|
1.D. R. Gaskell, Introduction to Metallurgical Thermodynamics, New York: Hemisphere Publishing, 1981. (Chapter 1) 2.C. T. Campbell and K. A. Daube, &;quot;A surface science investigation of the water-gas shift reaction on Cu (111),&;quot; Journal of Catalysis, vol. 104, no. 1, 1987, pp. 109-119. 3.G. C. Chinchen and M. S. Spencer, &;quot;Sensitive and insensitive reactions on copper catalysts: the water-gas shift reaction and methanol synthesis from carbon dioxide,&;quot; Catalysis Today, vol.10, no. 3, 1991, pp. 293-301. 4.A. J. Elliot, R. A. Hadden, J. Tabatabali, K. C. Waugh and F. W. Zemicael, &;quot;Inverted temperature dependence of the decomposition of carbon dioxide on oxide-supported polycrystalline copper,&;quot; Journal of Catalysis, vol. 157, no. 1, 1995, pp. 153-161. 5.H. E. Curry-Hyde, M. S. Wainwright and D. J. Young, &;quot;Improvements to raney copper methanol synthesis catalysts through zinc impregnation: II. Surface area development,&;quot; Applied Catalysis, vol. 77, no. 1, 1991, pp. 89-94. 6.N. Takezawa and N. Iwasa, &;quot;Steam reforming and dehydrogenation of methanol: Difference in the catalytic functions of copper and group VIII metals,&;quot; Catalysis Today, vol. 36, no. 1, 1997, pp. 45-56. 7.T. Fujitani and J. Nakamura, &;quot;The chemical modification seen in the Cu/ZnO methanol synthesis catalysts,&;quot; Applied Catalysis A: General, vol. 191, no. 1-2, 2000, pp. 111-129. 8.K. Klier, &;quot;Methanol synthesis,&;quot; Advances in Catalysis, vol. 31, 1982, pp. 243-313. 9.D. S. Newsome, &;quot;The water-gas shift reaction,&;quot; Catalysis Reviews: Science and Engineering, vol. 21, no.2, 1980, pp. 275-318. 10.Y. Tanaka, T. Utaka, R. Kikuchi, T. Takeguchi, K. Sasaki and K. Eguchi, &;quot;Water gas shift reaction for the reformed fuels over Cu/MnO catalysts prepared via spinel-type oxide,&;quot; Journal of Catalysis, vol. 215, no. 2, 2003, pp. 271-278. 11.M. V. Twigg and M. S. Spencer, &;quot;Deactivation of copper metal catalysts for methanol decomposition, methanol steam reforming and methanol synthesis,&;quot; Topics in Catalysis, vol. 22, no. 3-4, 2003, pp. 191-203. 12.L. Ma, D. L. Trimm and M. S. Wainwright, &;quot;Structural and catalytic promotion of skeletal copper catalysts by zinc and chromium oxides,&;quot; Topics in Catalysis, vol. 8, no. 3-4, 1999, pp. 271-277. 13.J. Laine, Z. Ferrer and M. Labady, &;quot;Structure and activity of chromium-promoted raney copper catalysts for carbon monoxide oxidation,&;quot; Applied Catalysis, vol. 44, 1988, pp. 11-22. 14.S. Kameoka, T. Tanabe and A. P. Tsai, &;quot;Spinel CuFe2O4: a precursor for copper catalyst with high thermal stability and activity,&;quot; Catalysis Letters, vol. 100, no.1-2, 2005, pp. 89-93. 15.S. Kameoka, T. Tanabe and A. P. Tsai, &;quot;Self-assembled porous nano-composite with high catalytic performance by reduction of tetragonal spinel CuFe2O4,&;quot; Applied Catalysis A: General, vol. 375, no. 1, 2010, pp. 163-171. 16.T. Tanabe, S. Kameoka and A. P. Tsai, &;quot;A novel catalyst fabricated from Al–Cu–Fe quasicrystal for steam reforming of methanol,&;quot; Catalysis Today, vol. 111, 2006, pp. 153-157. 