|
1.H. Choi, S. Seo, J. H. Lee, S. H. Hong, J. Song, S. Kim, S. Y. Yim, K. Lee, S. J. Park and S. Lee, Solution-processed ZnO/SnO2 bilayer ultraviolet phototransistor with high responsivity and fast photoresponse, J. Mater. Chem. C 6, 6014-6022 (2018). 2.H. Hosono, Ionic amorphous oxide semiconductors: Material design, carrier transport, and device application, J. Non-Cryst. Solids 352, 851-858 (2006). 3.D. Kuzum, S. M. Yu and H. S. P. Wong, Synaptic electronics: materials, devices and applications, Nanotechnology 24, 22 (2013). 4.S. Agatonovic-Kustrin and R. Beresford, Basic concepts of artificial neural network (ANN) modeling and its application in pharmaceutical research, J. Pharm. Biomed. Anal. 22, 717-727 (2000). 5.D. P. Kumar, T. Amgoth and C. S. R. Annavarapu, Machine learning algorithms for wireless sensor networks: A survey, Inf. Fusion 49, 1-25 (2019). 6.R. K. Mehra, H. Duan, S. J. Luo and F. H. Ma, Laminar burning velocity of hydrogen and carbon-monoxide enriched natural gas (HyCONG): An experimental and artificial neural network study, Fuel 246, 476-490 (2019). 7.S. E. Ahn, I. Song, S. Jeon, Y. W. Jeon, Y. Kim, C. Kim, B. Ryu, J. H. Lee, A. Nathan, S. Lee, G. T. Kim and U. I. Chung, Metal Oxide Thin Film Phototransistor for Remote Touch Interactive Displays, Adv. Mater. 24, 2631-2636 (2012). 8.A. Janotti and C. G. Van de Walle, LDA+ U and hybrid functional calculations for defects in ZnO, SnO2, and TiO2, Phys. Status Solidi B-Basic Solid State Phys. 248, 799-804 (2011). 9.A. Janotti and C. G. Van de Walle, Oxygen vacancies in ZnO, Appl. Phys. Lett. 87, 3 (2005). 10.A. Janotti and C. G. Van de Walle, Native point defects in ZnO, Phys. Rev. B 76, 22 (2007). 11.I. Tanaka, F. Oba, K. Tatsumi, M. Kunisu, M. Nakano and H. Adachi, Theoretical formation energy of oxygen-vacancies in oxides, Mater. Trans. 43, 1426-1429 (2002). 12.D. A. Neamen, Semiconductor Physics And Devices. (McGraw-Hill:New York, 2011). 13.K. Sakaguchi, K. Shimkawa and Y. Hatanaka, Transport and recombination of photo‐carriers under potential fluctuation in TiOx films prepared by rf magnetron sputtering method, Phys. Status Solidi C 8, 2796-2799 (2011). 14.L. J. A. Koster, V. D. Mihailetchi and P. W. M. Blom, Bimolecular recombination in polymer/fullerene bulk heterojunction solar cells, Appl. Phys. Lett. 88, 3 (2006). 15.C. Groves and N. C. Greenham, Bimolecular recombination in polymer electronic devices, Phys. Rev. B 78, 8 (2008). 16.M. Lee, M. Kim, J. W. Jo, S. K. Park and Y. H. Kim, Suppression of persistent photo-conductance in solution-processed amorphous oxide thin-film transistors, Appl. Phys. Lett. 112, 5 (2018). 17.K. Ghaffarzadeh, A. Nathan, J. Robertson, S. Kim, S. Jeon, C. Kim, U. I. Chung and J. H. Lee, Persistent photoconductivity in Hf-In-Zn-O thin film transistors, Appl. Phys. Lett. 97, 3 (2010). 18.Z. G. Yin, X. W. Zhang, Z. Fu, X. L. Yang, J. L. Wu, G. S. Wu, L. Gong and P. K. Chu, Persistent photoconductivity in ZnO nanostructures induced by surface oxygen vacancy, Phys. Status Solidi-Rapid Res. Lett. 6, 117-119 (2012). 