|
1. Chang, L.Y., et al., Clinical features and risk factors of pulmonary oedema after enterovirus-71-related hand, foot, and mouth disease. Lancet, 1999. 354(9191): p. 1682-6. 2. Ho, M., Enterovirus 71: the virus, its infections and outbreaks. J Microbiol Immunol Infect, 2000. 33(4): p. 205-16. 3. AbuBakar, S., et al., Enterovirus 71 outbreak, Brunei. Emerg Infect Dis, 2009. 15(1): p. 79-82. 4. Shih, S.R., et al., Genetic analysis of enterovirus 71 isolated from fatal and non-fatal cases of hand, foot and mouth disease during an epidemic in Taiwan, 1998. Virus Res, 2000. 68(2): p. 127-36. 5. Tapparel, C., et al., New respiratory enterovirus and recombinant rhinoviruses among circulating picornaviruses. Emerg Infect Dis, 2009. 15(5): p. 719-26. 6. Smura, T., et al., Enterovirus surveillance reveals proposed new serotypes and provides new insight into enterovirus 5'-untranslated region evolution. J Gen Virol, 2007. 88(Pt 9): p. 2520-6. 7. De Palma, A.M., et al., Selective inhibitors of picornavirus replication. Med Res Rev, 2008. 28(6): p. 823-84. 8. Paul, A.V., et al., Protein-primed RNA synthesis by purified poliovirus RNA polymerase. Nature, 1998. 393(6682): p. 280-4. 9. Spector, D.H. and D. Baltimore, Requirement of 3'-terminal poly(adenylic acid) for the infectivity of poliovirus RNA. Proc Natl Acad Sci U S A, 1974. 71(8): p. 2983-7. 10. Nishimura, Y., et al., Human P-selectin glycoprotein ligand-1 is a functional receptor for enterovirus 71. Nat Med, 2009. 15(7): p. 794-7. 11. Pathinayake, P.S., A.C. Hsu, and P.A. Wark, Innate Immunity and Immune Evasion by Enterovirus 71. Viruses, 2015. 7(12): p. 6613-30. 12. Lloyd, R.E., M.J. Grubman, and E. Ehrenfeld, Relationship of p220 cleavage during picornavirus infection to 2A proteinase sequencing. J Virol, 1988. 62(11): p. 4216-23. 13. Devaney, M.A., et al., Leader protein of foot-and-mouth disease virus is required for cleavage of the p220 component of the cap-binding protein complex. J Virol, 1988. 62(11): p. 4407-9. 14. Tang, W.F., et al., Reticulon 3 binds the 2C protein of enterovirus 71 and is required for viral replication. J Biol Chem, 2007. 282(8): p. 5888-98. 15. Yamayoshi, S., et al., Scavenger receptor B2 is a cellular receptor for enterovirus 71. Nat Med, 2009. 15(7): p. 798-801. 16. Yang, S.L., et al., Annexin II binds to capsid protein VP1 of enterovirus 71 and enhances viral infectivity. J Virol, 2011. 85(22): p. 11809-20. 17. Giachetti, C. and B.L. Semler, Role of a viral membrane polypeptide in strand-specific initiation of poliovirus RNA synthesis. J Virol, 1991. 65(5): p. 2647-54. 18. Lai, P.K. and J. Roy, Antimicrobial and chemopreventive properties of herbs and spices. Curr Med Chem, 2004. 11(11): p. 1451-60. 19. Maheshwari, R.K., et al., Multiple biological activities of curcumin: a short review. Life Sci, 2006. 78(18): p. 2081-7. 20. Rudrappa, T. and H.P. Bais, Curcumin, a known phenolic from Curcuma longa, attenuates the virulence of Pseudomonas aeruginosa PAO1 in whole plant and animal pathogenicity models. J Agric Food Chem, 2008. 56(6): p. 1955-62. 21. Anand, P., et al., Bioavailability of curcumin: problems and promises. Mol Pharm, 2007. 4(6): p. 807-18. 22. Han, S. and Y. Yang, Antimicrobial activity of wool fabric treated with curcumin. Dyes and Pigments, 2005. 64(2): p. 157-161. 23. Tomei, L., et al., HCV antiviral resistance: the impact of in vitro studies on the development of antiviral agents targeting the viral NS5B polymerase. Antivir Chem Chemother, 2005. 16(4): p. 225-45. 24. Lemoine, M., S. Nayagam, and M. Thursz, Viral hepatitis in resource-limited countries and access to antiviral therapies: current and future challenges. Future Virol, 2013. 8(4): p. 371-380. 25. Barthelemy, S., et al., Curcumin and curcumin derivatives inhibit Tat-mediated transactivation of type 1 human immunodeficiency virus long terminal repeat. Res Virol, 1998. 149(1): p. 43-52. 26. Chen, D.-Y., et al., Curcumin inhibits influenza virus infection and haemagglutination activity. Food Chemistry, 2010. 119(4): p. 1346-1351. 27. Zandi, K., et al., Evaluation of antiviral activities of curcumin derivatives against HSV-1 in Vero cell line. Nat Prod Commun, 2010. 5(12): p. 1935-8. 28. Moghadamtousi, S.Z., et al., A review on antibacterial, antiviral, and antifungal activity of curcumin. Biomed Res Int, 2014. 2014: p. 186864. 29. Garrington, T.P. and G.L. Johnson, Organization and regulation of mitogen-activated protein kinase signaling pathways. Curr Opin Cell Biol, 1999. 11(2): p. 211-8. 