17.S. Kameoka, M. Okada and A. P. Tsai, &;quot;Preparation of a novel copper catalyst in terms of the immiscible interaction between copper and chromium,&;quot; Catalysis Letters, vol. 120, no. 3-4, 2008, pp. 252-256. 18.N. W. Grimes, &;quot;The spinels: versatile materials,&;quot; Physics in Technology, vol. 6, no. 1, 1975, pp. 22-40. 19.L. G. Tejuca and J. L. G. Fierro, Properties and Applications of Perovskite-Type Oxides, New York: Marcel Dekker, 1992. 20.K. Sekizawa, S. I. Yano, K. Eguchi and H. Arai, &;quot;Selective removal of CO in methanol reformed gas over Cu-supported mixed metal oxides,&;quot; Applied Catalysis A: General, vol. 169, no. 2, 1998, pp. 291-297. 21.T. Komatsu and A. Onda, &;quot;Catalytic properties of single-phase intermetallic compounds,&;quot; Catalysis Surveys from Asia, vol. 12, no. 1, 2008, pp. 6-15. 22.J. Graetz, &;quot;New approaches to hydrogen storage,&;quot; Chemical Society Reviews, vol. 38, no. 1, 2009, pp. 73-82. 23.K. Kovnir, M. Armbrüster, D. Teschner, T. V. Venkov, F. C. Jentoft, A. Knop-Gericke, Yu. Grin and R. Schlögl, &;quot;A new approach to well-defined, stable and site-isolated catalysts,&;quot; Science and Technology of Advanced Materials, vol. 8, no. 5, 2007, pp. 420-427. 24.M. Okadaa, A. Kamegawa, J. Nakahigashi, A. Yamaguchi, A. Fujita and M. Yamauchi, &;quot;New function of hydrogen in materials,&;quot; Materials Science and Engineering: B, vol. 173, no. 1-3, 2010, pp. 253-259. 25.S. Kameoka and A. P. Tsai, &;quot;CO oxidation over a fine porous gold catalyst fabricated by selective leaching from an ordered AuCu3 intermetallic compound,&;quot; Catalysis Letters, vol. 121, no. 3-4, 2008, pp. 337-341. 26.W. E. Wallace, &;quot;Intermetallic compounds in catalysis,&;quot; ChemTech , vol. 12, 1982, pp. 752-754. 27.N. Endo, S. Ito, K. Tomishige, S. Kameoka, A. P. Tsai, T. Hirata and C. Nishimura, &;quot;CO hydrogenation over a hydrogen-induced amorphization of intermetallic compound CeNi2,&;quot; Catalysis Today, vol. 164, no. 1, 2011, pp. 293-296. 28.N. Endo, S. Kameoka, A. P. Tsai, T. Hirata and C. Nishimura, &;quot;High catalytic activity of hydrogenation of ethylene over an amorphous CeNi2Hx,&;quot; Materials Transactions JIM, vol. 52, no. 9, 2011, pp. 1794-1798. 29.N. Endo, S. Kameoka, A. P. Tsai, T. Hirata and C. Nishimura, &;quot;Preparation of nano-composited catalyst from the bulk intermetallic compound AuZr3 with hydrogen absorption,&;quot; Catalysis Letters, vol. 139, no. 1-2, 2010, pp. 67-71. 30.N. Endo, S. Kameoka, A. P. Tsai, Z. Lingling, T. Hirata and C. Nishimura, &;quot;Hydrogen absorption properties of intermetallic compounds in the Au–Zr binary system,&;quot; Journal of Alloys and Compounds, vol. 485, no. 1-2, 2009, pp. 588-592. 31.R. J. Cava, H. Takagi, B. Batlogg, H. W. Zandbergen, J. J. Krajewski, W. F. Peck et al., &;quot;Superconductivity at 23 K in yttrium palladium boride carbide,&;quot; Nature, vol. 367, 1994, pp. 146-148. 32.R. J. Cava, H. Takagi, H. W. Zandbergen, J. J. Krajewski, W. F. Peck, T. Siegrist et al., &;quot;Superconductivity in the quaternary intermetallic compounds LnNi2B2C,&;quot; Nature, vol. 367, 1994, pp. 252-253. 