跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.35) 您好!臺灣時間:2025/12/18 02:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳政言
研究生(外文):Cheng-Yen Chen
論文名稱:以FPGA為基礎之強健性放射狀基底函數網路控制線型感應馬達驅動系統
論文名稱(外文):FPGA-Based Robust RBFN Control for Linear Induction Motor Drive
指導教授:林法正林法正引用關係
指導教授(外文):Faa-Jeng Lin
學位類別:碩士
校院名稱:國立東華大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:121
中文關鍵詞:適應性步階迴歸控制放射狀基底函數網路間接磁場導向控制FPGA線型感應馬達
外文關鍵詞:Adaptive Backstepping ControlRBFNIndirect Field-Oriented ControlLinear Induction MotorFPGA
相關次數:
  • 被引用被引用:4
  • 點閱點閱:393
  • 評分評分:
  • 下載下載:79
  • 收藏至我的研究室書目清單書目收藏:0
本論文之主旨為發展以FPGA(Field Programmable Gate Array)為基礎之強健性放射狀基底函數網路控制線型感應馬達驅動系統。本文亦使用結合步階迴歸控制與放射狀基底函數網路之適應性步階迴歸控制器,以克服馬達運動控制中所出現包含摩擦力之不確定項。首先推導出間接磁場導向線型感應馬達的動態模型,並利用FPGA發展模組、D/A轉換器、三角波比較電流控制之驅動電路以及IGBT功率模組,完成以FPGA控制之線型感應馬達驅動系統,再設計強健性放射狀基底函數網路控制器。然而在實際應用上,總集不確定項之值是很難事先得知的,因此提出結合步階迴歸控制與放射狀基底函數網路來估測總集不確定項之適應性步階迴歸控制器,以使馬達達到良好的追隨響應與強健性。最後由模擬與實作結果驗證之。
The purpose of the thesis is to develop a field programmable gate array (FPGA)-based robust radial basis function network (RBFN) control for linear induction motor drive. An adaptive backstepping control system with RBFN observer is also adopted to confront the uncertainties including the friction force in this thesis. First, the dynamic model of an indirect field-oriented LIM drive is derived. Next, an FPGA-based LIM drive system, which consists of FPGA development board, D/A converters, a ramp comparison current-controlled PWM, and IGBT inverter, is implemented. Then, a robust RBFN controller is designed. However, the lumped uncertainty is difficult to obtain in advance in practical applications. Therefore, an adaptive backstepping control system with RBFN observer is derived to adapt the value of the lumped uncertainty in real time, and it is designed to make the LIM drive possessing the advantages of good transient control performance and robustness. Finally, the effectiveness can be verified using the simulated and the experimental results.
中文摘要 I
英文摘要 II
目錄 III
圖目錄 VI
表目錄 XI
第一章 緒論 1
1.1 研究動機與目的 1
1.2 文獻整理 4
1.3 論文大綱 7
第二章 線型感應馬達與其驅動系統電路 9
2.1 簡介 9
2.2 線型感應馬達結構介紹 9
2.3 線型感應馬達之驅動系統 11
2.3.1 電流感測電路 11
2.3.2 三角波比較電流控制電路 13
2.3.3 IGBT互鎖與觸發電路 16
2.3.4 IGBT模組 19
2.3.5 過電流保護電路 20
2.3.6 完整驅動控制電路圖 22
2.4 馬達編碼器介面電路 22
2.5 D/A介面電路 22
2.6 線型感應馬達控制與驅動系統之實體圖 26
第三章 以FPGA為基礎之線型感應馬達控制晶片 29
3.1 簡介 29
3.2 FPGA內部結構 31
3.2.1 Configurable Logic Block 34
3.2.2 Block SelectRAM 35
3.2.3 Multiplier 36
3.2.4 Digital Clock Management 37
3.2.5 Routing Resource 38
3.3 線型感應馬達間接磁場導向控制 38
3.4 FPGA控制晶片其設計架構 44
3.4.1 位置與速度編碼器 45
3.4.2 命令產生器 47
3.4.3 間接磁場導向控制模組 47
3.4.4 資料與D/A控制器 50
3.4.5 控制器模組 54
3.5 數值系統 55
第四章 以FPGA設計強健性放射狀基底函數網路控制器 56
4.1 簡介 56
4.2 強健性放射狀基底函數網路控制法則 56
4.3 強健性放射狀基底函數網路控制器之實現 64
4.4 模擬結果 72
4.4 實測結果 77
第五章 以FPGA設計放射狀基底函數之適應性步階迴歸控制器 87
5.1 簡介 87
5.2 放射狀基底函數之適應性步階迴歸控制法則 87
5.3 放射狀基底函數之適應性步階迴歸控制器之實現 95
5.4 模擬結果 102
5.5 實測結果 108
第六章 結論與未來的研究方向 114
參考文獻 116
作者簡歷 121
[1]S. A. Nasar and I. Boldea, Linear Electric Motors: Theory, Design, and Practical Applications. New Jersey: Prentice-Hall, 1987.
