跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.59) 您好!臺灣時間:2025/10/15 22:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃永翰
研究生(外文):Yung-Han Huang
論文名稱:金屬-氧化物複合觸媒之製備及其特性研究
論文名稱(外文):Preparation Processes and Characteristics of Metal-Oxide Composite Catalysts
指導教授:亀岡聡博士蔡安邦博士王錫福博士
指導教授(外文):Satoshi Kameoka Ph.DAn-Pang Tsai Ph.DSea-Fue Wang Ph.D
口試委員:顏怡文博士楊哲人博士亀岡聡博士蔡安邦博士王錫福博士
口試委員(外文):Yee-Wen Yen Ph.DJer-Ren Yang Ph.DSatoshi Kameoka Ph.DAn-Pang Tsai Ph.DSea-Fue Wang Ph.D
口試日期:2015-06-26
學位類別:博士
校院名稱:國立臺北科技大學
系所名稱:材料科學與工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
中文關鍵詞:金屬氧化物觸媒、金、鉑、尖晶石結構、金屬間化合物、非晶質合金
外文關鍵詞:Metal-Oxide CatalystsAuPtSpinelsIntermetallicsAmorphous alloys
相關次數:
  • 被引用被引用:0
  • 點閱點閱:452
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
本論文以不同方法製備金屬-氧化物複合觸媒材料,第一種方法利用固態反應法合成尖晶石氧化物形成銅或鎳金屬觸媒應用於甲醇蒸氣重組反應;另外一種方法針對金屬間化合物或非晶質合金所製備之金、鉑觸媒進行一氧化碳氧化反應測試。上述研究方法皆根據熱力學中Ellingham 自由能平衡圖概念,了解不同金屬於不同溫度範圍下之氧化還原能力。
首先以固態反應法製備銅基尖晶石化合物CuX2O4 (X=Fe, Mn, Al, La),探討在氫氣還原後之微結構變化及其觸媒特性。由程序升溫還原量測儀所得到之結果顯示,銅基尖晶石化合物之還原能力取決於尖晶石結構中B位元素而影響,其觀察到銅鐵氧化物出現最低還原溫度,並且於190°C開始產生還原反應,依序分別為銅鋁氧化物(267°C)、銅錳氧化物(270°C)、銅鑭氧化物(326°C)。還原後之銅鋁氧化物具有最佳觸媒特性與熱穩定性,深入研究其表面形貌與相成分變化,發現到銅鋁氧化物於360°C氫氣還原後,其觀察到細微銅顆粒(50.9 nm)析出於表面氧化鋁擔體,形成穩定之金屬-氧化物複合觸媒。同時,銅金屬氧化物複合材料之觸媒活性亦優於傳統商業型觸媒,此研究方法證實由銅基尖晶石化合物經還原處理後,具備潛力作為極佳活性與高熱穩定性之觸媒。
第二部分,將銅-鎳鐵氧體(Ni1-xCuxFe2O4)透過氫氣還原法製備銅-鎳氧化鐵擔體觸媒。所有鐵氧體於還原處理前皆呈現表面平滑之顆粒型態。銅鐵氧體、銅-鎳鐵氧體及鎳鐵氧體分別於溫度240、300及400°C進行還原處理,其表面形成奈米銅金屬和(或)奈米鎳金屬粒子(5-32 nm)及微孔洞(5-30 nm)分散於四氧化三鐵擔體表面上。將鎳鐵氧體還原溫度升高至500°C時,由於鐵-鎳合金生成覆蓋於四氧化三鐵擔體表面,因此原先擔體表面之鎳金屬顆粒及微孔皆消失。銅鐵氧體於溫度240°C氫氣還原處理後,在反應溫度360°C得到最高氫氣產率,其最高值達到149 ml STP/min.g-cat。銅-鎳鐵氧體中生成鎳金屬會增強反向水煤氣轉化反應,以至於增加一氧化碳副產物進而減少二氧化碳產率,當隨著還原溫度升高,其鐵-鎳合金會直接影響甲醇蒸氣重組反應之氫氣產率。
最後,為了要開發新製程製備新型奈米金與鉑觸媒於鋯基氧化物擔體中,嘗試以金屬間化合物與非晶質合金作為前驅物,將氧化鋯作為擔體製備金屬-氧化物複合觸媒(Au, Pt/ZrO2-Fe2O3),以探討奈米金與鉑於鋯基氧化物擔體對其一氧化碳氧化反應活性之影響。利用真空電弧熔煉法將純鋯、鐵、金、鉑等元素,以不同化學計量配比於氬氣氣氛中熔製成鋯基金屬合金錠並經由擊碎、研磨製成金屬間化合物粉末,接著將部分金屬合金錠以單輥熔射旋淬法製備非晶質合金薄帶。藉由熱分析數據,了解隨著溫度的變化並分別進行不同溫度的氧化處理,進而形成奈米金與鉑觸媒穩定且均勻分散於鋯基氧化物擔體中,進一步解析金、鉑金屬觸媒顆粒與擔體間之交互作用。另一方面,以鈰鎳金屬間化合物為前驅物,藉由添加少量金或白金金屬取代結構中之鎳金屬,製備形成金屬-氧化物複合觸媒(Au, Pt/CeO2-NiO)。當金屬間化合物經由氧化過程時,其結構中的鈰金屬較容易形成二氧化鈰,造就金或白金金屬顆粒逐漸析出於表面,進而促進整體觸媒活性。尤其將Ce50Ni45Au5金屬間化合物直接置於反應床中,經過五次升降溫測試後,其表面會析出均勻的金與鎳金屬顆粒分散於二氧化鈰擔體。
There are two different approaches in this thesis. One approach is to synthesize spinel-type oxides as a precursor preparing Cu or Ni catalysts for steam reforming of methanol (SRM). The other approach focuses on preparation of Au or Pt catalysts from intemetallic compounds or amorphous alloys to perform CO oxidation reaction. These approaches in terms of the ellingham diagram which is usually used to evaluate the ease of reduction of metal oxides or oxidation of metal.
