跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.208) 您好!臺灣時間:2025/10/04 00:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黎文規
研究生(外文):Le Van Qui
論文名稱:透明可撓電子元件:利用摻鋁氧化鋅與氧化鎳於白雲母之凡德瓦異質磊晶製備憶阻器與超級電容
論文名稱(外文):van der Waals Heteroepitaxial AZO/NiO on Muscovite for Transparent Flexible Electronic Devices as Memristors and Supercapacitors
指導教授:朱英豪
指導教授(外文):Chu, Ying-Hao
口試委員:朱英豪吳文偉莊振益陳宜君闕郁倫
口試委員(外文):Chu, Ying-HaoWu, Wen-WeiJuang, Jenh-YihChen, Yi-ChunChueh, Yu-Lun
口試日期:2019-07-31
學位類別:博士
校院名稱:國立交通大學
系所名稱:材料科學與工程學系所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:98
中文關鍵詞:透明可撓電子元件憶阻器超級電容AZONiO白雲母之
外文關鍵詞:Transparent and flexible electronicmemristorsupercapacitorAZONiOmuscovite
相關次數:
  • 被引用被引用:0
  • 點閱點閱:170
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
  具有光學透明性,便攜性,機械可撓性,重量輕和環保的多功能電子產品是下一代智能電子產品的重要訴求。憶阻器和超級電容器分別代表下一代器件中作為信息和能量存儲組件的重要鏈。 本論文採用脈衝雷射沉積和濺射方法在白雲母上製備了氧化鎳(NiO)和摻鋁氧化鋅(AZO)。 通過改變條件參數,異質結構的表面型態控制將適合於開發不同的應用:
我們設計了基於范德瓦爾斯異質磊晶AZO / NiO / AZO /白雲母(ANA /白雲母)的透明柔性結構,用於憶阻器應用。 (ANA /白雲母)憶阻器滿足透明軟裝置的嚴格要求,例如可見光下80%以上的光學透明度和高性能,ON / OFF電阻比> 105,穩定耐久性103次,保留時間長 105秒。此外,ANA /白雲母憶阻器可以在最低5 mm的曲率半徑下工作,在半徑為6.5 mm的曲率和高達185 oC的高溫下進行1000次循環後的機械彎曲。
通過射頻磁控濺射沉積法在白雲母上製備AZO奈米柱(NRs)和具有NiO層的AZO NRs。 AZO NRs和AZO / NiO NRs作為下一代應用的電極具有優異的性能,即在1000次彎曲循環以及壓縮、拉伸測試低至5 mm彎曲半徑的情況下,依舊保有良好的導電性,高透明度和穩定的片電阻。本對稱固態超級電容器基於這些電極,展現了良好的性能,大面積比電容為3.4 mF / cm2,循環壽命長1000次,機械性能穩定與高化學穩定性。這些結果提供了一個概念,在透明可撓元件中,替訊號和能源存儲中的未來應用開闢了新的機會。
Multifunctional electronics featuring optical transparency, portability, mechanical flexibility, light-weight and environment-friendly are of great demands for next-generation smart electronics. Memristor and supercapacitor represents the important chains in next-generation devices as the information and/or energy storage components, respectively. In this thesis, nickel oxide (NiO) and aluminum doped zinc oxide (AZO) are fabricated on muscovite via pulsed laser deposition and sputtering method. By changing the morphology of heterostructure are suitable to develop some advantage applications:
We design the transparent flexible structure based on van der Waals heteroepitaxial AZO/NiO/AZO/muscovite (ANA/muscovite) for a memristor application. The ANA/muscovite memristor satisfies all the hardest requirements of a transparent soft device such as optical transparency over 80 % in visible light and high performance with an ON/OFF resistance ratio >105, stable endurance to 103 cycles and long retention time of 105 s. In addition, the ANA/muscovite memristor can work at various bending radii down to 5 mm, a mechanical bending after 1000 cycles at a curvature with a radius of 6.5 mm and a high temperature up to 185 oC.
On the other hand, AZO nanorod (NRs) and NiO coated AZO NRs on muscovite mica are fabricated via radio frequency magnetron sputtering deposition method. AZO NRs and AZO/NiO NRs exhibit excellent properties as potential electrodes for next-generation applications as good conductivity, high transparency, stable sheet resistance under compressive and tensile strain down to 5 mm bending radius or mechanical strain after 1000 bending cycles. The obtained symmetric solid-state supercapacitor based on these electrodes display good performance with a large areal specific capacitance of 3.4 mF/cm2, long cycle life 1000 times, robust mechanical properties and high chemical stability. These results deliver a concept to open up new opportunities for future applications in transparent flexible information and energy storage.
Contents
Abstract i
Chinese Abstract iii
Acknowledgments v
Contents vi
List of Figures ix
List of Tables xiii
Chapter 1. Introduction 1
1.1 Memristors 1
1.2 Supercapacitors 2
1.2.1 Electric double-layer capacitors (EDLCs) 3
1.2.2 Pseudocapacitors 4
1.2.3 Hybrid supercapacitors 5
1.3 Literature review and research gaps 5
1.3.1 Literature review 5
1.3.2 Research Gaps 6
1.3.2.1 Transition metal oxide 7
1.3.2.2 Muscovite 10
1.4 Thesis outline 13
Chapter 2. Experimental Methods 14
2.1 Deposition techniques 14
2.1.1 Pulsed Laser Deposition (PLD) 14
2.1.2 Sputtering 16
2.2 Characterization techniques 17
2.2.1 Atomic Force Microscopy (AFM) 18
2.2.2 Scanning electron microscope (SEM) 19
2.2.3 Transmission Electron Microscopy (TEM) 20
2.2.4 X-ray diffraction (XRD) 21
2.2.5 Ultraviolet-Visible spectroscopy (UV-vis) 22
2.2.6 Sheet resistance 23
2.3 Memory characterizations 25
2.4 Electrochemical measurements 25
2.5 Machenical analysis 26
Chapter 3. van der Waals Heteroepitaxial AZO/NiO/AZO/Muscovite (ANA/muscovite) Transparent Flexible Memristor 28
3.1 Introduction 28
3.2 Characterization of the ANA/muscovite 30
3.3 Characterization of the memristor behavior 36
3.4 Mechanism of the memristor behavior 40
3.5 The memristor behavior under high-temperature environment 42
3.6 The memristor behavior under mechanical flexibility environment 47
3.7 Conclusions 51
3.8 Material and methods 52
Chapter 4. Transparent Flexible Heteroepitaxy of AZO/NiO Nanorods on Muscovite for Enhanced Energy Storage Performance 54
4.1 Introduction 54
4.2 Optimize the condition growth AZO NRs and AZO/NiO NRs on muscovite 56
4.3 Analysis of the AZO/NiO NRs heteroepitaxial structure 58
4.4 Electricity and flexibility of AZO/NiO NRs 60
4.5 Supercapacitor performance 62
4.6 Battery application 66
4.6 Conclusion 69
4.7 Experimental method 69
4.7.1 Growth electrode by sputtering 69
4.7.2 Structural and Electrical Characterizations. 70
4.7.3 Electrochemical characterization 70
Chapter 5. Summary 72
References 75
CURRICULUM VITAE 96
[1] R. Waser, R. Dittmann, C. Staikov, K. Szot, Redox-based resistive switching memories nanoionic mechanisms, prospects, and challenges, Adv. Mater. 21 (2009) 2632–2663. doi:10.1002/adma.200900375.