33.T. Takeshita, W. E. Wallace and R. S. Craig, &;quot;Rare earth intermetallics as synthetic ammonia catalysts,&;quot; Journal of Catalysis, vol. 44, no. 2, 1976, pp. 236-243. 34.K. Soga, H. Imamura and S. Ikeda, &;quot;Hydrogenation of ethylene over lanthanum-nickel (LaNi5) alloy,&;quot; The Journal of Physical Chemistry, vol. 81, no. 18, 1977, pp. 1762-1766. 35.C. A. Luengo, A. L. Cabrera, H. B. MacKay and M. B. Maple, &;quot;Catalysis of carbon monoxide and carbon dioxide methanation by CeAl2, CeCo2, CeNi2, Co, and Ni,&;quot; Journal of Catalysis, vol. 47, no. 1, 1977, pp. 1-10. 36.A. Elattar, T. Takeshita, W. E. Wallace and R. S. Craig, &;quot;Intermetallic compounds of the type MNi5 as methanation catalysts,&;quot; Science, vol. 80, 1977, pp. 1093-1094. 37.M. Raney, US Patent 1628190, 1927. 38.S. Sane, J.M. Bonnier, J.P. Damon and J. Masson, &;quot;Raney metal catalysts: I. comparative properties of raney nickel proceeding from Ni-Ai intermetallic phases,&;quot; Applied Catalysis, vol. 9, no. 1, 1984, pp. 69-83. 39.F. Devred, A. H. Gieske, N. Adkins, U. Dahlborg, C. M. Bao, M. Calvo-Dahlborg, J. W. Bakker and B. E. Nieuwenhuys, &;quot;Influence of phase composition and particle size of atomised Ni–Al alloy samples on the catalytic performance of raney-type nickel catalysts,&;quot; Applied Catalysis A: General, vol. 356, no. 2, 2009, pp. 154-161. 40.W. Klement, R. H. Willens and P. Duwez, &;quot;Non-crystalline structure in solidified gold–silicon alloys,&;quot; Nature, vol. 187, 1960, pp. 869-870. 41.H. S. Chen and C. E. Miller, &;quot;A rapid quenching technique for the preparation of thin uniform films of amorphous solids,&;quot; Review of Scientific Instruments, vol. 41, 1970, pp. 1237-1238. 42.H. H. Liebermann and C. D. Graham, &;quot;Production of amorphous alloy ribbons and effects of apparatus parameters on ribbon dimensions,&;quot; IEEE Transactions on Magnetics, vol. 12, no. 6, 1976, pp. 921-923. 43.A. Yokoyama, H. Komiyama and H. Inoue, &;quot;The hydrogenation of carbon monoxide by amorphous ribbons,&;quot; Journal of Catalysis, vol. 68, no. 2, 1981, pp. 355-361. 44.A. Inoue, &;quot;Stabilization of metallic supercooled liquid and bulk amorphous alloys,&;quot; Acta Materialia, vol. 48, no. 1, 2000, pp. 279-306. 45.S. Yoshida, H. Yamashita, T. Funabiki and T. Yonezawa, &;quot;Catalysis by amorphous metal alloys. Part 1. - Hydrogenation of olefins over amorphous Ni-P and Ni-B alloys,&;quot; Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, vol. 80, no. 6, 1984, pp. 1435-1446. 46.H. Yamashita, M. Yoshikawa, T. Funabiki and S. Yoshida, &;quot;Catalysis by amorphous metal alloys. Part 2. - effects of oxygen pretreatment on the catalytic activity of amorphous and crystallised Ni-P alloys,&;quot; Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, vol. 81, no. 10, 1985, pp. 2485-2493. 47.M. Yamasaki, H. Habazaki, T. Yoshida, E. Akiyama, A. Kawashima, K. Asami and et al., &;quot;Compositional dependence of the CO2 methanation activity of Ni/ZrO2 catalysts prepared from amorphous Ni-Zr alloy precursors,&;quot; Applied Catalysis A: General, vol. 163, no. 1-2, 1997, pp. 187-197. 