|
[1] Ben-Dor, A., Bruhn, L., Friedman, N., Nachman, I., Schummer, M., & Yakhini, Z. (2000). Tissue classification with gene expression profiles. J. Computational Biology 7, 559-584.
[2] Boser, I. Guyon, and Vapnik, V. (1992). An training algorithm for optimal classifiers. Fifth Annual Workshop on Computational Learning Theory, Pittsburgh ACM, pp. 144-152.
[3] Cristianini, N., Campbel, C., and Shawe-Taylor, J. (1998). Dynamically adapting kernels in support vector machines. In Advances in Neural Information Processing Systems.
[4] Fujarewicz, K., Wiench, M. (2003). Selecting differentially expressed genes for colon tumor classification, Int. J. Appl. Math. Comput. Sci., Vol. 13, No. 3, 327-335.
[5] Furey, T., Cristianini, N., Duffy, N., Bednarski, D., Schummer, M., & Haussler, D. (2000). Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics, 16, 906-914.
[6] Golub, T., Slonim, D., tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J., Coller, H., Loh, M., Downing, J., Caligiuri, M., Bloom- field, C., and Lander, E. (1999). Molecular classification of cancer; class discovery and prediction by gene expression monitoring. Science 286, 531-537. The data is available on-line at http://www- genome.wi,mit.edu/MPR/data_set_ALL_AML.html.
[7] Grandvalet, Y. and Canu, S. (2002). Adaptive scaling for feature selection in SVMs. In NIPS 15.
[8] GUNN, S. R. (1998). Support Vector Machines for Classification and Regression. Technical Report, Image Speech and Intelligent Systems Research Group, University of Southampton.
[9] Guyon, I., Weston, J., Barnhill, S., and Vapnik V. (2002). Gene selection for cancer classification using support vector machines. Machine learning 46, 389-422.
[10] Khan, J., Wei, J., Ringner. M., Atonescu, C., Peterson, C. and Meltzer, P. (2001). Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nature Medicine 7, 673-679.
[11] Krishnapuram, B., Carin, L., Hartemink, A. (2004). Gene Expression Analysis: Joint Feature Selection and Classifier Design. In Kernel Methods in Computational Biology, Schölkopf, B., Tsuda, K., & Vert, J.-P., eds. MIT Press.
[12] Lee, Y., Lin, Y., and Wahba, G. (2001). Multicategory Support Vector Machines. Proceedings of the 33rd Symposium on the Interface. Also available as TR 1043, Statistics Dept., University of Wisconsin-Madison.
[13] Lee, Y., and Lee, C. (2002). Classification of multiple cancer types by multicategory support vector machines using gene expression data. TR 1051r, Statistical Dept., University of Wisconsin-Madison. To appear in Bioinformatics.
[14] Markowetz, F., Edler, L., and Vingron, M. (2003). Support Vector Machines for Protein Fold Class Prediction. Biometrical Journal 45, 3, 377-389
[15] Pavlidis, P., Weston, J., Cai, J., & Grundy, W. N. (2000). Gene functional analysis from heterogeneous data. Submitted for publication.
[16] Rakotomamonjy, A. (2003). Variable Selection Using SVM-based Criteria. Journal of Machine Learning research, 3:1357-1370.
[17] Rifkin, R. M. (2002). Everything Old Is New Again: A Fresh Look at Historical Approaches in Machine Learning. Massachusetts Institute of Technology.
[18] Vapnik, V. (1998). Statistical Learning Theory. New York, Wiley.
[19] Weston, J., Muckerjee, S., Chapelle, O., Pontil, M., Poggio, T., and Vapnik, V. (2000). Feature selection for SVMs. Advances in Neural Information Processing Systems.
[20] Zhang, X. and Wong, W. H. (2001). Recursive Sample Classification and Gene Selection based on SVM: Method and Software Description, Biostatistics Dpt. Tech Report, Harvard School of Public Health.
|