[2] Z. Yang, J. Zhang, M.C.W. Kintner-Meyer, X. Lu, D. Choi, J.P. Lemmon, J. Liu, Electrochemical Energy Storage for Green Grid, Chem. Rev. 111 (2011) 3577–3613. doi:10.1021/cr100290v.
[3] B. Dunn, H. Kamath, J.-M. Tarascon, Electrical Energy Storage for the Grid: A Battery of Choices System power ratings, module size, n.d. http://science.sciencemag.org/.
[4] G.L. Soloveichik, Battery Technologies for Large-Scale Stationary Energy Storage, Annu. Rev. Chem. Biomol. Eng. 2 (2011) 503–527. doi:10.1146/annurev-chembioeng-061010-114116.
[5] M. Winter, R.J. Brodd, What are batteries, fuel cells, and supercapacitors?, Chem. Rev. 104 (2004) 4245–69. http://www.ncbi.nlm.nih.gov/pubmed/15669155.
[6] J. Liu, J. Wang, C. Xu, H. Jiang, C. Li, L. Zhang, J. Lin, Z.X. Shen, Advanced Energy Storage Devices: Basic Principles, Analytical Methods, and Rational Materials Design, Adv. Sci. 5 (2018). doi:10.1002/advs.201700322.
[7] V. Augustyn, P. Simon, B. Dunn, Pseudocapacitive oxide materials for high-rate electrochemical energy storage, Energy Environ. Sci. 7 (2014) 1597–1614. doi:10.1039/c3ee44164d.
[8] P.J. Hall, M. Mirzaeian, S.I. Fletcher, F.B. Sillars, A.J.R. Rennie, G.O. Shitta-Bey, G. Wilson, A. Cruden, R. Carter, Energy storage in electrochemical capacitors: Designing functional materials to improve performance, Energy Environ. Sci. 3 (2010) 1238–1251. doi:10.1039/c0ee00004c.
[9] 12 Materials for electrochemical capacitors, (n.d.).
[10] J.G. Radich, P.J. McGinn, P. V. Kamat, Graphene-based Composites for Electrochemical Energy Storage, Interface Mag. 20 (2016) 63–66. doi:10.1149/2.f08111if.
[11] V.S. Marin Halper James C Ellenbogen, Supercapacitors: A Brief Overview MITRE MITRE MITRE MITRE, 2006. http://www.mitre.org/tech/nanotech.
[12] A. Yu, I. Roes, A. Davies, Z. Chen, Ultrathin, transparent, and flexible graphene films for supercapacitor application, Appl. Phys. Lett. 96 (2010). doi:10.1063/1.3455879.
[13] K. Gao, Z. Shao, X. Wu, X. Wang, Y. Zhang, W. Wang, F. Wang, Paper-based transparent flexible thin film supercapacitors, Nanoscale. 5 (2013) 5307–5311. doi:10.1039/c3nr00674c.
[14] T. Qiu, B. Luo, M. Giersig, E.M. Akinoglu, L. Hao, X. Wang, L. Shi, M. Jin, L. Zhi, Au@MnO 2 Core-Shell Nanomesh Electrodes for Transparent Flexible Supercapacitors , Small. (2014) n/a-n/a. doi:10.1002/smll.201401250.
[15] R. Yuksel, Z. Sarioba, A. Cirpan, P. Hiralal, H.E. Unalan, Transparent and flexible supercapacitors with single walled carbon nanotube thin film electrodes, ACS Appl. Mater. Interfaces. 6 (2014) 15434–15439. doi:10.1021/am504021u.
[16] K. Qian, R.Y. Tay, M.F. Lin, J. Chen, H. Li, J. Lin, J. Wang, G. Cai, V.C. Nguyen, E.H.T. Teo, T. Chen, P.S. Lee, Direct Observation of Indium Conductive Filaments in Transparent, Flexible, and Transferable Resistive Switching Memory, ACS Nano. 11 (2017) 1712–1718. doi:10.1021/acsnano.6b07577.
[17] S.-W. Yeom, B. You, K. Cho, H.Y. Jung, J. Park, C. Shin, B.-K. Ju, J.-W. Kim, Silver Nanowire/Colorless-Polyimide Composite Electrode: Application in Flexible and Transparent Resistive Switching Memory, Sci. Rep. 7 (2017) 3438. doi:10.1038/s41598-017-03746-1.
[18] M. Kim, K.C. Choi, Transparent and Flexible Resistive Random Access Memory Based on Al_{2}O_{3} Film With Multilayer Electrodes, IEEE Trans. Electron Devices. 64 (2017) 3508–3510.
[19] K.N. Pham, V.D. Hoang, C.V. Tran, TiO2 thin film based transparent flexible resistive switching random access memory, Adv. Nat. Sci. Nanosci. 7 (2016) 015017.
[20] J. Won Seo, J.W. Park, K.S. Lim, S.J. Kang, Y.H. Hong, J.H. Yang, L. Fang, G.Y. Sung, H.K. Kim, Transparent flexible resistive random access memory fabricated at room temperature, Appl. Phys. Lett. 95 (2009) 1–4. doi:10.1063/1.3242381.
[21] H. Lee, S. Hong, J. Lee, Y.D. Suh, J. Kwon, H. Moon, H. Kim, J. Yeo, S.H. Ko, Highly Stretchable and Transparent Supercapacitor by Ag-Au Core-Shell Nanowire Network with High Electrochemical Stability, ACS Appl. Mater. Interfaces. 8 (2016) 15449–15458. doi:10.1021/acsami.6b04364.
[22] T. Chen, Y. Xue, A.K. Roy, L. Dai, Transparent and stretchable high-performance supercapacitors based on wrinkled graphene electrodes, ACS Nano. 8 (2014) 1039–1046. doi:10.1021/nn405939w.
[23] H.Y. Jung, M.B. Karimi, M.G. Hahm, P.M. Ajayan, Y.J. Jung, Transparent, flexible supercapacitors from nano-engineered carbon films, Sci. Rep. 2 (2012). doi:10.1038/srep00773.
[24] K. Jo, S. Lee, S.M. Kim, J. Bin In, S.M. Lee, J.H. Kim, H.J. Lee, K.S. Kim, Stacked bilayer graphene and redox-active interlayer for transparent and flexible high-performance supercapacitors, Chem. Mater. 27 (2015) 3621–3627. doi:10.1021/cm504801r.
[25] L. Peng, Y. Feng, P. Lv, D. Lei, Y. Shen, Y. Li, W. Feng, Transparent, conductive, and flexible multiwalled carbon nanotube/graphene hybrid electrodes with two three-dimensional microstructures, J. Phys. Chem. C. 116 (2012) 4970–4978. doi:10.1021/jp209180j.
