跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/08 06:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:趙梓聰
研究生(外文):Chi Chong Chio
論文名稱:探討薑黃素影響腸病毒71型感染力的分子機制
論文名稱(外文):The molecular mechanism of Curcumin in enterovirus 71 infection
指導教授:黃幸宜黃幸宜引用關係
指導教授(外文):H. I. Huang
學位類別:碩士
校院名稱:長庚大學
系所名稱:醫學生物技術暨檢驗學系
學門:醫藥衛生學門
學類:醫學技術及檢驗學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:64
中文關鍵詞:腸病毒71型薑黃素
外文關鍵詞:entervirus 71cur cumin
相關次數:
  • 被引用被引用:0
  • 點閱點閱:182
  • 評分評分:
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
腸病毒71型 (Enterovirus 71, EV71)屬於小RNA病毒科中腸病毒A型,可經由糞口傳播入侵人體,最常見的症狀為手足口症,對於年幼患者更可能產生嚴重的中樞神經性併發症,而導致差的預後甚至死亡,目前沒有有效疫苗和藥物去預防及治療。薑黃素為薑黃植物根莖中的主要成分,其相關研究指出薑黃素具有抵抗細菌、寄生蟲以及病毒的感染。研究實驗中利用薑黃素處理大腸癌細胞HT29細胞,再進行EV71病毒感染並觀察病毒是否受到薑黃素的影響,在實驗結果中發現經薑黃素處理之HT29細胞會減低EV71的複製能力。為了進一步了解薑黃素影響EV71感染的機制,我們分別探討與EV71感染相關之細胞訊號傳遞蛋白質p38、Erk1/2,結果顯示細胞內的p38和Erk1/2改變,並沒有影響EV71的感染力。有文獻指出薑黃素具有抗氧化的功能,實驗結果中顯示腸病毒感染在HT29細胞早期不會引發ROS上升。而已經有些酵素能影響病毒的複製,當中包括PKC,而PKC對於病毒的影響主要發生在早期,因此我們偵測薑黃素對PKC的影響,發現PKC的磷酸化會因薑黃素而被抑制,同時EV71的蛋白質表現量也減少,利用PKC的抑制劑rottlerin去處理細胞,同樣能抑制病毒的感染力,因此我們認為薑黃素是藉由抑制PKC的磷酸化從而影響到EV71的感染力。
Enterovirus 71 (EV71) belongs to genus Enterovirus of the family Picornaviridae. EV71 is transmitted through the fecal-oral route. The most common symptom of EV71 infection is hand-foot-mouth disease. This virus may cause severe neurological complications in young children. There is no effective agent or vaccine against EV71 infection. Curcumin is the main component of Curcuma longa L. Curcumin has the antimicrobial activity against bacteria, fungi and virus. We investigated the effects of curcumin in EV71 infected HT29 cells. The results showed that the expression of viral RNA, protein and viral particle were reduced in curcumin-treated HT29 cells. In order to assess the mechanism of curcumin, we examined the expression of p38 and Erk. An increased phosphorylation of p38 and Erk in the curcumin-treated cell was demonstrated. Relevant studies showed that EV71 can modulate the ROS production in cells in favor to viral replication. Our data revealed that EV71 increased the ROS in early phase and curcumin does not have significant antioxidant properties. PKCis associated with virus infection. We examined the phospho-PKC on curcumin treated HT29 cells, the result showed curcumin inhibited the phosphorylation of PKC. The PKC inhibitor significantly inhibited the phosphorylation of PKC and reduced the EV71 replication. Therefore, curcumin may reduce the EV71 replication through inhibition of the PKC phosphorylation.