Firstly, various Cu-based spinel compounds, i.e., CuFe2O4, CuMn2O4, CuAl2O4 and CuLa2O4 were fabricated by a solid-state reaction method. H2-TPR results indicated that reducibility of Cu-based spinel compounds was strongly dependent on the B-site component where the CuFe2O4 catalyst revealed the lowest reduction temperature (190°C), followed by CuAl2O4 (267°C), CuMn2O4 (270°C) and CuLa2O4 (326°C). The reduced CuAl2O4 catalyst revealed the best performance in terms of catalytic activity. Based on the SEM and XRD results, pulverization of the CuAl2O4 particles due to gas evolution and a high density of nanosized Cu particles (50.9 nm) precipitated on the surfaces of the Al2O3 support were observed after reduction at 360°C in H2. Reduction of Cu-based spinel compounds appear to be a potential synthesis route for preparing a catalyst with high catalytic activity and thermal stability. The catalytic performance of these copper-oxides composites was superior to those of conventional copper catalysts.
Secondly, Fe3O4-supported Cu and Ni catalysts are prepared through reduction of Cu-Ni (Ni1-xCuxFe2O4) ferrites. All ferrites are characterized with granular morphology and a smooth particle surface before reduction. Reduction temperature for the CuFe2O4, Ni0.5Cu0.5Fe2O4 and NiFe2O4 ferrites were 240, 300, and 400°C, respectively, in which nanosized Cu and/or Ni particles (5-32 nm) and mesopores (5-30 nm) are distributed and adhered on the surfaces of Fe3O4 supports. After the reduction treatment at temperature higher than 500°C for NiFe2O4 ferrite, the Ni particles and mesopores disappear from the Fe3O4 surfaces, which is due to the formation of a Fe-Ni alloy covered on the Fe3O4 surfaces. The CuFe2O4 ferrite after H2 reduction at 240°C exhibits the highest activity quoted with H2 production rate of 149 ml STP/min.g-cat at 360°C. The existence of Ni in the Cu-Ni ferrites enhances the reverse water gas shift reaction, raises the CO selectivity and reduces the CO2 selectivity. Formation of the Fe-Ni alloy exaggerates the trend and poisons the H2 production rate.
Finally, in order to develop a process for preparation of a new form of catalyst where Au, Pt fine particles supported on metal oxides (ZrO2, Fe2O3), Au or Pt–contained Zr2Fe-based intermetallic compounds and amorphous alloys were used as precursors for oxidation treatment. The catalytic properties of Au, Pt/metal oxides catalysts prepared by crystallization or oxidation have been investigated with CO oxidation reaction (CO+1/2O2→CO2). Zr67Fe33, Zr67Fe30Au3 and Zr67Fe30Pt3 alloys were prepared by arc-melting in Ar atmosphere. Amorphous phase was further fabricated by single-roller melt spinning in an Ar atmosphere. The catalysts were obtained by annealing amorphous ribbons at elevated temperatures. After the oxidation process, metal-oxide composite catalysts of Au, Pt/ZrO2-Fe2O3 were obtained. The changes in the intermetallic compounds and amorphous alloy ribbons before and after the oxidation treatment were analyzed, and the effects of the oxidation features and mechanisms on the catalytic activity of the catalyst was investigated. On the other hand, the metal/oxide complex catalyst (Au, Pt/CeO2-NiO) was successfully synthesized using the cerium-based intermetallic compound Ce50Ni50 as a precursor and replacing Ni with a small quantity of Au or Pt. The catalytic properties of CeO2-NiO supported Au and Pt catalysts for the CO oxidation reaction were investigated. The catalysts were obtained by oxidation treatment at elevated temperatures. The cerium metal in the intermetallic compound was easily oxidized to CeO2 during the oxidation process, in which Au or Pt particles precipitated on the surface and promoted the overall catalytic activity. This was especially clear when intermetallic Ce50Ni45Au5 was tested in the reaction bed directly; Au and Ni particles precipitated to the surface of the CeO2 support and were evenly distributed after five cycles of a heating and cooling test.
CHINESE ABSTRACT i
ENGLISH ABSTRACT iv
ACKNOWLEDGEMENTS (CHINESE) vii
CONTENTS ix
LIST OF TABLES xii
LIST OF FIGURES xiii
Chapter 1 1
Introduction 1
1.1 Background 1
1.2 Motivation 3
Chapter 2 5
Literature Review 5
2.1 Oxides as a Precursor 5
2.1.1 Steam Reforming of Methanol 5
2.1.2 Cu-Based Catalysts 7
2.2 Metals as a Precursor 8
2.2.1 Intermetallics 9
2.2.2 Single Roller Melt-Spinning Method 12
2.2.3 Amorphous Alloys 14
2.2.4 Property of Gold and Platinum 16
2.2.5 Methods of Preparation 17
2.2.6 Metal-Supported Interaction 21
2.2.7 Catalytic Mechanism 24
Chapter 3 27
Reduction Behaviors and Catalytic Properties for Methanol Steam Reforming of Cu-based Spinel Compounds CuX2O4 (X=Fe, Mn, Al, La) 27
3.1 Introduction 28
3.2 Experimental Procedure 29
3.3 Results and Discussion 31
3.3.1 Reduction Behaviors of Various Cu-based Spinel Compounds 31
3.3.2 Catalytic Performance of Copper-Oxide Composites Obtained by Reduction of Various Cu-based Spinel Compounds 42
Chapter 4 49
Catalysts Prepared from Copper-Nickel Ferrites for the Steam Reforming of Methanol 49
4.1 Introduction 49
4.2 Experimental Procedure 51
4.3 Results and Discussion 53
Chapter 5 71
Au or Pt Catalysts Prepared from Intermetallic and Amorphous Compounds of Zr67Fe33-xMx (M=Au, Pt) for the Oxidation of Carbon Monoxide 71
5.1 Introduction 72
5.2 Experimental Procedure 73
5.3 Results and Discussion 75
5.3.1. Catalytic activities of Zr67Fe33-xMx (M=Au, Pt) intermetallic compounds 75
5.3.2. Catalytic activities of Zr67Fe33-xMx (M=Au, Pt) amorphous alloys 79
Chapter 6 97
Characterization of New Catalysts Prepared by In-Situ Activation of Ce50Ni50-xMx (M=Au, Pt) Intermetallic Compounds for CO Oxidation 97
6.1 Introduction 98
6.2 Experimental Procedure 99
6.3 Results and Discussion 100
Chapter 7 118
Conclusion and Future Prospect 118
7.1 Conclusion 118
7.2 Future Prospect 119
REFERENCES 121
CURRICULUM VITAE 138
LIST OF ORIGINAL PUBLICATIONS 139
1.D. R. Gaskell, Introduction to Metallurgical Thermodynamics, New York: Hemisphere Publishing, 1981. (Chapter 1)
2.C. T. Campbell and K. A. Daube, &;quot;A surface science investigation of the water-gas shift reaction on Cu (111),&;quot; Journal of Catalysis, vol. 104, no. 1, 1987, pp. 109-119.
