Abs Composites. Polymer Composites. 38(12): 2788-2797.
100.Mustaffa, R., Yusof, M., Reusmaazran, M. and Abdullah, Y. 2015. A Novelty of Synthetic Hydroxyapatite from Cockle Shell and Characterization. Paper presented at the Advanced Materials Research.
101.Nakano, T., Ikawa, N. and Ozimek, L. 2003. Chemical Composition of Chicken Eggshell and Shell Membranes. Poultry science. 82(3): 510-514.
102.Namdar, A. and Yahaya, F. M. 2014. Enhancement of Cement Mortar Mechanical Properties with Replacement of Seashell Powder. World Academy of Science, Engineering and Technology, International Journal of Civil, Environmental, Structural, Construction and Architectural Engineering. 8(2): 169-172.
103.Nikolopoulos, C. 2004. A Model for Melting of an Inhomogeneous Material During Modulated Temperature Differential Scanning Calorimetry. Applied Mathematical Modelling. 28(5): 427-444.
104.Nuamsrinuan, N., Kaewwiset, W., Limsuwan, P. and Naemchanthara, K. 2017. Hydroxyapatite Synthesized from Waste Eggshell Via Ball Milling. Paper presented at the Applied Mechanics and Materials.
105.Nys, Y., Gautron, J., Garcia-Ruiz, J. M. and Hincke, M. T. 2004. Avian Eggshell Mineralization: Biochemical and Functional Characterization of Matrix Proteins. Comptes Rendus Palevol. 3(6-7): 549-562.
106.O'Hare, P., Meenan, B. J., Burke, G. A., Byrne, G., Dowling, D. and Hunt, J. A. 2010. Biological Responses to Hydroxyapatite Surfaces Deposited Via a Co-Incident Microblasting Technique. Biomaterials. 31(3): 515-522.
107.Olutoge, F., Buari, T. and Adeleke, J. 2013. Characteristics Strength and Durability of Groundnut Shell Ash (Gsa) Blended Cement Concrete in Sulphate Environments. International Journal of Scientific Engineering Research (IJSER) volume4, issue7.
108.Oyedepo, O. J., Oluwajana, S. D. and Akande, S. P. 2014. Investigation of Properties of Concrete Using Sawdust as Partial Replacement of Sand. Civil and Environmental Research. 6(2): 35-42.
109.Ozawa, M. and Suzuki, S. 2002. Microstructural Development of Natural Hydroxyapatite Originated from Fish‐Bone Waste through Heat Treatment. Journal of the American Ceramic Society. 85(5): 1315-1317.
110.Pal, A., Maity, S., Chabri, S., Bera, S., Chowdhury, A. R., Das, M. and Sinha, A. 2017a. Mechanochemical Synthesis of Nanocrystalline Hydroxyapatite from Mercenaria Clam Shells and Phosphoric Acid. Biomedical Physics & Engineering Express. 3(1): 015010.
111.Pal, A., Paul, S., Choudhury, A. R., Balla, V. K., Das, M. and Sinha, A. 2017b. Synthesis of Hydroxyapatite from Lates Calcarifer Fish Bone for Biomedical Applications. Materials Letters. 203: 89-92.
112.Palka, K. 2006. Chemical Composition and Structure of Foods Chemical and Functional Properties of Food Components p. 25-38. CRC Press.
113.Panda, N. N., Pramanik, K. and Sukla, L. B. 2014. Extraction and Characterization of Biocompatible Hydroxyapatite from Fresh Water Fish Scales for Tissue Engineering Scaffold. Bioprocess and biosystems engineering. 37(3): 433-440.
114.Panyakaew, S. and Fotios, S. 2011. New Thermal Insulation Boards Made from Coconut Husk and Bagasse. Energy and Buildings. 43(7): 1732-1739.
115.Paul, S., Pal, A., Choudhury, A. R., Bodhak, S., Balla, V. K., Sinha, A. and Das, M. 2017. Effect of Trace Elements on the Sintering Effect of Fish Scale Derived Hydroxyapatite and Its Bioactivity. Ceramics International. 43(17): 15678-15684.
116.Pon-On, W., Suntornsaratoon, P., Charoenphandhu, N., Thongbunchoo, J., Krishnamra, N. and Tang, I. M. 2016. Hydroxyapatite from Fish Scale for Potential Use as Bone Scaffold or Regenerative Material. Materials Science and Engineering: C. 62: 183-189.