48.M. Yamasaki, H. Habazaki, K. Asami, K. Izumiya and K. Hashimoto, &;quot;Effect of tetragonal ZrO2 on the catalytic activity of Ni/ZrO2 catalyst prepared from amorphous Ni-Zr alloys,&;quot; Catalysis Communications, vol. 7, no. 1, 2006, pp. 24-28. 49.M. Yamasakia, M. Komori, E. Akiyama, H. Habazaki, A. Kawashima, K. Asami and K. Hashimoto, &;quot;CO2 methanation catalysts prepared from amorphous Ni-Zr-Sm and Ni-Zr-misch metal alloy precursors,&;quot; Materials Science and Engineering: A, vol. 267, no. 2, 1999, pp. 220-226. 50.A. Baiker, D. Gasser, J. Lenzner, A. Reller and R. Schlogl, &;quot;Oxidation of carbon monoxide over palladium on zirconia prepared from amorphous Pd-Zr alloy I. bulk structural, morphological, and catalytic properties of catalyst,&;quot; Journal of Catalysis, vol. 126, no. 2, 1990, pp. 555-571. 51.G. C. Bond, P. A. Sermon, G. Webb, D. A. Buchanan and P. B. Wells, &;quot;Hydrogenation over supported gold catalysts,&;quot; Journal of the Chemical Society, Chemical Communications, no. 13, 1973, pp. 444b-445. 52.G. C. Bond and D. T. Thompson, &;quot;Catalysis by gold,&;quot; Catalysis Reviews - Science and Engineering, vol. 41, no. 3-4, 1999, pp. 319-388. 53.M. Haruta, T. Kobayashi, H. Sano and N. Yamada, &;quot;Novel gold catalysts for the oxidation of carbon monoxide at a temperature far below 0°C,&;quot; Chemistry Letters, vol. 16, no. 2, 1987, pp. 405-408. 54.M. M. Schubert, S. Hackenberg, A. C. van Veen, M. Muhler, V. Plzak and R. J. Behm, &;quot;CO oxidation over supported gold catalysts—“inert” and “active”support materials and their role for the oxygen supply during reaction,&;quot; Journal of Catalysis, vol. 197, no. 1, 2001, pp. 113-122. 55.H. Liu, A. I. Kozlov, A. P. Kozlova, T. Shido, K. Asakura and Y. Iwasawa, &;quot;Active oxygen species and mechanism for low-temperature CO oxidation reaction on a TiO2-supported Au catalyst prepared from Au(PPh3)(NO3) and as-precipitated titanium hydroxide,&;quot; Journal of Catalysis, vol. 185, no. 2, 1999, pp. 252-264. 56.P. A. Sermon, G. C. Bond and P. B. Wells, &;quot;Hydrogenation of alkenes over supported gold,&;quot; Journal of the Chemical Society, Faraday Transactions 1, vol. 75, no. 0, 1979, pp. 385-394. 57.M. Bowker, A. Nuhu and J. Soares, &;quot;High activity supported gold catalysts by incipient wetness impregnation,&;quot; Catalysis Today, vol. 122, no. 3-4, 2007, pp. 245-247. 58.M. Haruta, N. Yamada, T. Kobayashi and S. Iijima, &;quot;Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide,&;quot; Journal of Catalysis, vol. 115, no. 2, 1989, pp. 301-309. 59.A. Knell, P. Barnickel, A. Baiker and A. Wokaun, &;quot;CO oxidation over Au/ZrO2 catalysts: activity, deactivation behavior, and reaction mechanism,&;quot; Journal of Catalysis, vol. 137, no. 2, 1992, pp. 306-321. 60.G. Avgouropoulos, T. Ioannides, C. Papadopoulou, J. Batista, S. Hocevar and H. K. Matralis, &;quot;A comparative study of Pt/γ-Al2O3, Au/α-Fe2O3 and CuO–CeO2 catalysts for the selective oxidation of carbon monoxide in excess hydrogen,&;quot; Catalysis Today, vol. 75, no. 1-4, 2002, pp. 157-167. 