3.G. C. Chinchen and M. S. Spencer, &;quot;Sensitive and insensitive reactions on copper catalysts: the water-gas shift reaction and methanol synthesis from carbon dioxide,&;quot; Catalysis Today, vol.10, no. 3, 1991, pp. 293-301.
4.A. J. Elliot, R. A. Hadden, J. Tabatabali, K. C. Waugh and F. W. Zemicael, &;quot;Inverted temperature dependence of the decomposition of carbon dioxide on oxide-supported polycrystalline copper,&;quot; Journal of Catalysis, vol. 157, no. 1, 1995, pp. 153-161.
5.H. E. Curry-Hyde, M. S. Wainwright and D. J. Young, &;quot;Improvements to raney copper methanol synthesis catalysts through zinc impregnation: II. Surface area development,&;quot; Applied Catalysis, vol. 77, no. 1, 1991, pp. 89-94.
6.N. Takezawa and N. Iwasa, &;quot;Steam reforming and dehydrogenation of methanol: Difference in the catalytic functions of copper and group VIII metals,&;quot; Catalysis Today, vol. 36, no. 1, 1997, pp. 45-56.
7.T. Fujitani and J. Nakamura, &;quot;The chemical modification seen in the Cu/ZnO methanol synthesis catalysts,&;quot; Applied Catalysis A: General, vol. 191, no. 1-2, 2000, pp. 111-129.
8.K. Klier, &;quot;Methanol synthesis,&;quot; Advances in Catalysis, vol. 31, 1982, pp. 243-313.
9.D. S. Newsome, &;quot;The water-gas shift reaction,&;quot; Catalysis Reviews: Science and Engineering, vol. 21, no.2, 1980, pp. 275-318.
10.Y. Tanaka, T. Utaka, R. Kikuchi, T. Takeguchi, K. Sasaki and K. Eguchi, &;quot;Water gas shift reaction for the reformed fuels over Cu/MnO catalysts prepared via spinel-type oxide,&;quot; Journal of Catalysis, vol. 215, no. 2, 2003, pp. 271-278.
11.M. V. Twigg and M. S. Spencer, &;quot;Deactivation of copper metal catalysts for methanol decomposition, methanol steam reforming and methanol synthesis,&;quot; Topics in Catalysis, vol. 22, no. 3-4, 2003, pp. 191-203.
12.L. Ma, D. L. Trimm and M. S. Wainwright, &;quot;Structural and catalytic promotion of skeletal copper catalysts by zinc and chromium oxides,&;quot; Topics in Catalysis, vol. 8, no. 3-4, 1999, pp. 271-277.
13.J. Laine, Z. Ferrer and M. Labady, &;quot;Structure and activity of chromium-promoted raney copper catalysts for carbon monoxide oxidation,&;quot; Applied Catalysis, vol. 44, 1988, pp. 11-22.
14.S. Kameoka, T. Tanabe and A. P. Tsai, &;quot;Spinel CuFe2O4: a precursor for copper catalyst with high thermal stability and activity,&;quot; Catalysis Letters, vol. 100, no.1-2, 2005, pp. 89-93.
15.S. Kameoka, T. Tanabe and A. P. Tsai, &;quot;Self-assembled porous nano-composite with high catalytic performance by reduction of tetragonal spinel CuFe2O4,&;quot; Applied Catalysis A: General, vol. 375, no. 1, 2010, pp. 163-171.
16.T. Tanabe, S. Kameoka and A. P. Tsai, &;quot;A novel catalyst fabricated from Al–Cu–Fe quasicrystal for steam reforming of methanol,&;quot; Catalysis Today, vol. 111, 2006, pp. 153-157.
17.S. Kameoka, M. Okada and A. P. Tsai, &;quot;Preparation of a novel copper catalyst in terms of the immiscible interaction between copper and chromium,&;quot; Catalysis Letters, vol. 120, no. 3-4, 2008, pp. 252-256.
18.N. W. Grimes, &;quot;The spinels: versatile materials,&;quot; Physics in Technology, vol. 6, no. 1, 1975, pp. 22-40.
19.L. G. Tejuca and J. L. G. Fierro, Properties and Applications of Perovskite-Type Oxides, New York: Marcel Dekker, 1992.
20.K. Sekizawa, S. I. Yano, K. Eguchi and H. Arai, &;quot;Selective removal of CO in methanol reformed gas over Cu-supported mixed metal oxides,&;quot; Applied Catalysis A: General, vol. 169, no. 2, 1998, pp. 291-297.
21.T. Komatsu and A. Onda, &;quot;Catalytic properties of single-phase intermetallic compounds,&;quot; Catalysis Surveys from Asia, vol. 12, no. 1, 2008, pp. 6-15.
22.J. Graetz, &;quot;New approaches to hydrogen storage,&;quot; Chemical Society Reviews, vol. 38, no. 1, 2009, pp. 73-82.
23.K. Kovnir, M. Armbrüster, D. Teschner, T. V. Venkov, F. C. Jentoft, A. Knop-Gericke, Yu. Grin and R. Schlögl, &;quot;A new approach to well-defined, stable and site-isolated catalysts,&;quot; Science and Technology of Advanced Materials, vol. 8, no. 5, 2007, pp. 420-427.
24.M. Okadaa, A. Kamegawa, J. Nakahigashi, A. Yamaguchi, A. Fujita and M. Yamauchi, &;quot;New function of hydrogen in materials,&;quot; Materials Science and Engineering: B, vol. 173, no. 1-3, 2010, pp. 253-259.
25.S. Kameoka and A. P. Tsai, &;quot;CO oxidation over a fine porous gold catalyst fabricated by selective leaching from an ordered AuCu3 intermetallic compound,&;quot; Catalysis Letters, vol. 121, no. 3-4, 2008, pp. 337-341.
26.W. E. Wallace, &;quot;Intermetallic compounds in catalysis,&;quot; ChemTech , vol. 12, 1982, pp. 752-754.
27.N. Endo, S. Ito, K. Tomishige, S. Kameoka, A. P. Tsai, T. Hirata and C. Nishimura, &;quot;CO hydrogenation over a hydrogen-induced amorphization of intermetallic compound CeNi2,&;quot; Catalysis Today, vol. 164, no. 1, 2011, pp. 293-296.
