跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.23) 您好!臺灣時間:2025/10/26 02:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:毛栩毅
研究生(外文):MAO, HSU-I
論文名稱:聚對苯二甲酸丁二酯/聚四甲基醚二醇共聚之熱塑性聚醚酯彈性體非等溫結晶動力學研究及結晶觀察
論文名稱(外文):Non-isothermal crystallization kinetics and crystal observation of Polybutylene terephthalate/Polytetramethylene Ether Glycol copolymerized thermoplastic polyester elastomer
指導教授:芮祥鵬芮祥鵬引用關係
指導教授(外文):RWEI, SYANG-PENG
口試委員:程耀毅李曉燕芮祥鵬
口試委員(外文):CHENG, YAO-ILI, HSIAO-YENRWEI, SYANG-PENG
口試日期:2019-07-20
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:分子科學與工程系有機高分子碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:61
中文關鍵詞:熱塑性聚醚酯彈性體聚對苯二甲酸丁二酯聚四甲基醚二醇非等溫結晶動力學
外文關鍵詞:Thermoplastic Polyester ElastomerPolybutylene terephthalatePolytetramethylene Ether GlycolNon-isothermal crystallization kinetics
相關次數:
  • 被引用被引用:0
  • 點閱點閱:656
  • 評分評分:
  • 下載下載:95
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用各種儀器分析及鑑定本實驗室合成之一系列以聚對苯二甲酸丁二酯(PBT)/聚四甲基醚二醇(PTMEG)共聚之聚酯熱塑性彈性體的性質及結晶行為。第一部分為成分及性質鑑定,首先利用FTIR及NMR光譜,先確認了其PBT及PTMEG共聚結果,從NMR光譜之對應特徵峰面積,計算各料中PTMEG實際比例。使用DMA測試Tg點時,發現隨著PTMEG含量的增加,Tg點有明顯的下降,DSC測試Tm點時也呈現同樣的趨勢,說明隨著軟鏈PTMEG含量的增加,整體分子鏈的柔軟性得到提升而反應在Tm及Tg上。但在TGA測試Td點(5%)時,純PBT及其他共聚物間無明顯差異,說明起始裂解步驟是由硬鏈段PBT主導。第二部分為非等溫結晶動力學,利用DSC以2、5、10、20 °C/min之條件進行升降溫,觀察其結晶曲線,發現在同一降溫條件下,當PTMEG所含比例增高,結晶峰的溫度區間降低,再使用Avrami及Mo模型對其分析比較,並以Kissinger方程式計算結晶活化能。第三部分為以偏光顯微鏡配合可控溫之加熱台,使各料進行等溫結晶並觀察其行為及結晶速率變化。在結晶速率上,和DSC非等溫結晶結果相似,在同一溫度條件下,隨著PTMEG含量的增加,結晶成長速率降低。結晶的形態,隨著PTMEG含量的增加,其負光性球晶顏色分野的情況越為明顯,說明軟鏈段增加了分子鏈的柔性,堆疊更為規整。而在同一種材料,隨著結晶溫度的增加,分子鏈動能增強不易規整堆疊,分野則變得不明顯,且結晶的形狀也越偏離球型。
This study used various instruments to analyze and identify the properties and crystallization behavior of a series of Polybutylene terephthalate/Polytetramethylene Ether Glycol thermoplastic Polyester Elastomer (TPEE) synthesized in this laboratory. The first part is the identification of components and properties. Firstly, the results of PBT and PTMEG copolymerization were confirmed by FTIR and NMR spectroscopy. The actual peak ratio of PTMEG in each material was calculated from the corresponding characteristic peak area of NMR spectrum. When the Tg point was tested by DMA, it was found that the Tg point decreased significantly with the increase of PTMEG content. The same trend appeared when the Tm test by DSC. Indicating that the softness of the whole molecular chain was obtained with the increase of the soft chain PTMEG content And the Tm and Tg decrease. However, there was no significant difference between pure PBT and other copolymers at the Td test (5%) by TGA, indicating that the initial cracking step was dominated by the hard segment PBT. The second part is non-isothermal crystallization kinetics. The temperature is raised and lowered by DSC at 2, 5, 10, 20 °C/min. The crystallization curve is observed. It is found that under the same cooling condition, when the proportion of PTMEG increases, the temperature range of the crystallization peak was lowered. And then analyzed and compared using the Avrami and Mo models, and the crystallization activation energy was calculated by the Kissinger equation. The third part is a temperature-controlled hot plate with a polarizing microscope to make the materials isothermally crystallize and observe the behavior and crystallization rate changes. Similar to the DSC non-isothermal crystallization, at the same temperature, the crystal growth rate decreases as the PTMEG content increases. The crystal morphology, with the increase of PTMEG content, the more obvious the color of negative spherulite field. Indicating that the soft segment increases the flexibility of the molecular chain, and the stack is more regular. In the same material, as the crystallization temperature increases, the molecular chain kinetic energy is enhanced and it is difficult to form a stack, the color different becomes inconspicuous, and the shape of the crystal deviates from the spherical shape.