117.Prusty, J. K., Patro, S. K. and Basarkar, S. S. 2016. Concrete Using Agro-Waste as Fine Aggregate for Sustainable Built Environment – a Review. International Journal of Sustainable Built Environment. 5(2): 312-333.
118.Pu'ad, N. M., Koshy, P., Abdullah, H., Idris, M. and Lee, T. 2019. Syntheses of Hydroxyapatite from Natural Sources. Heliyon. 5(5): e01588.
119.Ratner, B. D., Hoffman, A. S., Schoen, F. J. and Lemons, J. E. 2004. Biomaterials Science: An Introduction to Materials in Medicine: Elsevier.
120.Razali, N. M., Pramanik, S., Osman, N. A., Radzi, Z. and Pingguan-Murphy, B. 2016. Conversion of Calcite from Cockle Shells to Bioactive Nanorod Hydroxyapatite for Biomedical Applications. J. Ceram. Process. Res. 17: 699-706.
121.Robert, S. and John, R. 2002. Thermal Radiation Heat Transfer: Taylor & Francis, New York, USA.
122.Romeis, S., Schmidt, J. and Peukert, W. 2016. Mechanochemical Aspects in Wet Stirred Media Milling. International Journal of Mineral Processing. 156: 24-31.
123.Rosenfeld, A. H., Romm, J. J., Akbari, H., Pomerantz, M. and Taha, H. G. 1996. Policies to Reduce Heat Islands: Magnitudes of Benefits and Incentives to Achieve Them. Retrieved from.
124.Rukzon, S. and Chindaprasirt, P. 2012. Utilization of Bagasse Ash in High-Strength Concrete. Materials & Design. 34: 45-50.
125.Sada, B., Amartey, Y. and Bakoc, S. 2013. An Investigation into the Use of Groundnut as Fine Aggregate Replacement. Nigerian Journal of Technology. 32(1): 54-60.
126.Sadat-Shojai, M., Khorasani, M. T., Dinpanah-Khoshdargi, E. and Jamshidi, A. 2013. Synthesis Methods for Nanosized Hydroxyapatite with Diverse Structures. Acta biomaterialia. 9(8): 7591-7621.
127.Sailor, D. J. 1995. Simulated Urban Climate Response to Modifications in Surface Albedo and Vegetative Cover. Journal of applied meteorology. 34(7): 1694-1704.
128.Sales, A. and Lima, S. A. 2010. Use of Brazilian Sugarcane Bagasse Ash in Concrete as Sand Replacement. Waste management. 30(6): 1114-1122.
129.Sampathrajan, A., Vijayaraghavan, N. and Swaminathan, K. 1992. Mechanical and Thermal Properties of Particle Boards Made from Farm Residues. Bioresource technology. 40(3): 249-251.
130.Sanosh, K., Chu, M. C., Balakrishnan, A., Lee, Y. J., Kim, T. and Cho, S. J. 2009. Synthesis of Nano Hydroxyapatite Powder That Simulate Teeth Particle Morphology and Composition. Current Applied Physics. 9(6): 1459-1462.
131.Santhosh, S. and Prabu, S. B. 2013. Thermal Stability of Nano Hydroxyapatite Synthesized from Sea Shells through Wet Chemical Synthesis. Materials Letters. 97: 121-124.
132.Savastano Jr, H., Warden, P. G. and Coutts, R. S. 2003. Potential of Alternative Fibre Cements as Building Materials for Developing Areas. Cement and Concrete Composites. 25(6): 585-592.
133.Sedan, D., Pagnoux, C., Smith, A. and Chotard, T. 2008. Mechanical Properties of Hemp Fibre Reinforced Cement: Influence of the Fibre/Matrix Interaction. Journal of the European Ceramic Society. 28(1): 183-192.
134.Shafigh, P., Mahmud, H. B., Jumaat, M. Z. and Zargar, M. 2014. Agricultural Wastes as Aggregate in Concrete Mixtures–a Review. Construction and Building Materials. 53: 110-117.