[26] X.Y. Liu, Y.Q. Gao, G.W. Yang, A flexible, transparent and super-long-life supercapacitor based on ultrafine Co 3 O 4 nanocrystal electrodes, Nanoscale. 8 (2016) 4227–4235. doi:10.1039/c5nr09145d.
[27] Ü. Özgür, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Doǧan, V. Avrutin, S.J. Cho, H. Morko̧, A comprehensive review of ZnO materials and devices, J. Appl. Phys. 98 (2005) 1–103. doi:10.1063/1.1992666.
[28] S. Kishwar, M.H. Asif, O. Nur, M. Willander, P.O. Larsson, Intracellular ZnO Nanorods Conjugated with Protoporphyrin for Local Mediated Photochemistry and Efficient Treatment of Single Cancer Cell, Nanoscale Res. Lett. 5 (2010) 1669–1674. doi:10.1007/s11671-010-9693-z.
[29] A.B. Djuriić, A.M.C. Ng, X.Y. Chen, ZnO nanostructures for optoelectronics: Material properties and device applications, Prog. Quantum Electron. 34 (2010) 191–259. doi:10.1016/j.pquantelec.2010.04.001.
[30] R. Saniz, Y. Xu, M. Matsubara, M.N. Amini, H. Dixit, D. Lamoen, B. Partoens, A simplified approach to the band gap correction of defect formation energies: Al, Ga, and In-doped ZnO, J. Phys. Chem. Solids. 74 (2013) 45–50. doi:10.1016/j.jpcs.2012.07.017.
[31] J.A. Sans, J.F. Sánchez-Royo, A. Segura, G. Tobias, E. Canadell, Chemical effects on the optical band-gap of heavily doped ZnO: MIII (M=Al,Ga,In): An investigation by means of photoelectron spectroscopy, optical measurements under pressure, and band structure calculations, Phys. Rev. B - Condens. Matter Mater. Phys. 79 (2009). doi:10.1103/PhysRevB.79.195105.
[32] Y. Liu, Y. Li, H. Zeng, ZnO-Based Transparent Conductive Thin Films: Doping, Performance, and Processing, J. Nanomater. 2013 (2013) 1–9. doi:10.1155/2013/196521.
[33] S. Ke, J. Xie, C. Chen, P. Lin, X. Zeng, L. Shu, L. Fei, Y. Wang, M. Ye, D. Wang, Van der Waals epitaxy of Al-doped ZnO film on mica as a flexible transparent heater with ultrafast thermal response, Appl. Phys. Lett. 112 (2018). doi:10.1063/1.5010358.
[34] Y. Bitla, C. Chen, H.C. Lee, T.H. Do, C.H. Ma, L. Van Qui, C.W. Huang, W.W. Wu, L. Chang, P.W. Chiu, Y.H. Chu, Oxide Heteroepitaxy for Flexible Optoelectronics, ACS Appl. Mater. Interfaces. 8 (2016) 32401–32407. doi:10.1021/acsami.6b10631.
[35] H. Sato, T. Minami, QL-AnNZLYW5, 236 (1993) 27–31. doi:10.1016/0040-6090(93)90636-4.
[36] M.D. Irwin, D.B. Buchholz, A.W. Hains, R.P.H. Chang, T.J. Marks, p-Type semiconducting nickel oxide as an efficiency-enhancing anode interfacial layer in polymer bulk-heterojunction solar cells, 105 (2008) 2783–2787. doi:10.1073/pnas.0711990105.
[37] J.L. Mcnatt, I ~, (1969) 915–918.
[38] N.N. Khoi, Growth and Structure of Nickel Oxide on Nickel Crystal Faces, J. Electrochem. Soc. 122 (2006) 1495. doi:10.1149/1.2134052.
[39] Y. Bitla, Y.H. Chu, MICAtronics: A new platform for flexible X-tronics, FlatChem. 3 (2017) 26–42. doi:10.1016/j.flatc.2017.06.003.
[40] L. Pauling, the Structure of the Chlorites, Proc. Natl. Acad. Sci. 16 (2006) 578–582. doi:10.1073/pnas.16.9.578.
[41] P. Column, General, P h y s i c a l , and, CXXVIII (1925).
[42] Y. He, H. Dong, Q. Meng, L. Jiang, W. Shao, L. He, W. Hu, Mica, a potential two-dimensional-crystal gate insulator for organic field-effect transistors, Adv. Mater. 23 (2011) 5502–5507. doi:10.1002/adma.201103592.
[43] A. Castellanos-Gomez, M. Poot, A. Amor-Amorós, G.A. Steele, H.S.J. van der Zant, N. Agraït, G. Rubio-Bollinger, Mechanical properties of freely suspended atomically thin dielectric layers of mica, Nano Res. 5 (2012) 550–557. doi:10.1007/s12274-012-0240-3.
[44] S.G. Barlow, D.A.C. Manning, Influence of time and temperature on reactions and transformations of muscovite mica, Br. Ceram. Trans. 98 (1999) 122–126. doi:10.1179/096797899680327.
[45] A.M. Hussain, M.M. Hussain, CMOS-Technology-Enabled Flexible and Stretchable Electronics for Internet of Everything Applications, Adv. Mater. 28 (2016) 4219–4249. doi:10.1002/adma.201504236.
[46] L. Nyholm, G. Nyström, A. Mihranyan, M. Strømme, Toward flexible polymer and paper-based energy storage devices, Adv. Mater. 23 (2011) 3751–3769. doi:10.1002/adma.201004134.
[47] D. Tobjörk, R. Österbacka, Paper electronics, Adv. Mater. 23 (2011) 1935–1961. doi:10.1002/adma.201004692.
[48] W. Zeng, L. Shu, Q. Li, S. Chen, F. Wang, X.M. Tao, Fiber-based wearable electronics: A review of materials, fabrication, devices, and applications, Adv. Mater. 26 (2014) 5310–5336. doi:10.1002/adma.201400633.
[49] L. Hu, Y. Cui, Energy and environmental nanotechnology in conductive paper and textiles, Energy Environ. Sci. 5 (2012) 6423–6435. doi:10.1039/c2ee02414d.
[50] Y.-L. Huang, H.-J. Liu, C.-H. Ma, P. Yu, Y.-H. Chu, J.-C. Yang, Pulsed laser deposition of complex oxide heteroepitaxy, Chinese J. Phys. 60 (2019) 481–501. doi:10.1016/j.cjph.2019.05.030.
[51] F. Shi, Introductory chapter basic theory of Magnetron sputtering, 2016. doi:http://dx.doi.org/10.5772/57353.
[52] S.R. Forrest, The path to ubiquitous and low-cost organic electronic appliances on plastic, Nature. 428 (2004) 911–918. doi:10.1038/nature02498.
[53] M.T. Ghoneim, M.M. Hussain, M. Jacob, Review on Physically Flexible Nonvolatile Memory for Internet of Everything Electronics, Electronics. 4 (2015) 424–479. doi:10.3390/electronics4030424.
[54] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, H. Hosono, Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors., Nature. 432 (2004) 488–492. doi:10.1038/nature03090.