28.N. Endo, S. Kameoka, A. P. Tsai, T. Hirata and C. Nishimura, &;quot;High catalytic activity of hydrogenation of ethylene over an amorphous CeNi2Hx,&;quot; Materials Transactions JIM, vol. 52, no. 9, 2011, pp. 1794-1798.
29.N. Endo, S. Kameoka, A. P. Tsai, T. Hirata and C. Nishimura, &;quot;Preparation of nano-composited catalyst from the bulk intermetallic compound AuZr3 with hydrogen absorption,&;quot; Catalysis Letters, vol. 139, no. 1-2, 2010, pp. 67-71.
30.N. Endo, S. Kameoka, A. P. Tsai, Z. Lingling, T. Hirata and C. Nishimura, &;quot;Hydrogen absorption properties of intermetallic compounds in the Au–Zr binary system,&;quot; Journal of Alloys and Compounds, vol. 485, no. 1-2, 2009, pp. 588-592.
31.R. J. Cava, H. Takagi, B. Batlogg, H. W. Zandbergen, J. J. Krajewski, W. F. Peck et al., &;quot;Superconductivity at 23 K in yttrium palladium boride carbide,&;quot; Nature, vol. 367, 1994, pp. 146-148.
32.R. J. Cava, H. Takagi, H. W. Zandbergen, J. J. Krajewski, W. F. Peck, T. Siegrist et al., &;quot;Superconductivity in the quaternary intermetallic compounds LnNi2B2C,&;quot; Nature, vol. 367, 1994, pp. 252-253.
33.T. Takeshita, W. E. Wallace and R. S. Craig, &;quot;Rare earth intermetallics as synthetic ammonia catalysts,&;quot; Journal of Catalysis, vol. 44, no. 2, 1976, pp. 236-243.
34.K. Soga, H. Imamura and S. Ikeda, &;quot;Hydrogenation of ethylene over lanthanum-nickel (LaNi5) alloy,&;quot; The Journal of Physical Chemistry, vol. 81, no. 18, 1977, pp. 1762-1766.
35.C. A. Luengo, A. L. Cabrera, H. B. MacKay and M. B. Maple, &;quot;Catalysis of carbon monoxide and carbon dioxide methanation by CeAl2, CeCo2, CeNi2, Co, and Ni,&;quot; Journal of Catalysis, vol. 47, no. 1, 1977, pp. 1-10.
36.A. Elattar, T. Takeshita, W. E. Wallace and R. S. Craig, &;quot;Intermetallic compounds of the type MNi5 as methanation catalysts,&;quot; Science, vol. 80, 1977, pp. 1093-1094.
37.M. Raney, US Patent 1628190, 1927.
38.S. Sane, J.M. Bonnier, J.P. Damon and J. Masson, &;quot;Raney metal catalysts: I. comparative properties of raney nickel proceeding from Ni-Ai intermetallic phases,&;quot; Applied Catalysis, vol. 9, no. 1, 1984, pp. 69-83.
39.F. Devred, A. H. Gieske, N. Adkins, U. Dahlborg, C. M. Bao, M. Calvo-Dahlborg, J. W. Bakker and B. E. Nieuwenhuys, &;quot;Influence of phase composition and particle size of atomised Ni–Al alloy samples on the catalytic performance of raney-type nickel catalysts,&;quot; Applied Catalysis A: General, vol. 356, no. 2, 2009, pp. 154-161.
40.W. Klement, R. H. Willens and P. Duwez, &;quot;Non-crystalline structure in solidified gold–silicon alloys,&;quot; Nature, vol. 187, 1960, pp. 869-870.
41.H. S. Chen and C. E. Miller, &;quot;A rapid quenching technique for the preparation of thin uniform films of amorphous solids,&;quot; Review of Scientific Instruments, vol. 41, 1970, pp. 1237-1238.
42.H. H. Liebermann and C. D. Graham, &;quot;Production of amorphous alloy ribbons and effects of apparatus parameters on ribbon dimensions,&;quot; IEEE Transactions on Magnetics, vol. 12, no. 6, 1976, pp. 921-923.
43.A. Yokoyama, H. Komiyama and H. Inoue, &;quot;The hydrogenation of carbon monoxide by amorphous ribbons,&;quot; Journal of Catalysis, vol. 68, no. 2, 1981, pp. 355-361.
44.A. Inoue, &;quot;Stabilization of metallic supercooled liquid and bulk amorphous alloys,&;quot; Acta Materialia, vol. 48, no. 1, 2000, pp. 279-306.
45.S. Yoshida, H. Yamashita, T. Funabiki and T. Yonezawa, &;quot;Catalysis by amorphous metal alloys. Part 1. - Hydrogenation of olefins over amorphous Ni-P and Ni-B alloys,&;quot; Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, vol. 80, no. 6, 1984, pp. 1435-1446.
46.H. Yamashita, M. Yoshikawa, T. Funabiki and S. Yoshida, &;quot;Catalysis by amorphous metal alloys. Part 2. - effects of oxygen pretreatment on the catalytic activity of amorphous and crystallised Ni-P alloys,&;quot; Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, vol. 81, no. 10, 1985, pp. 2485-2493.
47.M. Yamasaki, H. Habazaki, T. Yoshida, E. Akiyama, A. Kawashima, K. Asami and et al., &;quot;Compositional dependence of the CO2 methanation activity of Ni/ZrO2 catalysts prepared from amorphous Ni-Zr alloy precursors,&;quot; Applied Catalysis A: General, vol. 163, no. 1-2, 1997, pp. 187-197.
48.M. Yamasaki, H. Habazaki, K. Asami, K. Izumiya and K. Hashimoto, &;quot;Effect of tetragonal ZrO2 on the catalytic activity of Ni/ZrO2 catalyst prepared from amorphous Ni-Zr alloys,&;quot; Catalysis Communications, vol. 7, no. 1, 2006, pp. 24-28.
49.M. Yamasakia, M. Komori, E. Akiyama, H. Habazaki, A. Kawashima, K. Asami and K. Hashimoto, &;quot;CO2 methanation catalysts prepared from amorphous Ni-Zr-Sm and Ni-Zr-misch metal alloy precursors,&;quot; Materials Science and Engineering: A, vol. 267, no. 2, 1999, pp. 220-226.
50.A. Baiker, D. Gasser, J. Lenzner, A. Reller and R. Schlogl, &;quot;Oxidation of carbon monoxide over palladium on zirconia prepared from amorphous Pd-Zr alloy I. bulk structural, morphological, and catalytic properties of catalyst,&;quot; Journal of Catalysis, vol. 126, no. 2, 1990, pp. 555-571.