30. Leong, S.Y., B.K. Ong, and J.J. Chu, The role of Misshapen NCK-related kinase (MINK), a novel Ste20 family kinase, in the IRES-mediated protein translation of human enterovirus 71. PLoS Pathog, 2015. 11(3): p. e1004686. 31. Kyriakis, J.M. and J. Avruch, Mammalian MAPK signal transduction pathways activated by stress and inflammation: a 10-year update. Physiol Rev, 2012. 92(2): p. 689-737. 32. Levy, D.E., I.J. Marie, and J.E. Durbin, Induction and function of type I and III interferon in response to viral infection. Curr Opin Virol, 2011. 1(6): p. 476-86. 33. Krishna, M. and H. Narang, The complexity of mitogen-activated protein kinases (MAPKs) made simple. Cell Mol Life Sci, 2008. 65(22): p. 3525-44. 34. Ehrhardt, C., et al., Interplay between influenza A virus and the innate immune signaling. Microbes Infect, 2010. 12(1): p. 81-7. 35. Shi, W., et al., MEK/ERK signaling pathway is required for enterovirus 71 replication in immature dendritic cells. Virol J, 2014. 11: p. 227. 36. Newton, A.C., Protein kinase C: structural and spatial regulation by phosphorylation, cofactors, and macromolecular interactions. Chem Rev, 2001. 101(8): p. 2353-64. 37. Li, L., et al., Protein kinase Cdelta targets mitochondria, alters mitochondrial membrane potential, and induces apoptosis in normal and neoplastic keratinocytes when overexpressed by an adenoviral vector. Mol Cell Biol, 1999. 19(12): p. 8547-58. 38. Kajimoto, T., et al., Ceramide-induced apoptosis by translocation, phosphorylation, and activation of protein kinase Cdelta in the Golgi complex. J Biol Chem, 2004. 279(13): p. 12668-76. 39. Misuth, M., et al., The flashlights on a distinct role of protein kinase C delta: Phosphorylation of regulatory and catalytic domain upon oxidative stress in glioma cells. Cell Signal, 2017. 34: p. 11-22. 40. Cheng, M.L., et al., Enterovirus 71 induces mitochondrial reactive oxygen species generation that is required for efficient replication. PLoS One, 2014. 9(11): p. e113234. 41. Fleenor, B.S., et al., Curcumin ameliorates arterial dysfunction and oxidative stress with aging. Exp Gerontol, 2013. 48(2): p. 269-76. 42. Lee, H.H., et al., Essential role of PKCdelta in histone deacetylase inhibitor-induced Epstein-Barr virus reactivation in nasopharyngeal carcinoma cells. J Gen Virol, 2008. 89(Pt 4): p. 878-83. 43. Contreras, X., et al., Protein kinase C-delta regulates HIV-1 replication at an early post-entry step in macrophages. Retrovirology, 2012. 9: p. 37. 44. Wang, M., L. Tao, and H. Xu, Chinese herbal medicines as a source of molecules with anti-enterovirus 71 activity. Chin Med, 2016. 11: p. 2. 45. Zorofchian Moghadamtousi, S., et al., A Review on Antibacterial, Antiviral, and Antifungal Activity of Curcumin. Biomed Res Int, 2014. 2014. 46. Varaprasad, K., et al., Fabrication of silver nanocomposite films impregnated with curcumin for superior antibacterial applications. J Mater Sci Mater Med, 2011. 22(8): p. 1863-72. 47. Mazumder, A., et al., Inhibition of human immunodeficiency virus type-1 integrase by curcumin. Biochemical Pharmacology, 1995. 49(8): p. 1165-1170. 48. Sui, Z., et al., Inhibition of the HIV-1 and HIV-2 proteases by curcumin and curcumin boron complexes. Bioorganic & Medicinal Chemistry, 1993. 1(6): p. 415-422. 49. Bourne, K.Z., et al., Plant products as topical microbicide candidates: assessment of in vitro and in vivo activity against herpes simplex virus type 2. Antiviral Research, 1999. 42(3): p. 219-226. 50. Divya, C.S. and M.R. Pillai, Antitumor action of curcumin in human papillomavirus associated cells involves downregulation of viral oncogenes, prevention of NFkB and AP-1 translocation, and modulation of apoptosis. Mol Carcinog, 2006. 45(5): p. 320-32. 51. Mounce, B.C., et al., Curcumin inhibits Zika and chikungunya virus infection by inhibiting cell binding. Antiviral Res, 2017. 142: p. 148-157. 52. Si, X., et al., Dysregulation of the ubiquitin-proteasome system by curcumin suppresses coxsackievirus B3 replication. J Virol, 2007. 81(7): p. 3142-50. 53. Morgan, M.J. and Z.-g. Liu, Crosstalk of reactive oxygen species and NF-κB signaling. Cell Research, 2011. 21(1): p. 103-115. 54. Son, Y., et al., Reactive oxygen species in the activation of MAP kinases. Methods Enzymol, 2013. 528: p. 27-48. 55. Mahmmoud, Y.A., Modulation of protein kinase C by curcumin; inhibition and activation switched by calcium ions. British Journal of Pharmacology, 2007. 150(2): p. 200-208. 56. Hsu, H.Y., et al., Heme oxygenase-1 mediates the anti-inflammatory effect of Curcumin within LPS-stimulated human monocytes. J Cell Physiol, 2008. 215(3): p. 603-12.
|