[55] G. Eda, G. Fanchini, M. Chhowalla, Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material, Nat. Nanotechnol. 3 (2008) 270–274. doi:10.1038/nnano.2008.83.
[56] T. Georgiou, R. Jalil, B.D. Belle, L. Britnell, R. V Gorbachev, S. V Morozov, Y.-J. Kim, A. Gholinia, S.J. Haigh, O. Makarovsky, L. Eaves, L.A. Ponomarenko, A.K. Geim, K.S. Novoselov, A. Mishchenko, Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics, Nat. Nanotechnol. 8 (2012) 100–103. doi:10.1038/nnano.2012.224.
[57] S. Ju, A. Facchetti, Y. Xuan, J. Liu, F. Ishikawa, P. Ye, C. Zhou, T.J. Marks, D.B. Janes, Fabrication of fully transparent nanowire transistors for transparent and flexible electronics, Nat. Nanotechnol. 2 (2007) 378–384. doi:10.1038/nnano.2007.151.
[58] H. Zhu, L. Hu, J. Cumings, J. Huang, Y. Chen, Highly Transparent and Flexible Nanopaper Transistor., ACS Nano. (2013) 2106–2113. doi:10.1021/nn304407r.
[59] Z.Q. Zheng, J.D. Yao, G.W. Yang, Growth of centimeter-scale high-quality In2Se3 films for transparent, flexible and high performance photodetectors, J. Mater. Chem. C. 4 (2016) 8094–8103. doi:10.1039/C6TC02296K.
[60] Z. Zheng, L. Gan, H. Li, Y. Ma, Y. Bando, D. Golberg, T. Zhai, A fully transparent and flexible ultraviolet-visible photodetector based on controlled electrospun ZnO-CdO heterojunction nanofiber arrays, Adv. Funct. Mater. 25 (2015) 5885–5894. doi:10.1002/adfm.201502499.
[61] L. Zhou, H.-Y. Xiang, S. Shen, Y.-Q. Li, J.-D. Chen, H.-J. Xie, I.A. Goldthorpe, L.-S. Chen, S.-T. Lee, J.-X. Tang, High-Performance Flexible Organic Light-Emitting Diodes Using Embedded Silver Network Transparent Electrodes, ACS Nano. 8 (2014) 12796–12805. doi:10.1021/nn506034g.
[62] N. Guan, X. Dai, A. Messanvi, H. Zhang, J. Yan, E. Gautier, C. Bougerol, F.H. Julien, C. Durand, J. Eymery, M. Tchernycheva, Flexible White Light Emitting Diodes Based on Nitride Nanowires and Nanophosphors, ACS Photonics. 3 (2016) 597–603. doi:10.1021/acsphotonics.5b00696.
[63] D. Zhang, K. Ryu, X. Liu, E. Polikarpov, J. Ly, M.E. Tompson, C. Zhou, Transparent, conductive, and flexible carbon nanotube films and their application in organic light-emitting diodes, Nano Lett. 6 (2006) 1880–1886. http://pubs.acs.org/doi/abs/10.1021/nl0608543.
[64] Q. Wang, M. Jian, C. Wang, Y. Zhang, Carbonized Silk Nanofiber Membrane for Transparent and Sensitive Electronic Skin, Adv. Funct. Mater. 27 (2017) 1–9. doi:10.1002/adfm.201605657.
[65] M.S. Sarwar, Y. Dobashi, C. Preston, J.K.M. Wyss, S. Mirabbasi, J.D.W. Madden, Bend, stretch, and touch: Locating a finger on an actively deformed transparent sensor array, Sci. Adv. 3 (2017) e1602200. doi:10.1126/sciadv.1602200.
[66] M. Segev-bar, H. Haick, Flexible Sensors Based on Nanoparticles, ACS Nano. 7 (2013) 8366–8378.
[67] B.N. Chandrashekar, B. Deng, A.S. Smitha, Y. Chen, C. Tan, H. Zhang, H. Peng, Z. Liu, Roll-to-Roll Green Transfer of CVD Graphene onto Plastic for a Transparent and Flexible Triboelectric Nanogenerator, Adv. Mater. 27 (2015) 5210–5216. doi:10.1002/adma.201502560.
[68] J. Wang, Z. Wen, Y. Zi, P. Zhou, J. Lin, H. Guo, Y. Xu, Z.L. Wang, All-Plastic-Materials Based Self-Charging Power System Composed of Triboelectric Nanogenerators and Supercapacitors, Adv. Funct. Mater. 26 (2016) 1070–1076. doi:10.1002/adfm.201504675.
[69] K.L. Kim, W. Lee, S.K. Hwang, S.H. Joo, S.M. Cho, G. Song, S.H. Cho, B. Jeong, I. Hwang, J.H. Ahn, Y.J. Yu, T.J. Shin, S.K. Kwak, S.J. Kang, C. Park, Epitaxial Growth of Thin Ferroelectric Polymer Films on Graphene Layer for Fully Transparent and Flexible Nonvolatile Memory, Nano Lett. 16 (2016) 334–340. doi:10.1021/acs.nanolett.5b03882.
[70] D.B. Strukov, G.S. Snider, D.R. Stewart, R.S. Williams, The missing memristor found, Nature. 453 (2008) 80–83. doi:10.1038/nature06932.
[71] L. Chua, Resistance switching memories are memristors, Appl. Phys. A Mater. Sci. Process. 102 (2011) 765–783. doi:10.1007/s00339-011-6264-9.
[72] Y. Yang, W. Lu, Nanoscale resistive switching devices: mechanisms and modeling, Nanoscale. 5 (2013) 10076. doi:10.1039/c3nr03472k.
[73] J.J. Yang, D.B. Strukov, D.R. Stewart, Memristive devices for computing., Nat. Nanotechnol. 8 (2013) 13–24. doi:10.1038/nnano.2012.240.
[74] Z. Wang, S. Joshi, S.E. Savel’ev, H. Jiang, R. Midya, P. Lin, M. Hu, N. Ge, J.P. Strachan, Z. Li, Q. Wu, M. Barnell, G.-L. Li, H.L. Xin, R.S. Williams, Q. Xia, J.J. Yang, Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing, Nat. Mater. 16 (2016) 101–108. doi:10.1038/nmat4756.
[75] H.-S.P. Wong, S. Salahuddin, Memory leads the way to better computing, Nat. Nanotechnol. 10 (2015) 191–194. doi:10.1038/nnano.2015.29.
[76] M.K. Hota, M.N. Hedhili, N. Wehbe, M.A. McLachlan, H.N. Alshareef, Multistate Resistive Switching Memory for Synaptic Memory Applications, Adv. Mater. Interfaces. 3 (2016). doi:10.1002/admi.201600192.
[77] Y.-H. Chu, Van der Waals oxide heteroepitaxy, Npj Quantum Mater. 2 (2017) 67. doi:10.1038/s41535-017-0069-9.
[78] Y. Bitla, Y.H. Chu, MICAtronics: A new platform for flexible X-tronics, FlatChem. 3 (2017) 26–42. doi:10.1016/j.flatc.2017.06.003.