指導教授推薦書
口試委員會審定書
致謝........................................................................................................... iii
中文摘要................................................................................................... iv
Abstract......................................................................................................v
目錄........................................................................................................... vi
圖目錄.........................................................................................................x
表目錄...................................................................................................... xii
一、 前言...............................................................................................1
1-1、腸病毒 71 型流行病學..............................................................1
1-2、腸病毒的分類 ............................................................................1
1-3、腸病毒 71 型的構造及基因結構..............................................2
1-4、腸病毒 71 型的生活史..............................................................3
1-5、薑黃素的簡介 ............................................................................4
1-6、薑黃素的抗病毒活性................................................................4
1-7、p38 的信息傳遞路徑.................................................................5
1-8、Erk 的信息傳遞路徑.................................................................5
1-9、protein kinase C  的信息傳遞路徑........................................6
二、 實驗目的.......................................................................................7
三、 實驗材料與方法...........................................................................8
3-1、細胞培養 (subculture) .............................................................8
3-1-1、RD 培養 ...........................................................................8
3-1-2、HT29 培養 .......................................................................9
3-2、實驗所用之病毒株....................................................................9
3-2-1、EV71 4643 .......................................................................9
3-3、病毒放大 (Amplification)......................................................10
3-4、plaque assay.............................................................................11
3-6、病毒感染 (Infection)..............................................................12
3-7、抽取細胞內的 RNA.................................................................12
3-8、RT-PCR....................................................................................13
3-9、DNA 電泳................................................................................14
3-10、real-time PCR(Quantitative PCR, qPCR) .........................15
3-11、西方墨點法 (Western Blot) .................................................15
3-12、螢光免疫染色 (immunofluorescence assay, IFA) .............17
3-13、DCFDA 染色 .........................................................................18
四、 實驗結果.....................................................................................20
4-1、探討薑黃素影響腸病毒 71 型感染力的分子機制部份...............20
4-1-1、EV71 感染 HT29 細胞後有明顯的病毒蛋白質 3D 表現 .20
4-1-2、EV71 對 HT29 細胞具有高感染率 ...................................20
4-1-3、濃度高的薑黃素處理 HT29 細胞會使細胞死亡...............21
4-1-4、EV71 感染經薑黃素處理過的 HT29 細胞後其病毒 RNA
和病毒顆粒的產生明顯減少 ...........................................................22
4-1-5、EV71 感染 HT29 細胞後會誘發信息傳遞蛋白質 p38 和
Erk 蛋白質活化................................................................................22
4-1-6、薑黃素處理 HT29 細胞後增加細胞內 p38 及 Erk 活化並
減少病毒蛋白質的表現....................................................................23
4-1-7、減少細胞信息傳遞蛋白質 p38 和 Erk 的活化並不影響病
毒蛋白質的表現................................................................................24
4-1-8、薑黃素具有少量的抗氧化能力...........................................25
4-1-9、薑黃素處理 HT29 細胞後抑制細胞內 PKC 活化並減少
病毒蛋白質的表現............................................................................26
4-1-10、Rottlerin 抑制病毒感染細胞所造成的細胞病變現象....26
4-1-11、Rottlerin 抑制病毒顆粒的表現量。 ................................27
4-1-12、Rottlerin 透過抑制細胞內 PKC 的活化從而減少病毒蛋
白質的表現。....................................................................................28
五、 實驗討論.....................................................................................30
六、 參考文獻.....................................................................................34
七、 附圖.............................................................................................38
八、 附表.............................................................................................52

目錄
圖 一、各種中草藥對抗 EV71 感染之機制分類圖。...........38
圖 二、薑黃素對抗病毒感染之機制。 ..................................39
圖 三、EV71 感染 HT29 後細胞內病毒蛋白質 3D 以及病毒
顆粒的表現量。.................................................................40
圖 四、EV71 感染 HT29 後的病毒蛋白質 3D 在細胞內的表
現情形。.............................................................................41
圖 五、薑黃素處理 HT29 後的細胞存活情況。...................42
圖 六、EV71 感染經薑黃素處理的 HT29 細胞後其病毒複製
情形。.................................................................................43
圖 七、EV71 感染 HT29 後細胞內的信息傳遞蛋白質表現情
形。.....................................................................................44
圖 八、EV71 感染經薑黃素處理的 HT29 細胞其病毒蛋白質
和 RNA 以及細胞信息傳遞蛋白質 p38 和 Erk 的表現情
形。.....................................................................................45
圖 九、利用抑制劑抑制信息傳遞蛋白質後對 EV71 感染沒
有影響。.............................................................................46
圖 十、薑黃素具有少量的抗氧化能力。 ..............................47
圖 十一、薑黃素處理 HT29 細胞後抑制細胞內 PKC 活化
並減少病毒蛋白質的表現。.............................................48
圖 十二、Rottlerin 有效抑制細胞死亡。..............................49
圖 十三、Rottlerin 抑制病毒顆粒的表現量。......................50
圖 十四、Rottlerin 透過抑制細胞內 PKC 的活化從而減少
病毒蛋白質的表現。.........................................................51

表目錄
表格 一、PCR primer 列表 ....................................................52
1. Chang, L.Y., et al., Clinical features and risk factors of pulmonary oedema after enterovirus-71-related hand, foot, and mouth disease. Lancet, 1999. 354(9191): p. 1682-6.