19.M. Dusza, F. Granek and W. Strek, Illumination intensity dependent photoresponse of ultra-thin ZnO/graphene/ZnO heterostructure, Opt. Mater. 74, 176-182 (2017). 20.E. Di Gennaro, U. Coscia, G. Ambrosone, A. Khare, F. M. Granozio and U. S. Di Uccio, Photoresponse dynamics in amorphous-LaAlO 3/SrTiO 3 interfaces, Sci Rep 5, 6 (2015). 21.S. L. Dai, X. H. Wu, D. P. Liu, Y. L. Chu, K. Wang, B. Yang and J. Huang, Light-Stimulated Synaptic Devices Utilizing Interfacial Effect of Organic Field-Effect Transistors, Acs Applied Materials & Interfaces 10, 21472-21480 (2018). 22.Q. T. Wu, J. W. Wang, J. C. Cao, C. Y. Lu, G. H. Yang, X. W. Shi, X. C. Chuai, Y. X. Gong, Y. Su, Y. Zhao, N. D. Lu, D. Geng, H. Wang, L. Li and M. Liu, Photoelectric Plasticity in Oxide Thin Film Transistors with Tunable Synaptic Functions, Adv. Electron. Mater. 4, 8 (2018). 23.M. Lee, W. Lee, S. Choi, J. W. Jo, J. Kim, S. K. Park and Y. H. Kim, Brain-Inspired Photonic Neuromorphic Devices using Photodynamic Amorphous Oxide Semiconductors and their Persistent Photoconductivity, Adv. Mater. 29, 8 (2017). 24.S. Gao, G. Liu, H. L. Yang, C. Hu, Q. L. Chen, G. D. Gong, W. H. Xue, X. H. Yi, J. Shang and R. W. Li, An Oxide Schottky Junction Artificial Optoelectronic Synapse, ACS Nano 13, 2634-2642 (2019). 25.M. G. Yun, Y. K. Kim, C. H. Ahn, S. W. Cho, W. J. Kang, H. K. Cho and Y. H. Kim, Low voltage-driven oxide phototransistors with fast recovery, high signal-to-noise ratio, and high responsivity fabricated via a simple defect-generating process, Sci Rep 6, 9 (2016). 26.S. Jeon, S. E. Ahn, I. Song, C. J. Kim, U. I. Chung, E. Lee, I. Yoo, A. Nathan, S. Lee, J. Robertson and K. Kim, Gated three-terminal device architecture to eliminate persistent photoconductivity in oxide semiconductor photosensor arrays, Nat. Mater. 11, 301-305 (2012). 27.J. Choi, J. Park, K. H. Lim, N. K. Cho, J. Lee, S. Jeon and Y. S. Kim, Photosensitivity of InZnO thin-film transistors using a solution process, Appl. Phys. Lett. 109, 5 (2016). 28.S. Lim, M. Kwak and H. Hwang, Improved Synaptic Behavior of CBRAM Using Internal voltage Divider for Neuromorphic Systems, IEEE Trans. Electron Devices 65, 3976-3981 (2018). 29.J. X. Wang, Y. Chen, L. A. Kong, Y. Fu, Y. L. Gao and J. Sun, Deep-ultraviolet-triggered neuromorphic functions in In-Zn-O phototransistors, Appl. Phys. Lett. 113, 5 (2018). 30.W. J. Cheng, R. R. Liang, H. Tian, C. C. Sun, C. S. Jiang, X. W. Wang, J. Wang, T. L. Ren and J. Xu, Proton Conductor Gated Synaptic Transistor Based on Transparent IGZO for Realizing Electrical and UV Light Stimulus, IEEE J. Electron Devices Soc. 7, 38-45 (2019). 31.H. K. Li, T. P. Chen, P. Liu, S. G. Hu, Y. Liu, Q. Zhang and P. S. Lee, A light-stimulated synaptic transistor with synaptic plasticity and memory functions based on InGaZnOx-Al2O3 thin film structure, J. Appl. Phys. 119, 5 (2016).
|