[79] J.Y. Son, Y.H. Shin, Direct observation of conducting filaments on resistive switching of NiO thin films, Appl. Phys. Lett. 92 (2008) 2006–2009. doi:10.1063/1.2931087.
[80] J.G. Park, W.S. Nam, S.H. Seo, Y.G. Kim, Y.H. Oh, G.S. Lee, U.G. Paik, Multilevel nonvolatile small-molecule memory cell embedded with Ni nanocrystals surrounded by a NiO tunneling barrier, Nano Lett. 9 (2009) 1713–1719. doi:10.1021/nl900429h.
[81] K.M. Kim, S.J. Song, G.H. Kim, J.Y. Seok, M.H. Lee, J.H. Yoon, J. Park, C.S. Hwang, Collective motion of conducting filaments in Pt/n-type TiO2/p-type NiO/Pt stacked resistance switching memory, Adv. Funct. Mater. 21 (2011) 1587–1592. doi:10.1002/adfm.201002282.
[82] B.K. You, W.I. Park, J.M. Kim, K. Il Park, H.K. Seo, J.Y. Lee, Y.S. Jung, K.J. Lee, Reliable control of filament formation in resistive memories by self-assembled nanoinsulators derived from a block copolymer, ACS Nano. 8 (2014) 9492–9502. doi:10.1021/nn503713f.
[83] A. Liu, H. Zhu, Z. Guo, Y. Meng, G. Liu, E. Fortunato, R. Martins, F. Shan, Solution Combustion Synthesis: Low-Temperature Processing for p-Type Cu:NiO Thin Films for Transparent Electronics, Adv. Mater. (2017). doi:10.1002/adma.201701599.
[84] M.Q. Guo, Y.C. Chen, C.Y. Lin, Y.F. Chang, B. Fowler, Q.Q. Li, J. Lee, Y.G. Zhao, Unidirectional threshold resistive switching in Au/NiO/Nb:SrTiO3 devices Unidirectional threshold resistive switching in Au/NiO/Nb:SrTiO3 devices, Appl. Phys. Lett. 110 (2017) 233504. doi:10.1063/1.4985070.
[85] Z. Sun, Y. Zhao, M. He, L. Gu, C. Ma, K. Jin, D. Zhao, N. Luo, Q. Zhang, N. Wang, W. Duan, C. Nan, Deterministic Role of Concentration Surplus of Cation Vacancy over Anion Vacancy in Bipolar Memristive NiO, ACS Appl. Mater. Interfaces. 8 (2016) 11583–11591. doi:10.1021/acsami.6b01400.
[86] Y. Bitla, C. Chen, H.C. Lee, T.H. Do, C.H. Ma, L. Van Qui, C.W. Huang, W.W. Wu, L. Chang, P.W. Chiu, Y.H. Chu, Oxide Heteroepitaxy for Flexible Optoelectronics, ACS Appl. Mater. Interfaces. 8 (2016) 32401–32407. doi:10.1021/acsami.6b10631.
[87] C. Li, J. Lin, H. Liu, M. Chu, H. Chen, C. Ma, C. Tsai, H. Huang, H. Lin, H. Liu, Van der Waal Epitaxy of Flexible and Transparent VO2 Film on Muscovite, Chem. Mater. 28 (2016) 3914–3919. doi:10.1021/acs.chemmater.6b01180.
[88] C.H. Ma, J.C. Lin, H.J. Liu, T.H. Do, Y.M. Zhu, T.D. Ha, Q. Zhan, J.Y. Juang, Q. He, E. Arenholz, P.W. Chiu, Y.H. Chu, Van der Waals epitaxy of functional MoO2 film on mica for flexible electronics, Appl. Phys. Lett. 108 (2016) 0–5. doi:10.1063/1.4954172.
[89] T. Amrillah, Y. Bitla, K. Shin, T. Yang, Y.H. Hsieh, Y.Y. Chiou, H.J. Liu, T.H. Do, D. Su, Y.C. Chen, S.U. Jen, L.Q. Chen, K.H. Kim, J.Y. Juang, Y.H. Chu, Flexible Multiferroic Bulk Heterojunction with Giant Magnetoelectric Coupling via van der Waals Epitaxy, ACS Nano. 11 (2017) 6122–6130. doi:10.1021/acsnano.7b02102.
[90] J. Jiang, Y. Bitla, C.W. Huang, T.H. Do, H.J. Liu, Y.H. Hsieh, C.H. Ma, C.Y. Jang, Y.H. Lai, P.W. Chiu, W.W. Wu, Y.C. Chen, Y.C. Zhou, Y.H. Chu, Flexible ferroelectric element based on van der Waals heteroepitaxy, Sci. Adv. 3 (2017) e1700121. doi:10.1126/sciadv.1700121.
[91] K. Qian, R.Y. Tay, M.F. Lin, J. Chen, H. Li, J. Lin, J. Wang, G. Cai, V.C. Nguyen, E.H.T. Teo, T. Chen, P.S. Lee, Direct Observation of Indium Conductive Filaments in Transparent, Flexible, and Transferable Resistive Switching Memory, ACS Nano. 11 (2017) 1712–1718. doi:10.1021/acsnano.6b07577.
[92] S.W. Yeom, B. You, K. Cho, H.Y. Jung, J. Park, C. Shin, B.K. Ju, J.W. Kim, Silver nanowire/colorless-polyimide composite electrode: Application in flexible and transparent resistive switching memory, Sci. Rep. 7 (2017). doi:10.1038/s41598-017-03746-1.
[93] M. Kim, K.C. Choi, Transparent and Flexible Resistive Random Access Memory Based on Al2O3 Film with Multilayer Electrodes, IEEE Trans. Electron Devices. 64 (2017) 3508–3510. doi:10.1109/TED.2017.2716831.
[94] J. Won Seo, J.W. Park, K.S. Lim, S.J. Kang, Y.H. Hong, J.H. Yang, L. Fang, G.Y. Sung, H.K. Kim, Transparent flexible resistive random access memory fabricated at room temperature, Appl. Phys. Lett. 95 (2009). doi:10.1063/1.3242381.
[95] K.N. Pham, V.D. Hoang, C.V. Tran, B.T. Phan, TiO2 thin film based transparent flexible resistive switching random access memory, Adv. Nat. Sci. Nanosci. Nanotechnol. 7 (2016). doi:10.1088/2043-6262/7/1/015017.
[96] S. Kim, J.H. Son, S.H. Lee, B.K. You, K.-I. Park, H.K. Lee, M. Byun, K.J. Lee, Flexible Electronics: Flexible Crossbar-Structured Resistive Memory Arrays on Plastic Substrates via Inorganic-Based Laser Lift-Off (Adv. Mater. 44/2014), Adv. Mater. 26 (2014) 7418–7418. doi:10.1002/adma.201470300.
[97] J.Y. Son, Y.H. Shin, H. Kim, H.M. Jang, NiO resistive random access memory nanocapacitor array on graphene, ACS Nano. 4 (2010) 2655–2658. doi:10.1021/nn100234x.