2. Ho, M., Enterovirus 71: the virus, its infections and outbreaks. J Microbiol Immunol Infect, 2000. 33(4): p. 205-16.
3. AbuBakar, S., et al., Enterovirus 71 outbreak, Brunei. Emerg Infect Dis, 2009. 15(1): p. 79-82.
4. Shih, S.R., et al., Genetic analysis of enterovirus 71 isolated from fatal and non-fatal cases of hand, foot and mouth disease during an epidemic in Taiwan, 1998. Virus Res, 2000. 68(2): p. 127-36.
5. Tapparel, C., et al., New respiratory enterovirus and recombinant rhinoviruses among circulating picornaviruses. Emerg Infect Dis, 2009. 15(5): p. 719-26.
6. Smura, T., et al., Enterovirus surveillance reveals proposed new serotypes and provides new insight into enterovirus 5'-untranslated region evolution. J Gen Virol, 2007. 88(Pt 9): p. 2520-6.
7. De Palma, A.M., et al., Selective inhibitors of picornavirus replication. Med Res Rev, 2008. 28(6): p. 823-84.
8. Paul, A.V., et al., Protein-primed RNA synthesis by purified poliovirus RNA polymerase. Nature, 1998. 393(6682): p. 280-4.
9. Spector, D.H. and D. Baltimore, Requirement of 3'-terminal poly(adenylic acid) for the infectivity of poliovirus RNA. Proc Natl Acad Sci U S A, 1974. 71(8): p. 2983-7.
10. Nishimura, Y., et al., Human P-selectin glycoprotein ligand-1 is a functional receptor for enterovirus 71. Nat Med, 2009. 15(7): p. 794-7.
11. Pathinayake, P.S., A.C. Hsu, and P.A. Wark, Innate Immunity and Immune Evasion by Enterovirus 71. Viruses, 2015. 7(12): p. 6613-30.
12. Lloyd, R.E., M.J. Grubman, and E. Ehrenfeld, Relationship of p220 cleavage during picornavirus infection to 2A proteinase sequencing. J Virol, 1988. 62(11): p. 4216-23.
13. Devaney, M.A., et al., Leader protein of foot-and-mouth disease virus is required for cleavage of the p220 component of the cap-binding protein complex. J Virol, 1988. 62(11): p. 4407-9.
14. Tang, W.F., et al., Reticulon 3 binds the 2C protein of enterovirus 71 and is required for viral replication. J Biol Chem, 2007. 282(8): p. 5888-98.
15. Yamayoshi, S., et al., Scavenger receptor B2 is a cellular receptor for enterovirus 71. Nat Med, 2009. 15(7): p. 798-801.
16. Yang, S.L., et al., Annexin II binds to capsid protein VP1 of enterovirus 71 and enhances viral infectivity. J Virol, 2011. 85(22): p. 11809-20.