摘要 i
ABSTRACT iii
致謝 v
目錄 vi
表目錄 viii
圖目錄 ix
第一章 緒論 1
1.1前言 1
1.2研究動機 2
第二章文獻回顧 3
2.1熱塑性彈性體 3
2.2聚醚酯彈性體 5
2.3聚對苯二甲酸丁二酯 7
2.4聚四甲基醚二醇 8
2.5結晶概論 9
第三章 實驗 12
3.1實驗樣品 12
3.1.1樣品名稱 12
3.1.2樣品結構式 12
3.2實驗儀器 13
3.2.1核磁共振儀 (Nuclear Magnetic Resonance Spectroscopy, NMR) 13
3.2.2紅外線光譜儀 (Fourier Transformation Infrared Spectroscopy, FTIR) 14
3.2.3動態機械熱分析儀(Dynamic Mechanical Analysis, DMA) 14
3.2.4微差掃描熱卡計(Differential Scanning Calorimeter, DSC) 15
3.2.5熱重分析儀(Thermal gravimetric Analyzer, TGA) 16
3.2.6廣角X光繞射分析儀 (Wide-Angle X-ray Diffraction, WAXD) 17
3.2.7偏光顯微鏡 (Polarized Optical Microscope, POM)(1) 18
3.2.8毛細管黏度計 (Capillary viscometer) 19
3.3實驗方法 21
3.3.1傅立葉紅外線光譜分析(FTIR) 21
3.3.2核磁共振光譜分析(NMR) 21
3.3.3廣角X光繞射(WAXD) 21
3.3.4特性黏度(毛細管黏度計) 21
3.3.5熱穩定性質(TGA) 21
3.3.6玻璃轉移溫度(DMA) 22
3.3.7結晶動力學分析(DSC) 22
3.3.8結晶觀察(POM) 25
第四章 結果與討論 26
4.1 FTIR(官能基分析) 26
4.2 NMR 1H 比例分析 26
4.3 WAXD 30
4.4 玻璃轉移溫度(Tg) 分析 31
4.5 熔融溫度(Tm)量測 34
4.6 熱裂解溫度(Td)量測 36
4.7 特性黏度(IV)量測 37
4.8 非等溫結晶動力學 37
4.9 非等溫Avrami分析 46
4.10 Mo Model分析 50
4.11非等溫結晶活化能分析 53
4.12等溫結晶之結晶型態 54
4.13等溫結晶成長速率 56
第五章 結論 58
參考文獻 60

1.ZHU Ailan, Li Hongyuan, WU Liming, Thermoplastic Polyester Elastomer, China Elastomerics, 2005, 15(1), 70
2.LUO Daoyou, Zhu Xiaochu, JING Su, YANG Song, QIAN Zhiguo, XU Xinmin, Research, Development and Applications of High Performance Thermoplastic Polyester Elastomers, New Chemical Materials, 2007, 35(3), 1
3.SONG Zifeng, WANG Xiaoli, CHEN Liran, HOU Xin, YAO Kangde, Studies on Synthesis and Characterization of Elastic Aliphatic Polyester, Polymer Bulletin, 2005, 5, 128
4.Adams, R. K.; Hoeschele, G. K.; Witsiepe, W. K. Thermoplastic Elastomers, 2nd ed.; Holden, G., Legge, N. R., Quirk, R., Schroeder, H. E., Eds.; Hanser Publishers: Munich, 1996; p 191
5.R. J. Cella, Morphology of Segmented Polyester Thermoplastic Elastomers, Journal of Polymer Science: Part C,1973, 42(2), 727
6.R. W. Seymour, J. R. Overton, L. S. Corley, Morphological Characterization of Polyester- based, Elastoplastics, Macromolecules, 1975, 8 (3), 331
7.ZHANG Yong, YE Ling, FENG Zengguo, ZHANG Aiying, TIAN Xiaojuan, XU Ruixing, Characterization and Chain Structure of PEG/PBT Copolymer with the Constant Mass Ratio of Soft to Hard Segment, Chemical Journal of Chinese Universities, 2002, 23(10), 1982
8.M. LI. Maspoch, O. O. Santana, J. Grando, D. Ferrer, A. B. Martiez, The essential work of fracture of a thermoplastic elastomer, Polymer Bulletin, 1997, 39, 249
9.L. J. Moo, C. B. Ho, M. J. Sin, L. E. Seok, Determination of the tear properties of thermoplastic polyester elastomers (TPEEs) using essential work of fracture (EWF) test method, Polymer Testing, 2009, 28, 855
10.Dorel Feldman J. POLYM. SCI. PART C: POLYM. LETT. VOL. 26 (1988)
11.”Elastomer Materials Plastic & Thermoplastic”. Copyrights ○C2003 Minnesota Rubber and QMR Plastics. All rights reserved.