[98] Z. Sun, L. Wei, C. Feng, P. Miao, M. Guo, H. Yang, J. Li, Y. Zhao, Built-In-Homojunction-Dominated Intrinsically Rectifying-Resistive Switching in NiO Nanodots for Selection-Device-Free Memory Application, Adv. Electron. Mater. 3 (2017). doi:10.1002/aelm.201600361.
[99] S. Chu, A. Majumdar, Opportunities and challenges for a sustainable energy future, Nature. 488 (2012) 294–303. doi:10.1038/nature11475.
[100] N.L. Panwar, S.C. Kaushik, S. Kothari, Role of renewable energy sources in environmental protection: A review, Renew. Sustain. Energy Rev. 15 (2011) 1513–1524. doi:10.1016/j.rser.2010.11.037.
[101] M. Höök, X. Tang, Depletion of fossil fuels and anthropogenic climate change-A review, Energy Policy. 52 (2013) 797–809. doi:10.1016/j.enpol.2012.10.046.
[102] D. Bruce, K. Haresh, T. Jean-Marie, Electrical Energy Storage for the Grid: A Battery of Choices, Science (80-. ). 334 (2011) 928–935.
[103] M.M. Thackeray, C. Wolverton, E.D. Isaacs, Electrical energy storage for transportation - Approaching the limits of, and going beyond, lithium-ion batteries, Energy Environ. Sci. 5 (2012) 7854–7863. doi:10.1039/c2ee21892e.
[104] D. Larcher, J.M. Tarascon, Towards greener and more sustainable batteries for electrical energy storage, Nat. Chem. 7 (2015) 19–29. doi:10.1038/nchem.2085.
[105] M. Winter, R.J. Brodd, What Are Batteries, Fuel Cells, and Supercapacitors?, Chem. Rev. 104 (2004) 4245–4270. doi:10.1021/cr020730k.
[106] C. Xu, C. Li, H. Jiang, J. Liu, J. Lin, J. Wang, L. Zhang, Z.X. Shen, Advanced Energy Storage Devices: Basic Principles, Analytical Methods, and Rational Materials Design, Adv. Sci. 5 (2017) 1700322. doi:10.1002/advs.201700322.
[107] A.S. Arico, P. Bruce, B. Scrosati, J.-M. Tarascon, W. Van Schalkwijk, Nanostructured materials for advanced energy conversion and storage devices, Nat. Mater. 4 (2005) 366–377. doi:10.1016/S0025-6196(12)62414-8.
[108] P. Simon, Y. Gogotsi, Materials for electrochemical capacitors, Nat. Mater. 7 (2008) 845–854.
[109] C. Liu, F. Li, M. Lai-Peng, H.M. Cheng, Advanced materials for energy storage, Adv. Mater. 22 (2010) 28–62. doi:10.1002/adma.200903328.
[110] G. Wang, L. Zhang, J. Zhang, A review of electrode materials for electrochemical supercapacitors, Chem. Soc. Rev. 41 (2012) 797–828. doi:10.1007/s11431-015-5931-z.
[111] J. Zhang, C. Zhong, Y. Deng, W. Hu, J. Qiao, L. Zhang, A review of electrolyte materials and compositions for electrochemical supercapacitors, Chem. Soc. Rev. 44 (2015) 7484–7539. doi:10.1039/c5cs00303b.
[112] A. Vlad, N. Singh, C. Galande, P.M. Ajayan, Design Considerations for Unconventional Electrochemical Energy Storage Architectures, Adv. Energy Mater. 5 (2015) 1402115. doi:10.1002/aenm.201402115.
[113] F. Wang, X. Wu, X. Yuan, Z. Liu, Y. Zhang, L. Fu, Y. Zhu, Q. Zhou, Y. Wu, W. Huang, Latest advances in supercapacitors: From new electrode materials to novel device designs, Chem. Soc. Rev. 46 (2017) 6816–6854. doi:10.1039/c7cs00205j.
[114] A.K. Sundramoorthy, Y.C. Wang, S. Gunasekaran, Low-temperature solution process for preparing flexible transparent carbon nanotube film for use in flexible supercapacitors, Nano Res. 8 (2015) 3430–3445. doi:10.1007/s12274-015-0880-1.
[115] H.Y. Jung, M.B. Karimi, M.G. Hahm, P.M. Ajayan, Y.J. Jung, Transparent, flexible supercapacitors from nano-engineered carbon films, Sci. Rep. 2 (2012) 1–5. doi:10.1038/srep00773.
[116] S. Chun, W. Son, G. Lee, S.H. Kim, J.W. Park, S.J. Kim, C. Pang, C. Choi, Single-Layer Graphene-Based Transparent and Flexible Multifunctional Electronics for Self-Charging Power and Touch-Sensing Systems, ACS Appl. Mater. Interfaces. 11 (2019) 9301–9308. doi:10.1021/acsami.8b20143.
[117] S. Kiruthika, C. Sow, G.U. Kulkarni, Transparent and Flexible Supercapacitors with Networked Electrodes, Small. 13 (2017) 1701906. doi:10.1002/smll.201701906.
[118] P. Kanninen, N.D. Luong, L.H. Sinh, I. V. Anoshkin, A. Tsapenko, J. Seppälä, A.G. Nasibulin, T. Kallio, Transparent and flexible high-performance supercapacitors based on single-walled carbon nanotube films, Nanotechnology. 27 (2016) 235403. doi:10.1088/0957-4484/27/23/235403.
[119] Y.H. Liu, J.L. Xu, S. Shen, X.L. Cai, L. Sen Chen, S.D. Wang, High-performance, ultra-flexible and transparent embedded metallic mesh electrodes by selective electrodeposition for all-solid-state supercapacitor applications, J. Mater. Chem. A. 5 (2017) 9032–9041. doi:10.1039/c7ta01947e.
[120] F. Zhang, W. Li, Z. Xu, M. Ye, W. Guo, H. Xu, X. Liu, Transparent conducting oxide- and Pt-free flexible photo-rechargeable electric energy storage systems, RSC Adv. 7 (2017) 52988–52994. doi:10.1039/c7ra11246g.
[121] Y.H. Liu, J.L. Xu, X. Gao, Y.L. Sun, J.J. Lv, S. Shen, L. Sen Chen, S.D. Wang, Freestanding transparent metallic network based ultrathin, foldable and designable supercapacitors, Energy Environ. Sci. 10 (2017) 2534–2543. doi:10.1039/c7ee02390a.
[122] X.Y. Liu, Y.Q. Gao, G.W. Yang, A flexible, transparent and super-long-life supercapacitor based on ultrafine Co3O4 nanocrystal electrodes, Nanoscale. 8 (2016) 4227–4235. doi:10.1039/c5nr09145d.
[123] J. Liu, J. Wang, C. Xu, H. Jiang, C. Li, L. Zhang, J. Lin, Z.X. Shen, Advanced Energy Storage Devices: Basic Principles, Analytical Methods, and Rational Materials Design, Adv. Sci. 5 (2018) 1700322. doi:10.1002/advs.201700322.
[124] A. Yu, I. Roes, A. Davies, Z. Chen, Ultrathin, transparent, and flexible graphene films for supercapacitor application, Appl. Phys. Lett. 96 (2010) 253105. doi:10.1063/1.3455879.