17. Giachetti, C. and B.L. Semler, Role of a viral membrane polypeptide in strand-specific initiation of poliovirus RNA synthesis. J Virol, 1991. 65(5): p. 2647-54.
18. Lai, P.K. and J. Roy, Antimicrobial and chemopreventive properties of herbs and spices. Curr Med Chem, 2004. 11(11): p. 1451-60.
19. Maheshwari, R.K., et al., Multiple biological activities of curcumin: a short review. Life Sci, 2006. 78(18): p. 2081-7.
20. Rudrappa, T. and H.P. Bais, Curcumin, a known phenolic from Curcuma longa, attenuates the virulence of Pseudomonas aeruginosa PAO1 in whole plant and animal pathogenicity models. J Agric Food Chem, 2008. 56(6): p. 1955-62.
21. Anand, P., et al., Bioavailability of curcumin: problems and promises. Mol Pharm, 2007. 4(6): p. 807-18.
22. Han, S. and Y. Yang, Antimicrobial activity of wool fabric treated with curcumin. Dyes and Pigments, 2005. 64(2): p. 157-161.
23. Tomei, L., et al., HCV antiviral resistance: the impact of in vitro studies on the development of antiviral agents targeting the viral NS5B polymerase. Antivir Chem Chemother, 2005. 16(4): p. 225-45.
24. Lemoine, M., S. Nayagam, and M. Thursz, Viral hepatitis in resource-limited countries and access to antiviral therapies: current and future challenges. Future Virol, 2013. 8(4): p. 371-380.
25. Barthelemy, S., et al., Curcumin and curcumin derivatives inhibit Tat-mediated transactivation of type 1 human immunodeficiency virus long terminal repeat. Res Virol, 1998. 149(1): p. 43-52.
26. Chen, D.-Y., et al., Curcumin inhibits influenza virus infection and haemagglutination activity. Food Chemistry, 2010. 119(4): p. 1346-1351.
27. Zandi, K., et al., Evaluation of antiviral activities of curcumin derivatives against HSV-1 in Vero cell line. Nat Prod Commun, 2010. 5(12): p. 1935-8.
28. Moghadamtousi, S.Z., et al., A review on antibacterial, antiviral, and antifungal activity of curcumin. Biomed Res Int, 2014. 2014: p. 186864.
29. Garrington, T.P. and G.L. Johnson, Organization and regulation of mitogen-activated protein kinase signaling pathways. Curr Opin Cell Biol, 1999. 11(2): p. 211-8.
30. Leong, S.Y., B.K. Ong, and J.J. Chu, The role of Misshapen NCK-related kinase (MINK), a novel Ste20 family kinase, in the IRES-mediated protein translation of human enterovirus 71. PLoS Pathog, 2015. 11(3): p. e1004686.
31. Kyriakis, J.M. and J. Avruch, Mammalian MAPK signal transduction pathways activated by stress and inflammation: a 10-year update. Physiol Rev, 2012. 92(2): p. 689-737.
32. Levy, D.E., I.J. Marie, and J.E. Durbin, Induction and function of type I and III interferon in response to viral infection. Curr Opin Virol, 2011. 1(6): p. 476-86.
33. Krishna, M. and H. Narang, The complexity of mitogen-activated protein kinases (MAPKs) made simple. Cell Mol Life Sci, 2008. 65(22): p. 3525-44.
34. Ehrhardt, C., et al., Interplay between influenza A virus and the innate immune signaling. Microbes Infect, 2010. 12(1): p. 81-7.
35. Shi, W., et al., MEK/ERK signaling pathway is required for enterovirus 71 replication in immature dendritic cells. Virol J, 2014. 11: p. 227.
36. Newton, A.C., Protein kinase C: structural and spatial regulation by phosphorylation, cofactors, and macromolecular interactions. Chem Rev, 2001. 101(8): p. 2353-64.