135.Shentu, B., Jipeng, L. and Zhixue, W. 2006. Effect of Oleic Acid-Modified Nano-Caco3 on the Crystallization Behavior and Mechanical Properties of Polypropylene1. Chinese Journal of Chemical Engineering. 14(6): 814-818.
136.Shi, J., Lu, L., Guo, W., Zhang, J. and Cao, Y. 2013. Heat Insulation Performance, Mechanics and Hydrophobic Modification of Cellulose–Sio2 Composite Aerogels. Carbohydrate polymers. 98(1): 282-289.
137.Siddique, R. 2004. Properties of Concrete Incorporating High Volumes of Class F Fly Ash and San Fibers. Cement and Concrete Research. 34(1): 37-42.
138.Siegel, R. and Howell, J. 2002. Thermal Radiation Heat Transfer [M1. New York: Taylor&.
139.Silva, G. G. D., Couturier, M., Berrin, J. G., Buléon, A. and Rouau, X. 2012. Effects of Grinding Processes on Enzymatic Degradation of Wheat Straw. Bioresource technology. 103(1): 192-200.
140.Spence, G., Patel, N., Brooks, R. and Rushton, N. 2009. Carbonate Substituted Hydroxyapatite: Resorption by Osteoclasts Modifies the Osteoblastic Response. Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials. 90(1): 217-224.
141.Stadelman, W. 2000. Eggs and Egg Products. Encyclopedia of food science and technology. 2.
142.Sua-Iam, G. and Makul, N. 2013. Utilization of Limestone Powder to Improve the Properties of Self-Compacting Concrete Incorporating High Volumes of Untreated Rice Husk Ash as Fine Aggregate. Construction and Building Materials. 38: 455-464.
143.Sunil, B. R. and Jagannatham, M. 2016. Producing Hydroxyapatite from Fish Bones by Heat Treatment. Materials Letters. 185: 411-414.
144.Suteu, D., Bilba, D., Aflori, M., Doroftei, F., Lisa, G., Badeanu, M. and Malutan, T. 2012. The Seashell Wastes as Biosorbent for Reactive Dye Removal from Textile Effluents. CLEAN–Soil, Air, Water. 40(2): 198-205.
145.Sye, W. F., Lu, L. C., Tai, J. W. and Wang, C. I. 2008. Applications of Chitosan Beads and Porous Crab Shell Powder Combined with Solid-Phase Microextraction for Detection and the Removal of Colour from Textile Wastewater. Carbohydrate polymers. 72(3): 550-556.
146.Synnefa, A., Santamouris, M. and Apostolakis, K. 2007. On the Development, Optical Properties and Thermal Performance of Cool Colored Coatings for the Urban Environment. Solar energy. 81(4): 488-497.
147.Synnefa, A., Santamouris, M. and Livada, I. 2006. A Study of the Thermal Performance of Reflective Coatings for the Urban Environment. Solar energy. 80(8): 968-981.
148.Szcześ, A., Hołysz, L. and Chibowski, E. 2017. Synthesis of Hydroxyapatite for Biomedical Applications. Advances in colloid and interface science. 249: 321-330.
149.Tang, Q., Zhang, Y. m., Zhang, P. g., Shi, J. j., Tian, W. b. and Sun, Z. m. 2017. Preparation and Properties of Thermal Insulation Coatings with a Sodium Stearate-Modified Shell Powder as a Filler. International Journal of Minerals, Metallurgy, and Materials. 24(10): 1192-1199.
150.Tas, A. C. 2009. Monetite (Cahpo4) Synthesis in Ethanol at Room Temperature. Journal of the American Ceramic Society. 92(12): 2907-2912.
151.Tata Kimeng, H., Olusegun Ekundayo, O., Sani, M. and Frederick, K. 2015. Feasibility Study of the Use of Groundnut Shells as Fine Aggregates in Light Weight Concrete Construction (Vol. 1).
152.Tye, R. 1974. Heat Transmission in Cellulosic Fiber Insulation Materials. Journal of Testing and Evaluation. 2(3): 176-179.
153.Tye, R. P. and Spinney, S. 1979. A Study of the Effects of Moisture Vapour on the Thermal Transmittance Characteristics of Cellulose Fibre Thermal Insulation. Journal of Thermal Insulation. 2(4): 175-196.
154.Udoeyo, F. F. and Dashibil, P. U. 2002. Sawdust Ash as Concrete Material. Journal of Materials in Civil Engineering. 14(2): 173-176.