[125] Q. Xue, J. Sun, Y. Huang, M. Zhu, Z. Pei, H. Li, Y. Wang, N. Li, H. Zhang, C. Zhi, Recent Progress on Flexible and Wearable Supercapacitors, Small. 13 (2017) 1701827. doi:10.1002/smll.201701827.
[126] Y. Yang, S. Jeong, L. Hu, H. Wu, S.W. Lee, Y. Cui, Transparent lithium-ion batteries, Proc. Natl. Acad. Sci. 108 (2011) 13013–13018. doi:10.1073/pnas.1102873108.
[127] X. Huang, H. Zhang, N. Li, Symmetric transparent and flexible supercapacitor based on bio-inspired graphene-wrapped Fe2O3 nanowire networks, Nanotechnology. 28 (2017) 075402. doi:10.1088/1361-6528/aa542a.
[128] K. Lee, H. Lee, Y. Shin, Y. Yoon, D. Kim, H. Lee, Highly transparent and flexible supercapacitors using graphene-graphene quantum dots chelate, Nano Energy. 26 (2016) 746–754. doi:10.1016/j.nanoen.2016.06.030.
[129] F. Chen, P. Wan, H. Xu, X. Sun, Flexible Transparent Supercapacitors Based on Hierarchical Nanocomposite Films, ACS Appl. Mater. Interfaces. 9 (2017) 17865–17871. doi:10.1021/acsami.7b02460.
[130] R.T. Ginting, M.M. Ovhal, J.W. Kang, A novel design of hybrid transparent electrodes for high performance and ultra-flexible bifunctional electrochromic-supercapacitors, Nano Energy. 53 (2018) 650–657. doi:10.1016/j.nanoen.2018.09.016.
[131] J. Li, Q. Jiang, N. Yuan, J. Tang, A Review on Flexible and Transparent Energy Storage System, Materials (Basel). 11 (2018) 2280. doi:10.3390/ma11112280.
[132] Y. Gao, Y.S. Zhou, W. Xiong, L.J. Jiang, M. Mahjouri-Samani, P. Thirugnanam, X. Huang, M.M. Wang, L. Jiang, Y.F. Lu, Transparent, flexible, and solid-state supercapacitors based on graphene electrodes, APL Mater. 1 (2013) 012101. doi:10.1063/1.4808242.
[133] B.Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, H. Yan, One-Dimensional Nanostructures : Synthesis, Characterization, and Applications, Adv. Mater. 15 (2003) 353–389.
[134] Q. Zhang, E. Uchaker, S.L. Candelaria, G. Cao, Nanomaterials for energy conversion and storage, Chem. Soc. Rev. 42 (2013) 3127–3171. doi:10.1039/c3cs00009e.
[135] L. Mai, X. Tian, X. Xu, L. Chang, L. Xu, Nanowire Electrodes for Electrochemical Energy Storage Devices, Chem. Rev. 114 (2014) 11828–11862. doi:10.1021/cr500177a.
[136] Z. Qi, S. Huang, A. Younis, D. Chu, S. Li, Nanostructured Metal Oxides-Based Electrode in Supercapacitor Applications, B. Supercapacitor Des. Appl. chapter 4 (2016) 67–88.
[137] K. Yu, X. Pan, G. Zhang, X. Liao, X. Zhou, M. Yan, L. Xu, L. Mai, Nanowires in Energy Storage Devices: Structures, Synthesis, and Applications, Adv. Energy Mater. 8 (2018) 1802369. doi:10.1002/aenm.201802369.
[138] S.K. Sami, S. Siddiqui, S. Shrivastava, N.E. Lee, C.H. Chung, The Pine-Needle-Inspired Structure of Zinc Oxide Nanorods Grown on Electrospun Nanofibers for High-Performance Flexible Supercapacitors, Small. 13 (2017) 1702142. doi:10.1002/smll.201702142.
[139] H. Zeng, Y. Cao, S. Xie, J. Yang, Z. Tang, X. Wang, L. Sun, Synthesis, optical and electrochemical properties of ZnO nanowires/graphene oxide heterostructures, Nanoscale Res. Lett. 8 (2013) 133. doi:10.1186/1556-276x-8-133.
[140] C.F. Klingshirn, ZnO: Material, physics and applications, ChemPhysChem. 8 (2007) 782–803. doi:10.1002/cphc.200700002.
[141] J. Kegel, I.M. Povey, M.E. Pemble, Zinc oxide for solar water splitting: A brief review of the material’s challenges and associated opportunities, Nano Energy. 54 (2018) 409–428. doi:10.1016/j.nanoen.2018.10.043.
[142] A.B. Djurišić, X. Chen, Y.H. Leung, A. Man Ching Ng, ZnO nanostructures: Growth, properties and applications, J. Phys. Condenced Matter. 16 (2004) R829–R858. doi:10.1039/c2jm15548f.
[143] V. Lionel, Growth of Arrayed Nanorods and Nanowires of ZnO from Aqueous Solutions, Adv. Mater. 15 (2003) 464–466. doi:10.1002/adma.200390108.
[144] J.A. Sans, J.F. Sánchez-Royo, A. Segura, G. Tobias, E. Canadell, Chemical effects on the optical band-gap of heavily doped ZnO: MIII (M=Al,Ga,In): An investigation by means of photoelectron spectroscopy, optical measurements under pressure, and band structure calculations, Phys. Rev. B. 79 (2009) 195105. doi:10.1103/PhysRevB.79.195105.
[145] D. Lin, H. Wu, W. Pan, Photoswitches and memories assembled by electrospinning aluminum-doped zinc oxide single nanowires, Adv. Mater. 19 (2007) 3968–3972. doi:10.1002/adma.200602802.
[146] J.T. Chen, J. Wang, R.F. Zhuo, D. Yan, J.J. Feng, F. Zhang, P.X. Yan, The effect of Al doping on the morphology and optical property of ZnO nanostructures prepared by hydrothermal process, Appl. Surf. Sci. 255 (2009) 3959–3964. doi:10.1016/j.apsusc.2008.10.086.
[147] K. Ellmer, Past achievements and future challenges in the development of optically transparent electrodes, Nat. Photonics. 6 (2012) 809–817. doi:10.1038/nphoton.2012.282.
[148] R. Chen, P. Zhu, L. Deng, T. Zhao, R. Sun, C. Wong, Effect of aluminum doping on the growth and optical and electrical properties of ZnO nanorods, Chempluschem. 79 (2014) 743–750. doi:10.1002/cplu.201300398.
[149] G. Hu, M. Zhang, L. Wu, Z. Peng, K. Du, Y. Cao, High-Conductive AZO Nanoparticles Decorated Ni-Rich Cathode Material with Enhanced Electrochemical Performance, ACS Appl. Mater. Interfaces. 8 (2016) 33546–33552. doi:10.1021/acsami.6b08093.
[150] G. Teucher, T. Van Gestel, M. Krott, H.G. Gehrke, R.A. Eichel, S. Uhlenbruck, Processing of Al-doped ZnO protective thin films on aluminum current collectors for lithium ion batteries, Thin Solid Films. 619 (2016) 302–307. doi:10.1016/j.tsf.2016.10.047.