37. Li, L., et al., Protein kinase Cdelta targets mitochondria, alters mitochondrial membrane potential, and induces apoptosis in normal and neoplastic keratinocytes when overexpressed by an adenoviral vector. Mol Cell Biol, 1999. 19(12): p. 8547-58.
38. Kajimoto, T., et al., Ceramide-induced apoptosis by translocation, phosphorylation, and activation of protein kinase Cdelta in the Golgi complex. J Biol Chem, 2004. 279(13): p. 12668-76.
39. Misuth, M., et al., The flashlights on a distinct role of protein kinase C delta: Phosphorylation of regulatory and catalytic domain upon oxidative stress in glioma cells. Cell Signal, 2017. 34: p. 11-22.
40. Cheng, M.L., et al., Enterovirus 71 induces mitochondrial reactive oxygen species generation that is required for efficient replication. PLoS One, 2014. 9(11): p. e113234.
41. Fleenor, B.S., et al., Curcumin ameliorates arterial dysfunction and oxidative stress with aging. Exp Gerontol, 2013. 48(2): p. 269-76.
42. Lee, H.H., et al., Essential role of PKCdelta in histone deacetylase inhibitor-induced Epstein-Barr virus reactivation in nasopharyngeal carcinoma cells. J Gen Virol, 2008. 89(Pt 4): p. 878-83.
43. Contreras, X., et al., Protein kinase C-delta regulates HIV-1 replication at an early post-entry step in macrophages. Retrovirology, 2012. 9: p. 37.
44. Wang, M., L. Tao, and H. Xu, Chinese herbal medicines as a source of molecules with anti-enterovirus 71 activity. Chin Med, 2016. 11: p. 2.
45. Zorofchian Moghadamtousi, S., et al., A Review on Antibacterial, Antiviral, and Antifungal Activity of Curcumin. Biomed Res Int, 2014. 2014.
46. Varaprasad, K., et al., Fabrication of silver nanocomposite films impregnated with curcumin for superior antibacterial applications. J Mater Sci Mater Med, 2011. 22(8): p. 1863-72.
47. Mazumder, A., et al., Inhibition of human immunodeficiency virus type-1 integrase by curcumin. Biochemical Pharmacology, 1995. 49(8): p. 1165-1170.
48. Sui, Z., et al., Inhibition of the HIV-1 and HIV-2 proteases by curcumin and curcumin boron complexes. Bioorganic & Medicinal Chemistry, 1993. 1(6): p. 415-422.
49. Bourne, K.Z., et al., Plant products as topical microbicide candidates: assessment of in vitro and in vivo activity against herpes simplex virus type 2. Antiviral Research, 1999. 42(3): p. 219-226.
50. Divya, C.S. and M.R. Pillai, Antitumor action of curcumin in human papillomavirus associated cells involves downregulation of viral oncogenes, prevention of NFkB and AP-1 translocation, and modulation of apoptosis. Mol Carcinog, 2006. 45(5): p. 320-32.
51. Mounce, B.C., et al., Curcumin inhibits Zika and chikungunya virus infection by inhibiting cell binding. Antiviral Res, 2017. 142: p. 148-157.
52. Si, X., et al., Dysregulation of the ubiquitin-proteasome system by curcumin suppresses coxsackievirus B3 replication. J Virol, 2007. 81(7): p. 3142-50.
53. Morgan, M.J. and Z.-g. Liu, Crosstalk of reactive oxygen species and NF-κB signaling. Cell Research, 2011. 21(1): p. 103-115.
54. Son, Y., et al., Reactive oxygen species in the activation of MAP kinases. Methods Enzymol, 2013. 528: p. 27-48.
55. Mahmmoud, Y.A., Modulation of protein kinase C by curcumin; inhibition and activation switched by calcium ions. British Journal of Pharmacology, 2007. 150(2): p. 200-208.
56. Hsu, H.Y., et al., Heme oxygenase-1 mediates the anti-inflammatory effect of Curcumin within LPS-stimulated human monocytes. J Cell Physiol, 2008. 215(3): p. 603-12.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top