12.W. Gabrielse, M. Soliman, K. Dijkstra, Microstructure and Phase Behavior of Block Copoly(ether ester) Thermoplastic Elastomers, Macromolecules, 34(6), 1685(2001)
13.SalmanAmin and MuhammadAmin. Rev.Adv.Matee.Sci.29(2001)15-30
14.WU Meiyan, SHI Manli, CHENG Youqing, CHEN Chuanfu, YU Shenhai, The Study on Poly(tetramethylene terephthatte)-Poly(tetramethylene ether)multi- block Copolymer, Polymer Communications, 1980, 2, 77
15.CHEN Chuanfu, WANG Yueding, CHEN Youqing, WU Meiyan, The Structure Characterization on Poly(ethylene terephthalate) Poly (tetramethylene ether)multiblock Copolymer, Polymer Communications, 1983, 6, 410
16.Supaphol, P.; Dangseeyun, N.; Srimoaon, P.; Nithitanakul, M. Nonisothermal Melt-Crystallization Kinetics for Three Linear Aromatic Polyesters. Thermochimica Acta 2003, 406 (1–2)
17.Szymczyk, A.; Nastalczyk, J.; Sablong, R. J.; Roslaniec, Z. The Influence of Soft Segment Length on Structure and Properties of Poly(Trimethylene Terephthalate)-Block-Poly(Tetramethylene Oxide) Segmented Random Copolymers. Polym. Adv. Technol. 2011, 22 (1), 72–83.
18.Avrami, M. Kinetics of phase change. II transformation-time relation for random distribution of nuclei. J. Chem. Phys. 1939, 8, 212-224
19.Avrami, M. Granulation, phase change and microstructure. J. Chem. Phys. 1941, 9, 177-184
20.Liu, T. X; Mo, Z. S.; Wang, S. G.; Zhang, H. F. Nonisothermal melt and cold crystallization kinetics of poly(aryl ether ether ketone ketone). Polym. Eng. Sci. 1997, 37, 568-575.
21.Ozawa, T. Kinetics of non-isothermal crystallization. Polymer 1971, 37, 568-575
22.5.Kissinger, H.E. Reaction kinetics in differential thermal analysis. Anal. Chem. 1957, 29, 1702-1706
23.Nesse, W. D. Introduction to optical mineralogy. Oxford University Press, New York 1991, 456
24.Frensdorff, H.K., Block-Frequency Distribution of Copolymers. Macromolecules, 4(4): p. 369.1971
25.YAO Chenguang, YANG Guisheng, Crystallization, and morphology of poly(trimethylene terephthalate)/poly(ethylene oxide tere- phthalate) segmented block copolymers, Polymer, 51, 1521(2010)
26.Zhang, J.; Liu, F.; Wang, J.; Na, H.; Zhu, J. Synthesis of Poly(Butylene Terephthalate)-Poly(Tetramethylene Glycol) Copolymers Using Terephthalic Acid as Starting Material: A Comparation between Two Synthetic Strategies. Chin J Polym Sci 2015, 33 (9), 1283–1293.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top