[2]I. Boldea and S. A. Nasar, Linear Electric Actuators and Generators. London, U. K.: Cambridge University Press, 1997.
[3]G. W. Mclean, “Review of recent progress in linear motor,” IEE Proc.-Electric Power Applications, vol. 135, no. 6, pp. 380-416, Nov. 1988.
[4]E. R. Laithwaite, “Adapting a linear induction motor for the acceleration of large masses to high velocities,” IEE Proc.-Electric Power Applications, vol. 142, no. 4, pp. 262-268, July 1995.
[5]I. Takahashi and Y. Ide, “Decoupling control of thrust and attractive force of a LIM using a space vector control inverter,” IEEE Trans. Industry Applications, vol. 29, no. 1, pp. 161-167, Oct. 1993.
[6]Z. Zhang, T. R. Eastham, and G. E. Dawson, “Peak thrust operation of linear induction machines from parameter identification,” in Proc. IEEE Industry Applications Conf., pp. 375-379, Oct. 1995.
[7]G. Bucci, S. Meo, A. Ometto, and M. Scarano, “The control of LIM by a generalization of standard vector techniques,” in Proc. IEEE Industry Applications Conf., pp. 623-626, Sept. 1994.
[8]G. H. Abdou and S. A. Sherif, “Theoretical and experimental design of LIM in automated manufacturing systems,” IEEE Trans. Industry Applications, vol. 27, no. 2, pp. 286-293, Mar./Apr. 1991.
[9]S. Sankaranarayanan and F. Khorrami, “Adaptive variable structure control and applications to friction compensation,” in Proc. IEEE Decision and Control Conf., pp. 4159-4164, Dec. 1997.
[10]A. P. Maulana, H. Ohmori, and A. Sano, “Friction compensation strategy via smooth adaptive dynamic surface control,” in Proc. IEEE Control Applications Conf., pp. 1090-1095, 1999.
[11]B. Friedland and Y. J. Park, “On adaptive friction compensation,” IEEE Trans. Automatic Control, vol. 37, no. 10, pp. 1609-1612, Oct. 1992.
[12]J. S. R. Jang, C. T. Sun, and E. Mizutani, Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence. New Jersey: Prentice-Hall, Upper Saddle River, 1997.
[13]J. S. R. Jang and C. T. Sun, “Functional equivalence between radial basis function networks and fuzzy inference systems,” IEEE Trans. Neural Networks, vol. 4, no. 1, pp. 156-159, Jan. 1993.
[14]S. Seshagiri and H. K. Khail, “Output feedback control of nonlinear systems using RBF neural networks,” IEEE Trans. Neural Networks, vol. 11, no. 1, pp. 69-79, Jan. 2000.
[15]M. J. Lee and Y. K. Choi, “An adaptive neurocontroller using RBFN for robot manipulators,” IEEE Trans. Industrial Electronics, vol. 51, no. 3, pp. 711-717, June 2004.
[16]D. G. Taylor, “Nonlinear control of electric machines: An overview,” IEEE Control System Magazine, vol. 14, no. 6, pp. 41-51, Dec. 1994.
[17]M. Krstic, I. Kanellakopoulos, and P. V. Kokotovic, Nonlinear and Adaptive Control Design. New York: John Wiley & Sons, 1995.
[18]H. J. Shieh and K. K. Shyu, “Nonlinear sliding-mode torque control with adaptive backstepping approach for induction motor drive,” IEEE Trans. Industrial Electronics, vol. 46, no. 2, pp. 380-389, Apr. 1999.