51.G. C. Bond, P. A. Sermon, G. Webb, D. A. Buchanan and P. B. Wells, &;quot;Hydrogenation over supported gold catalysts,&;quot; Journal of the Chemical Society, Chemical Communications, no. 13, 1973, pp. 444b-445.
52.G. C. Bond and D. T. Thompson, &;quot;Catalysis by gold,&;quot; Catalysis Reviews - Science and Engineering, vol. 41, no. 3-4, 1999, pp. 319-388.
53.M. Haruta, T. Kobayashi, H. Sano and N. Yamada, &;quot;Novel gold catalysts for the oxidation of carbon monoxide at a temperature far below 0°C,&;quot; Chemistry Letters, vol. 16, no. 2, 1987, pp. 405-408.
54.M. M. Schubert, S. Hackenberg, A. C. van Veen, M. Muhler, V. Plzak and R. J. Behm, &;quot;CO oxidation over supported gold catalysts—“inert” and “active”support materials and their role for the oxygen supply during reaction,&;quot; Journal of Catalysis, vol. 197, no. 1, 2001, pp. 113-122.
55.H. Liu, A. I. Kozlov, A. P. Kozlova, T. Shido, K. Asakura and Y. Iwasawa, &;quot;Active oxygen species and mechanism for low-temperature CO oxidation reaction on a TiO2-supported Au catalyst prepared from Au(PPh3)(NO3) and as-precipitated titanium hydroxide,&;quot; Journal of Catalysis, vol. 185, no. 2, 1999, pp. 252-264.
56.P. A. Sermon, G. C. Bond and P. B. Wells, &;quot;Hydrogenation of alkenes over supported gold,&;quot; Journal of the Chemical Society, Faraday Transactions 1, vol. 75, no. 0, 1979, pp. 385-394.
57.M. Bowker, A. Nuhu and J. Soares, &;quot;High activity supported gold catalysts by incipient wetness impregnation,&;quot; Catalysis Today, vol. 122, no. 3-4, 2007, pp. 245-247.
58.M. Haruta, N. Yamada, T. Kobayashi and S. Iijima, &;quot;Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide,&;quot; Journal of Catalysis, vol. 115, no. 2, 1989, pp. 301-309.
59.A. Knell, P. Barnickel, A. Baiker and A. Wokaun, &;quot;CO oxidation over Au/ZrO2 catalysts: activity, deactivation behavior, and reaction mechanism,&;quot; Journal of Catalysis, vol. 137, no. 2, 1992, pp. 306-321.
60.G. Avgouropoulos, T. Ioannides, C. Papadopoulou, J. Batista, S. Hocevar and H. K. Matralis, &;quot;A comparative study of Pt/γ-Al2O3, Au/α-Fe2O3 and CuO–CeO2 catalysts for the selective oxidation of carbon monoxide in excess hydrogen,&;quot; Catalysis Today, vol. 75, no. 1-4, 2002, pp. 157-167.
61.M. Haruta, S. Tsubota, T. Kobayashi, H. Kageyama, M. J. Genet and B. Delmon, &;quot;Low-Temperature Oxidation of CO over Gold Supported on TiO2, α-Fe2O3, and Co3O4,&;quot; Journal of Catalysis, vol. 144, no. 1, 1993, pp. 175-192.
62.A. Wolf and F. Schüth, &;quot;A systematic study of the synthesis conditions for the preparation of highly active gold catalysts,&;quot; Applied Catalysis A: General, vol. 226, no. 1-2, 2002, pp. 1-13.
63.G. R. Bamwenda, S. Tsubota, T. Nakamura and M. Haruta, &;quot;The influence of the preparation methods on the catalytic activity of platinum and gold supported on TiO2 for CO oxidation,&;quot; Catalysis Letters, vol. 44, no. 1-2, 1997, pp. 83-87.
64.C. K. Costello, M. C. Kung, H. S. Oh, Y. Wang and H. H. Kung, &;quot;Nature of the active site for CO oxidation on highly active Au/γ-Al2O3,&;quot; Applied Catalysis A: General, vol. 232, no. 1-2, 2002, pp. 159-168.
65.F. Moreau, G. C. Bond and A. O. Taylor, &;quot;Gold on titania catalysts for the oxidation of carbon monoxide: control of pH during preparation with various gold contents,&;quot; Journal of Catalysis, vol. 231, no. 1, 2005, pp. 105-114.
66.M. Haruta, &;quot;Catalysis of gold nanoparticles deposited on metal oxides,&;quot; CATTECH, vol. 6, no. 3, 2002, pp. 102-115.
67.E. D. Park and J. S. Lee, &;quot;Effects of pretreatment conditions on CO oxidation over supported Au catalysts,&;quot; Journal of Catalysis, vol. 186, no. 1, 1999, pp. 1-11.
68.G. C Bond and D. T. Thompson, &;quot;Gold-catalysed oxidation of carbon monoxide,&;quot; Gold Bulletin, vol. 33, no. 2, 2000, pp. 41-50. (Chapter 2)
69.B. Lindström, L. J. Pettersson and P. G. Menon, &;quot;Activity and characterization of Cu/Zn, Cu/Cr and Cu/Zr on γ-alumina for methanol reforming for fuel cell vehicles,&;quot; Applied Catalysis A: General, vol. 234, no. 1-2, 2002, pp. 111-125.
70.S. Patel and K. K. Pant, &;quot;Activity and stability enhancement of copper–alumina catalysts using cerium and zinc promoters for the selective production of hydrogen via steam reforming of methanol,&;quot; Journal of Power Sources, vol. 159, no. 1, 2006, pp. 139-143.
71.S. D. Jones and H. E. Hagelin-Weaver, &;quot;Steam reforming of methanol over CeO2- and ZrO2-promoted Cu-ZnO catalysts supported on nanoparticle Al2O3,&;quot; Applied Catalysis B: Environmental, vol. 90, no. 1-2, 2009, pp. 195-204.
72.H. Jeong, K. I. Kim, T. H. Kim, C. H. Ko, H. C. Park and I. K. Song, &;quot;Hydrogen production by steam reforming of methanol in a micro-channel reactor coated with Cu/ZnO/ZrO2/Al2O3 catalyst,&;quot; Journal of Power Sources, vol. 159, no. 2, 2006, pp. 1296-1299.
73.J. Agrell, H. Birgersson, M. Boutonnet, I. Melián-Cabrera, R. M. Navarro and J. L. G. Fierro, &;quot;Production of hydrogen from methanol over Cu/ZnO catalysts promoted by ZrO2 and Al2O3,&;quot; Journal of Catalysis, vol. 219, no. 2, 2003, pp. 389-403.