[151] G. Zhang, S. Hou, H. Zhang, W. Zeng, F. Yan, C.C. Li, H. Duan, High-performance and ultra-stable lithium-ion batteries based on MOF-derived ZnO@ZnO quantum dots/C core-shell nanorod arrays on a carbon cloth anode, Adv. Mater. 27 (2015) 2400–2405. doi:10.1002/adma.201405222.
[152] N.K. Sidhu, A.C. Rastogi, Vertically aligned ZnO nanorod core-polypyrrole conducting polymer sheath and nanotube arrays for electrochemical supercapacitor energy storage, Nanoscale Res. Lett. 9 (2014) 1–16. doi:10.1186/1556-276X-9-453.
[153] M. Ahmad, S. Yingying, A. Nisar, H. Sun, W. Shen, M. Wei, J. Zhu, Synthesis of hierarchical flower-like ZnO nanostructures and their functionalization by Au nanoparticles for improved photocatalytic and high performance Li-ion battery anodes, J. Mater. Chem. 21 (2011) 7723–7729. doi:10.1039/c1jm10720h.
[154] Z.L. Wang, R. Guo, L.X. Ding, Y.X. Tong, G.R. Li, Controllable template-assisted electrodeposition of single-and multi-walled nanotube arrays for electrochemical energy storage, Sci. Rep. 3 (2013) 1–8. doi:10.1038/srep01204.
[155] X. Xia, J. Tu, Y. Zhang, X. Wang, C. Gu, X.B. Zhao, H.J. Fan, High-quality metal oxide core/shell nanowire arrays on conductive substrates for electrochemical energy storage, ACS Nano. 6 (2012) 5531–5538. doi:10.1021/nn301454q.
[156] H. Li, J. Wang, Y. Zhao, T. Tan, Synthesis of the ZnO@ZnS Nanorod for Lithium-Ion Batteries, Energies. 11 (2018) 2117. doi:10.3390/en11082117.
[157] S. Yang, Y. Li, T. Xu, Y. Li, H. Fu, K. Cheng, K. Ye, L. Yang, D. Cao, G. Wang, FeOOH electrodeposited on Ag decorated ZnO nanorods for electrochemical energy storage, RSC Adv. 6 (2016) 39166–39171. doi:10.1039/c6ra01250g.
[158] Y.B. He, G.R. Li, Z.L. Wang, C.Y. Su, Y.X. Tong, Single-crystal ZnO nanorod/amorphous and nanoporous metal oxide shell composites: Controllable electrochemical synthesis and enhanced supercapacitor performances, Energy Environ. Sci. 4 (2011) 1288–1292. doi:10.1039/c0ee00669f.
[159] Y. Zhang, Y. Wu, H. Ding, Y. Yan, Z. Zhou, Y. Ding, N. Liu, Sealing ZnO nanorods for deeply rechargeable high-energy aqueous battery anodes, Nano Energy. 53 (2018) 666–674. doi:10.1016/j.nanoen.2018.09.021.
[160] Z.L. Wang, Nanostructures of zinc oxide, Mater. Today. 7 (2004) 26–33. doi:10.1504/ijnt.2009.022917.
[161] Z.R. Tian, J.A. Voigt, J. Liu, B. Mckenzie, M.J. Mcdermott, M.A. Rodriguez, H. Konishi, H. Xu, Complex and oriented ZnO nanostructures, Nat. Mater. 2 (2003) 821–826. doi:10.1038/nmat1014.
[162] Z.L. Wang, Ten years’ venturing in ZnO nanostructures: From discovery to scientific understanding and to technology applications, Chinese Sci. Bull. 54 (2009) 4021–4034. doi:10.1007/s11434-009-0456-0.
[163] G.-C. Yi, C. Wang, W. Il Park, ZnO nanorods: synthesis, characterization and applications, Semicond. Sci. Technol. 20 (2005) S22–S34. doi:10.1016/j.ccr.2005.01.030.
[164] Q. Li, V. Kumar, Y. Li, H. Zhang, T.J. Marks, R.P.H. Chang, Fabrication of ZnO nanorods and nanotubes in aqueous solutions, Chem. Mater. 17 (2005) 1001–1006. doi:10.1021/cm048144q.
[165] B. Weintraub, Z. Zhou, Y. Li, Y. Deng, Solution synthesis of one-dimensional ZnO nanomaterials and their applications, Nanoscale. 2 (2010) 1573–1587. doi:10.1039/c0nr00047g.
[166] A. Yildiz, H. Cansizoglu, T. Karabacak, Electrical transport in AZO nanorods, Appl. Surf. Sci. 352 (2015) 2–4. doi:10.1016/j.apsusc.2015.02.067.
[167] O. Access, Aluminum- and Iron-Doped Zinc Oxide Nanorod Arrays for Humidity Sensor Applications, We Are IntechOpen, World’s Lead. Publ. Open Access Books. chapter 9 (2018) 168–184.
[168] A.B. Rosli, M.M. Marbie, S.H. Herman, M.H. Ani, Gold-Catalyzed Growth of Aluminium-Doped Zinc Oxide Nanorods by Sputtering Method, J. Nanomater. (2014) 1–7. doi:10.1155/2014/672047.
[169] Y.F. Xu, H.S. Rao, X.D. Wang, H.Y. Chen, D. Bin Kuang, C.Y. Su, In situ formation of zinc ferrite modified Al-doped ZnO nanowire arrays for solar water splitting, J. Mater. Chem. A. 4 (2016) 5124–5129. doi:10.1039/c5ta10563c.
[170] Y.H. Chu, Van der Waals oxide heteroepitaxy, Npj Quantum Mater. 2 (2017) 1–5. doi:10.1038/s41535-017-0069-9.
[171] P.C. Wu, Y.H. Chu, Development of oxide heteroepitaxy for soft technology, J. Mater. Chem. C. 6 (2018) 6102–6117. doi:10.1039/c8tc00959g.
[172] B. Yu, L. Hou, S. Wang, H. Huang, Environment-Dependent Adhesion Energy of Mica Nanolayers Determined by a Nanomanipulation-Based Bridging Method, Adv. Mater. Interfaces. 6 (2018) 1801552. doi:10.1002/admi.201801552.
[173] Y. Bitla, C. Chen, H.C. Lee, T.H. Do, C.H. Ma, L. Van Qui, C.W. Huang, W.W. Wu, L. Chang, P.W. Chiu, Y.H. Chu, Oxide Heteroepitaxy for Flexible Optoelectronics, ACS Appl. Mater. Interfaces. 8 (2016) 32401–32407. doi:10.1021/acsami.6b10631.
[174] V.-Q. Le, T.-H. Do, J.R.D. Retamal, P.-W. Shao, Y.-H. Lai, W.-W. Wu, J.-H. He, Y.-L. Chueh, Y.-H. Chu, Van der Waals heteroepitaxial AZO/NiO/AZO/muscovite (ANA/muscovite) transparent flexible memristor, Nano Energy. 56 (2019) 322–329. doi:10.1016/j.nanoen.2018.10.042.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top