155.Venkatesan, J., Qian, Z. J., Ryu, B., Thomas, N. V. and Kim, S. K. 2011. A Comparative Study of Thermal Calcination and an Alkaline Hydrolysis Method in the Isolation of Hydroxyapatite from Thunnus Obesus Bone. Biomedical Materials. 6(3): 035003.
156.Wagner, R. 1978. Reclamation of Carpet Waste for Building Insulation. Conservation & Recycling. 2(2): 131-135.
157.Wake, L. 1990. Effect of Pigments in Formulating Solar Reflecting and Infrared Emitting Coatings for Military Applications. Journal of the Oil and Colour Chemists Association. 73: 78-81.
158.Wilson, P. B. 2017. Recent Advances in Avian Egg Science: A Review. Poultry science. 96(10): 3747-3754.
159.Wu, K., Ju, T., Deng, Y. and Xi, J. 2017. Mechanochemical Assisted Extraction: A Novel, Efficient, Eco-Friendly Technology. Trends in Food Science & Technology. 66: 166-175.
160.Wu, S. C., Hsu, H. C., Hsu, S. K., Chang, Y. C. and Ho, W. F. 2015. Effects of Heat Treatment on the Synthesis of Hydroxyapatite from Eggshell Powders. Ceramics International. 41(9): 10718-10724.
161.Wu, S. C., Hsu, H. C., Hsu, S. K., Chang, Y. C. and Ho, W. F. 2016. Synthesis of Hydroxyapatite from Eggshell Powders through Ball Milling and Heat Treatment. Journal of Asian Ceramic Societies. 4(1): 85-90.
162.Wu, S. C., Hsu, H. C., Wu, Y. N. and Ho, W. F. 2011. Hydroxyapatite Synthesized from Oyster Shell Powders by Ball Milling and Heat Treatment. Materials Characterization. 62(12): 1180-1187.
163.Yang, E. I., Kim, M. Y., Park, H. G. and Yi, S. T. 2010. Effect of Partial Replacement of Sand with Dry Oyster Shell on the Long-Term Performance of Concrete. Construction and Building Materials. 24(5): 758-765.
164.Yang, E. I., Yi, S. T. and Leem, Y. M. 2005. Effect of Oyster Shell Substituted for Fine Aggregate on Concrete Characteristics: Part I. Fundamental Properties. Cement and Concrete Research. 35(11): 2175-2182.
165.Yew, M., Sulong, N. R., Yew, M., Amalina, M. and Johan, M. 2013. The Formulation and Study of the Thermal Stability and Mechanical Properties of an Acrylic Coating Using Chicken Eggshell as a Novel Bio-Filler. Progress in Organic coatings. 76(11): 1549-1555.
166.Yoo, S., Hsieh, J. S., Zou, P. and Kokoszka, J. 2009. Utilization of Calcium Carbonate Particles from Eggshell Waste as Coating Pigments for Ink-Jet Printing Paper. Bioresource technology. 100(24): 6416-6421.
167.Yoon, S., Macphee, D. E. and Imbabi, M. S. 2014. Estimation of the Thermal Properties of Hardened Cement Paste on the Basis of Guarded Heat Flow Meter Measurements. Thermochimica Acta. 588: 1-10.
168.Zaid, A. A. and Ganiyat, O. 2009. Comparative Utilization of Biodegraded and Undegraded Rice Husk in Clarias Gariepinus Diet. African journal of Biotechnology. 8(7).
169.Zhang, P., Liang, J., Yin, L. and Guo, S. 2014. The Synthesis of Micro-Sized Silicon Carbide Whiskers and the Application for Heat Transfer Enhancement. Science China Technological Sciences. 57(12): 2371-2378.
170.Zhang, P., Tang, J., Tang, Q., Zhang, M., Shen, L., Tian, W. and Sun, Z. 2019. Shell Powder as a Novel Bio-Filler for Thermal Insulation Coatings. Chinese Journal of Chemical Engineering. 27(2): 452-458.

171.Zhou, J., Wang, S., Nie, F., Feng, L., Zhu, G. and Jiang, L. 2011. Elaborate Architecture of the Hierarchical Hen’s Eggshell. Nano Research. 4(2): 171-179.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top