[19]Y. Tan, J. Chang, and H. Tan, “Adaptive backstepping control and friction compensation for AC servo with inertia and load uncertainties,” IEEE Trans. Industrial Electronics, vol. 50, no. 5, pp. 944-952, Oct. 2003.
[20]F. J. Lin and C. C. Lee, “Adaptive backstepping control for linear induction motor drive to track periodic references,” IEE Proc.-Electric Power Applications, vol. 147, no. 6, pp. 449-458, Nov. 2000.
[21]F. J. Lin, P. H. Shen, and S. P. Hsu, “Adaptive backstepping sliding mode control for linear induction motor drive,” IEE Proc.-Electric Power Applications, vol. 149, no. 3, pp. 184-194, May 2002.
[22]D. Kim, “An implementation of fuzzy logic controller on the reconfigurable FPGA system,” IEEE Trans. Industrial Electronics, vol. 47, no. 3, pp. 703-715, June 2000.
[23]R. R. Ramos, D. Biel, E. Fossas, and F. Guinjoan, “A fixed-frequency quasi-sliding control algorithm: application to power inverters design by means of FPGA implementation,” IEEE Trans. Power Electronic, vol. 18, no. 1, pp. 344-355, Jan. 2003.
[24]C. F. Juang, and J. S. Chen, “Water bath temperature control by a recurrent fuzzy controller and its FPGA implementation,” IEEE Trans. Industrial Electronics, vol. 53, no. 3, pp. 941-949, June 2006.
[25]T. S. Li, S. J. Chang, and Y. X. Chen, “Implementation of human-like driving skills by autonomous fuzzy behavior control on an FPGA-based car-like mobile robot,” IEEE Trans. Industrial Electronics, vol. 50, no. 5, pp. 867-880, Oct. 2003.
[26]F. J. Lin, D. H. Wang, and P. K. Huang, “FPGA-based fuzzy sliding-mode control for a linear induction motor drive,” IEE Proc.-Electric Power Applications, vol. 152, no. 5, pp. 1137-1148, Sept. 2005.
[27]D. Zhang, H. Li, and E. G. Collins, “Digital anti-windup PI controllers for variable-speed motor drives using FPGA and stochastic theory,” IEEE Trans. Power Electronic, vol. 21, no. 5, pp. 1496-1501, Sept. 2006.
[28]H. Li, D. Zhang, and S.Y. Foo, “A stochastic digital implementation of a neural network controller for small wind turbine systems,” IEEE Trans. Power Electronic, vol. 21, no. 5, pp. 1502-1507, Sept. 2006.
[29]K. Skahill, VHDL for Programmable Logic. California: Addison-Wesley, 1996.
[30]H. C. Roth, Digital Systems Design Using VHDL. Boston: PWS, 1998.
[31]張智凱,以FPGA為基礎之適應性步階迴歸控制線型感馬達驅動系統, 國立東華大學電機工程學系碩士學位論文,2006。
[32]黃柏凱,以基因演算法為基礎之遞迴式模糊類神經網路控制線型感馬達驅動系統,私立中原大學電機工程學系碩士學位論文,2003。
[33]林法正與魏榮宗,電機控制,滄海書局股份有限公司,2002。
[34]唐佩忠,VHDL與數位邏輯設計,高立圖書有限公司,1999。
[35]Data Sheet, Virtex-II Platform FPGAs. Xilinx Inc., 2005.
[36]D. W. Novotny and T. A. Lipo, Vector Control and Dynamics of AC Drives. Oxford: Clarendon Press, 1996.
[37]W. Leonhard, Control of Electrical Drives. Berlin: Springer-Verlag, 1996.
[38]F. J. Lin, R. J. Wai, W. D. Chou, and S. P. Hsu, “Adaptive backstepping control using recurrent neural network for linear induction motor drive,“ IEEE Trans. Industrial Electronics, vol. 49, no. 1, pp. 134-146, 2002.
[39]劉昌煥,交流電機控制,東華書局股份有限公司,2001。
[40]Data Sheet, Dual 12-Bit DACPORT-AD7237. Analog Device, America.
[41]龔應時,陳建武,徐永松,TMS320F/C24x DSP 控制器原理與應用,滄海書局股份有限公司,2001。
[42]J. Slotine and W. Li, Applied nonlinear control. New Jersey: Prentice-Hall, 1991.
[43]K. J. Astrom and B. Wittenmark, Adaptive Control. New York: Addision-Wesley, 1995.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