74.P. P. C. Udani, P. V. D. S. Gunawardana, H. C. Lee and D. H. Kim, &;quot;Steam reforming and oxidative steam reforming of methanol over CuO–CeO2 catalysts,&;quot; International Journal of Hydrogen Energy, vol. 34, no. 18, 2009, pp. 7648-7655.
75.P. H. Matter, D. J. Braden and U. S. Ozkan, &;quot;Steam reforming of methanol to H2 over nonreduced Zr-containing CuO/ZnO catalysts,&;quot; Journal of Catalysis, vol. 223, no. 2, 2004, pp. 340-351.
76.P. H. Matter and U. S. Ozkan, &;quot;Effect of pretreatment conditions on Cu/Zn/Zr-based catalysts for the steam reforming of methanol to H2,&;quot; Journal of Catalysis, vol. 234, no. 2, 2005, pp. 463-475.
77.Y. Tanaka, T. Utaka, R. Kikuchi, K. Sasaki and K. Eguchi, &;quot;Water gas shift reaction over Cu-based mixed oxides for CO removal from the reformed fuels,&;quot; Applied Catalysis A: General, vol. 242, no. 2, 2003, pp. 287-295.
78.Y. Tanaka, T. Takeguchi, R. Kikuchi and K. Eguchi, &;quot;Influence of preparation method and additive for Cu–Mn spinel oxide catalyst on water gas shift reaction of reformed fuels,&;quot; Applied Catalysis A: General, vol. 279, no. 1-2, 2005, pp. 59-66.
79.J. Papavasiliou, G. Avgouropoulos and T. Ioannides, &;quot;In-situ combustion synthesis of structured Cu-Ce-O and Cu-Mn-O catalysts for the production and purification of hydrogen,&;quot; Applied Catalysis B: Environmental, vol. 66, no. 3-4, 2006, pp. 168-174.
80.J. Papavasiliou, G. Avgouropoulos and T. Ioannides, &;quot;Combined steam reforming of methanol over Cu–Mn spinel oxide catalysts,&;quot; Journal of Catalysis, vol. 251, no. 1, 2007, pp. 7-20.
81.J. W. Evans, M. S. Wainwright, A. J. Bridgewater and D. J. Young, &;quot;On the determination of copper surface area by reaction with nitrous oxide,&;quot; Applied Catalysis, vol. 7, no. 1, 1983, pp. 75-83.
82.C. J. G. Van Der Grift, A. F. H. Wielers, B. P. J. Joghi, J. Van Beijnum, M. De Boer, M. Versluijs-Helder and J. W. Geus, &;quot;Effect of the reduction treatment on the structure and reactivity of silica-supported copper particles,&;quot; Journal of Catalysis, vol. 131, no. 1, 1991, pp. 178-189.
83.M. F. Luo, P. Fang, M. He and Y. L. Xie, &;quot;In-situ XRD, raman, and TPR studies of CuO/Al2O3 catalysts for CO oxidation,&;quot; Journal of Molecular Catalysis A: Chemical, vol. 239, no. 1-2, 2005, pp. 243-248.
84.H. Yahiro, K. Nakaya, T. Yamamoto, K. Saiki and H. Yamaura, &;quot;Effect of calculation temperature on the catalytic activity of copper supported on γ-Alumina for the water-gas-shift reaction,&;quot; Catalysis Communication, vol. 7, no. 4, 2006, pp. 228-231.
85.Y. Kawamura, K. Yamamoto, N. Ogura, T. Katsumata and A. Igarashi, &;quot;Preparation of Cu/ZnO/Al2O3 catalyst for a micro methanol reformer,&;quot; Journal of Power Sources, vol. 150, 2005, pp. 20-26.
86.A. P. Tsai and M. Yoshimura, &;quot;Highly active quasicrystalline Al-Cu-Fe catalyst for steam reforming of methanol,&;quot; Applied Catalysis A: General, vol. 214, no. 2, 2001, pp. 237-241.
87.M. Turco, G. Bagnasco, C. Cammarano, P. Senese, U. Costantino and M. Sisani, &;quot;Cu/ZnO/Al2O3 catalysts for oxidative steam reforming of methanol: The role of Cu and the dispersing oxide matrix,&;quot; Applied Catalysis B: Environmental, vol. 77, no. 1-2, 2007, pp. 46-57.
88.C. J. Jiang, D. L. Trimm and M. S. Wainwright, &;quot;Kinetic study of steam reforming of methanol over copper-based catalysts,&;quot; Applied Catalysis A: General, vol. 93, no. 2, 1993, pp. 245-255.
89.N. Shimoda, K. Faungnawakij, R. Kikuchi, T. Fukunaga and K. Eguchi, &;quot;Catalytic performance enhancement by heat treatment of CuFe2O4 spinel and γ-alumina composite catalysts for steam reforming of dimethyl ether,&;quot; Applied Catalysis A: General, vol. 365, no. 1, 2009, pp. 71-78.
90.K. Eguchi, N. Shimoda, K. Faungnawakij, T. Matsui, R. Kikuchi and S. Kawashima, &;quot;Transmission electron microscopic observation on reduction process of copper-iron spinel catalyst for steam reforming of dimethyl ether,&;quot; Applied Catalysis B: Environmental, vol. 80, no. 1-2, 2008, pp. 156-167.
91.L. Gao, G. Sun and S. Kawi, &;quot;A study on methanol steam reforming to CO2 and H2 over the La2CuO4 nanofiber catalyst,&;quot; Journal of Solid State Chemistry, vol. 181, no. 1, 2008, pp. 7-13.
92.P. P. Fedorov, M. V. Nazarkin and R. M. Zakalyukin, &;quot;On polymorphism and morphotropism of rare earth sesquioxides,&;quot; Crystallography Reports, vol. 47, no. 2, 2002, pp. 281-286.
93.K. Faungnawakij, N. Shimoda, T. Fukunaga, R.i Kikuchi and K. Eguchi, &;quot;Cu-based spinel catalysts CuB2O4 (B = Fe, Mn, Cr, Ga, Al, Fe0.75Mn0.25) for steam reforming of dimethyl ether,&;quot; Applied Catalysis A: General, vol. 341, no. 1-2, 2008, pp. 139-145.
94.G. C. Chinchen, C. M. Hay, H. D. Vandervell and K. C. Waugh, &;quot;The measurement of copper surface areas by reactive frontal chromatography,&;quot; Journal of Catalysis, vol. 103, no. 1, 1987, pp. 79-86. (Chapter 3)
95.C. Song, &;quot;Fuel processing for low-temperature and high-temperature fuel cells: Challenges, and opportunities for sustainable development in the 21st century,&;quot; Catalysis Today, vol. 77, no. 1-2, 2002, pp. 17-49.
96.R. A. Lemons, &;quot;Fuel cells for transportation,&;quot; Journal of Power Sources, vol. 29, no. 1-2, 1990, pp. 251-264.
97.S. Sá, H. Silva, L. Brandão, J. M. Sousa and A. Mendes, &;quot;Catalysts for methanol steam reforming—A review,&;quot; Applied Catalysis B: Environmental, vol. 99, no. 1-2, 2010, pp. 43-57.
98.P. K. Cheekatamarla, C. M. Finnerty, &;quot;Reforming catalysts for hydrogen generation in fuel cell applications,&;quot; Journal of Power Sources, vol. 160, no. 1, 2006, pp. 490-499.
99.E. Schloeman, &;quot;Advances in ferrite microwave materials and devices,&;quot; Journal of Magnetism and Magnetic Materials, vol. 209, no. 1-3, 2000, pp. 15-20.
100.V. G. Harris, A. Geiler, Y. Chen, S. D. Yoon, M. Wu, A. Yang, Z. Chen, P. He, P. V. Parimi, X. Zuo, C. E. Patton, M. Abe, O. Acher and C. Vittoria, &;quot;Recent advances in processing and applications of microwave ferrites,&;quot; Journal of Magnetism and Magnetic Materials, vol. 321, no. 14, 2009, pp. 2035-2047.
101.T. K. Kundu, S. Mishra, N. Karak and P. Barik, &;quot;Effect of Ti4+ ions doping on microstructure and dc resistivity of nickel ferrites,&;quot; Journal of Physics and Chemistry of Solids, vol. 73, no. 4, 2012, pp. 579-583.
102.S. E. Shirsath, B. G. Toksha, M. L. Mane, V. N. Dhage, D. R. Shengule and K. M. Jadhav, &;quot;Frequency, temperature and In3+ dependent electrical conduction in NiFe2O4 powder,&;quot; Powder Technology, vol. 212, no. 1, 2011, pp. 218-223.
103.S. E. Shirsath, S. S. Jadhav, B. G. Toksha, S. M. Patange and K. M. Jadhav, &;quot;Influence of Ce4+ ions on the structural and magnetic properties of NiFe2O4,&;quot; Journal of Applied Physics, vol. 110, 2011, pp. 013914-1-013914-8.
104.G. Herrera and M. M. P. Moreno, &;quot;Microstructure dependence of the magnetic properties of sintered Ni–Zn ferrites by solid-state reaction doped with V2O3,&;quot; Journal of Materials Science, vol. 47, no. 4, 2012, pp. 1758-1766.
105.A. Ceylan, S. Ozcan, C. Ni and S. I. Shah, &;quot;Solid state reaction synthesis of NiFe2O4 nanoparticles,&;quot; Journal of Magnetism and Magnetic Materials, vol. 320, no. 6, 2008, pp. 857-863.
106.P. T. A. Santos, A. C. F. M. Costa, R. H. G. A. Kiminami, H. M. C. Andrade, H. L. Lira and L. Gama, &;quot;Synthesis of a NiFe2O4 catalyst for the preferential oxidation of carbon monoxide (PROX),&;quot; Journal of Alloys and Compounds, vol. 483, no. 1-2, 2009, pp. 399-401.
107.M. M. Rashad and O. A. Fouad, &;quot;Synthesis and characterization of nano-sized nickel ferrites from fly ash for catalytic oxidation of CO,&;quot; Materials Chemistry and Physics, vol. 94, no. 2-3, 2005, pp. 365-370.
108.M. S. Lee, J. Y. Lee, D. W. Lee, D. J. Moon and K. Y. Lee, &;quot;The effect of Zn addition into NiFe2O4 catalyst for high-temperature shift reaction of natural gas reformate assuming no external steam addition,&;quot; International Journal of Hydrogen Energy, vol. 37, no. 15, 2012, pp. 11218-11226.
109.J. Y. Lee, D. W. Lee, Y. K. Hong and K. Y. Lee, &;quot;The CO removal performances of Cr-free Fe/Ni catalysts for high temperature WGSR under LNG reformate condition without additional steam,&;quot; International Journal of Hydrogen Energy, vol. 36, no. 14, 2011, pp. 8173-8180.
110.J. Y. Lee, D. W. Lee, M. S. Lee and K. Y. Lee, &;quot;Cs-promoted Ni/Fe catalyst as a Cr-free, high temperature shift catalyst for steam methane reformate without additional supply of steam,&;quot; Catalysis Communications, vol. 15, no. 1, 2011, pp. 37-40.
111.A. C. F. M. Costa, R. T. Lula, R. H. G. A. Kiminami, L. F. V. Gama, A. A. D. Jesus and H. M. C. Andrade, &;quot;Preparation of nanostructured NiFe2O4 catalysts by combustion reaction,&;quot; Journal of Materials Science, vol. 41, no. 15, 2006, pp. 4871-4875.
112.S. Feng, W. Yang and Z. Wang, &;quot;Synthesis of porous NiFe2O4 microparticles and its catalytic properties for methane combustion,&;quot; Materials Science and Engineering: B, vol. 176, no. 18, 2011, pp. 1509-1512.
113.S. M. Hoque, Md. A. Choudhury and Md. F. Islam, &;quot;Characterization of Ni–Cu mixed spinel ferrite,&;quot; Journal of Magnetism and Magnetic Materials, vol. 251, no. 3, 2002, pp. 292-303.
114.E. P. Barrett, L. G. Joyner and P. P. Halenda, &;quot;The determination of pore volume and area distributions in porous substances. I. computations from nitrogen isotherms,&;quot; Journal of the American Chemical Society, vol. 73, no. 1, 1951, pp. 373-380.
115.W. K. Jozwiak, E. Kaczmarek, T. P. Maniecki, W. Ignaczak and W. Maniukiewicz, &;quot;Reduction behavior of iron oxides in hydrogen and carbon monoxide atmospheres,&;quot; Applied Catalysis A: General, vol. 326, no. 1, 2007, pp. 17-27.
116.L. J. Swartzendruber, Binary Alloy Phase Diagrams, Materials Park, Ohio: The Materials Information Society, 1990, pp. 1408-1410.
117.M. Bahgat, M. K. Paek and J. J. Pak, &;quot;Reduction kinetics and mechanisms of NiFe2O4 with synthesis of nanocrystalline Fe-Ni alloy,&;quot; Materials Transactions, vol. 48, no. 12, 2007, pp. 3132-3139.
118.D. J. Chakrabarti, D. E. Laughlin, S. W. Chen, Y. A. Chang, Binary Alloy Phase Diagrams, Materials Park, Ohio: The Materials Information Society, 1990, pp. 1442-1446. (Chapter 4)
119.H. Yamashita, M. Yoshikawa, T. Funabiki and S. Yoshida, &;quot;Catalysis by amorphous metal alloys. Part 2.-Effects of oxygen pretreatment on the catalytic activity of amorphous and crystallised Ni-P alloys,&;quot; Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, vol. 81, no. 10, 1985, pp. 2485-2493.
120.H. Okamoto, &;quot;Fe-Zr (Iron-Zirconium),&;quot; Journal of Phase Equilibria, vol. 18, no. 3, 1997, pp. 316.
121.Z. Song, X. Bao, U. Wild, M. Muhler and G. Ertl, &;quot;Oxidation of amorphous Ni–Zr alloys studied by XPS, UPS, ISS and XRD,&;quot; Applied Surface Science, vol. 134, no. 1-4, 1998, pp. 31-38.
122.A. Nobile, W. C. Mosley, J. S. Holder and K. N. Brooks, &;quot;Deuterium absorption and material phase characteristics of Zr2Fe,&;quot; Journal of Alloys and Compounds, vol. 206, no. 1, 1994, pp. 83-93.
123.V. A. Yartys, H. Fjellvåg, B. C. Hauback and A. B. Riabov, &;quot;Neutron diffraction studies of Zr-containing intermetallic hydrides with ordered hydrogen sublattice. I. Crystal structure of Zr2FeD5,&;quot; Journal of Alloys and Compounds, vol. 274, no. 1-2, 1998, pp. 217-221.
124.A. A. Lavrentyev, B. V. Gabrelian, P. N. Shkumat, I. Y. Nikiforov, I. Y. Zavaliy and O. Y. Khyzhun, &;quot;Electronic structure of Zr4Fe2O: Ab initio APW+LO calculations and X-ray spectroscopy studies,&;quot; Journal of Physics and Chemistry of Solids, vol. 74, no. 4, 2013, pp. 590-594.
125.I. Y. Zavaliy, A. B. Riabov, V. A. Yartys, G. Wiesinger, H. Michor and G. Hilscher, &;quot;(Hf,Zr)2Fe and Zr4Fe2O0.6 compounds and their hydrides: phase equilibria, crystal structure and magnetic properties,&;quot; Journal of Alloys and Compounds, vol. 265, no. 1-2, 1998, pp. 6-14.
126.E. Clementi, D. L. Raimondi and W. P. Reinhardt, &;quot;Atomic screening constants from SCF functions. II. atoms with 37 to 86 electrons,&;quot; The Journal of Chemical Physics, vol. 47, no. 4, 1967, pp. 1300-1307. 1967; 47: 1300-1307.
127.C. D. Wagner, W. M. Riggs, L. E. Davis and J. F. Moulder, Handbook of X-ray Photoelectron Spectroscopy, G.E. Muilenberg (editor), Perkin-Elmer, Physical Electronics Division, 1979.
128.J. F. Moulder, W. F. Stickle, P. E. Sobol and K. D. Bomben, Handbook of X-ray Photoelectron Spectroscopy, J. Chastain, R.C. King (editor), Perkin-Elmer, Physical Electronics Division, 1992.
129.S. Badrinarayanan and S. Sinha, &;quot;An XPS study of the nitrogen-implanted Zr76Fe24 metglass,&;quot; Journal of Physics: Condensed Matter, vol. 2, no. 43, 1990, pp. 8721-8724.
130.K. L. Håkansson, H. I. P. Johansson, and L. I. Johansson, &;quot;High-resolution core-level study of ZrC(100) and its reaction with oxygen,&;quot; Physical Review B, vol. 48, no. 4, 1993, pp. 2623-2626.
131.M. C. Biesinger, B. P. Payne, A. P. Grosvenor, L. W. M. Lau, A. R. Gerson and R. St. C. Smart, &;quot;Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni,&;quot; Applied Surface Science, vol. 257, no. 7, 2011, pp. 2717-2730.
132.A. Baiker, M. Maciejewski, S. Tagliaferri and P. Hug, &;quot;Carbon-monoxide oxidation over catalysts prepared by in-situ activation of amorphous gold-silver-zirconium and gold-iron-zirconium alloys,&;quot; Journal of Catalysis, vol. 151, no. 2, 1995, pp. 407-419.
133.B. Walz, P. Oelhafen, H. J. Güntherodt and A. Baiker, &;quot;Surface oxidation of amorphous Ni-Zr alloys,&;quot; Applied Surface Science, vol. 37, no. 3, 1989, pp. 337-352.
134.D. L. Cocke, M. S. Owens and R. B. Wright, &;quot;The surface oxidation and reduction chemistry of zirconium-nickel compounds examined by XPS,&;quot; Applied Surface Science, vol. 31, no. 3, 1988, pp. 341-369.
135.S. Kameoka and A. P. Tsai, &;quot;Oxidation behavior and catalytic property of intermetallic compound AuCu,&;quot; Catalysis Today, vol. 132, no. 1-4, 2008, pp. 88-92.
136.S. Sinha, S. Badrinarayanan and A. P. B. Sinha, &;quot;Interaction of oxygen with Zr76Fe24 metglass: An X-ray photoelectron spectroscopy study,&;quot; Journal of the Less Common Metals, vol. 125, 1986, pp. 85-95.
137.K. Duckers, H. P. Bonzel and D. A. Wesner, &;quot;Surface core level shifts of Pt(111) measured with Y Mχ radiation (132.3 eV),&;quot; Surface Science, vol. 166, no. 1, 1986, pp. 141-158.
138.B. J. Tan, K. J. Klabunde and P. M. A. Sherwood, &;quot;X-ray photoelectron spectroscopy studies of solvated metal atom dispersed catalysts. Monometallic iron and bimetallic iron-cobalt particles on alumina,&;quot; Chemistry of Materials, vol. 2, no. 2, 1990, pp. 186-191. (Chapter 5)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