61.M. Haruta, S. Tsubota, T. Kobayashi, H. Kageyama, M. J. Genet and B. Delmon, &;quot;Low-Temperature Oxidation of CO over Gold Supported on TiO2, α-Fe2O3, and Co3O4,&;quot; Journal of Catalysis, vol. 144, no. 1, 1993, pp. 175-192. 62.A. Wolf and F. Schüth, &;quot;A systematic study of the synthesis conditions for the preparation of highly active gold catalysts,&;quot; Applied Catalysis A: General, vol. 226, no. 1-2, 2002, pp. 1-13. 63.G. R. Bamwenda, S. Tsubota, T. Nakamura and M. Haruta, &;quot;The influence of the preparation methods on the catalytic activity of platinum and gold supported on TiO2 for CO oxidation,&;quot; Catalysis Letters, vol. 44, no. 1-2, 1997, pp. 83-87. 64.C. K. Costello, M. C. Kung, H. S. Oh, Y. Wang and H. H. Kung, &;quot;Nature of the active site for CO oxidation on highly active Au/γ-Al2O3,&;quot; Applied Catalysis A: General, vol. 232, no. 1-2, 2002, pp. 159-168. 65.F. Moreau, G. C. Bond and A. O. Taylor, &;quot;Gold on titania catalysts for the oxidation of carbon monoxide: control of pH during preparation with various gold contents,&;quot; Journal of Catalysis, vol. 231, no. 1, 2005, pp. 105-114. 66.M. Haruta, &;quot;Catalysis of gold nanoparticles deposited on metal oxides,&;quot; CATTECH, vol. 6, no. 3, 2002, pp. 102-115. 67.E. D. Park and J. S. Lee, &;quot;Effects of pretreatment conditions on CO oxidation over supported Au catalysts,&;quot; Journal of Catalysis, vol. 186, no. 1, 1999, pp. 1-11. 68.G. C Bond and D. T. Thompson, &;quot;Gold-catalysed oxidation of carbon monoxide,&;quot; Gold Bulletin, vol. 33, no. 2, 2000, pp. 41-50. (Chapter 2) 69.B. Lindström, L. J. Pettersson and P. G. Menon, &;quot;Activity and characterization of Cu/Zn, Cu/Cr and Cu/Zr on γ-alumina for methanol reforming for fuel cell vehicles,&;quot; Applied Catalysis A: General, vol. 234, no. 1-2, 2002, pp. 111-125. 70.S. Patel and K. K. Pant, &;quot;Activity and stability enhancement of copper–alumina catalysts using cerium and zinc promoters for the selective production of hydrogen via steam reforming of methanol,&;quot; Journal of Power Sources, vol. 159, no. 1, 2006, pp. 139-143. 71.S. D. Jones and H. E. Hagelin-Weaver, &;quot;Steam reforming of methanol over CeO2- and ZrO2-promoted Cu-ZnO catalysts supported on nanoparticle Al2O3,&;quot; Applied Catalysis B: Environmental, vol. 90, no. 1-2, 2009, pp. 195-204. 72.H. Jeong, K. I. Kim, T. H. Kim, C. H. Ko, H. C. Park and I. K. Song, &;quot;Hydrogen production by steam reforming of methanol in a micro-channel reactor coated with Cu/ZnO/ZrO2/Al2O3 catalyst,&;quot; Journal of Power Sources, vol. 159, no. 2, 2006, pp. 1296-1299. 73.J. Agrell, H. Birgersson, M. Boutonnet, I. Melián-Cabrera, R. M. Navarro and J. L. G. Fierro, &;quot;Production of hydrogen from methanol over Cu/ZnO catalysts promoted by ZrO2 and Al2O3,&;quot; Journal of Catalysis, vol. 219, no. 2, 2003, pp. 389-403. 74.P. P. C. Udani, P. V. D. S. Gunawardana, H. C. Lee and D. H. Kim, &;quot;Steam reforming and oxidative steam reforming of methanol over CuO–CeO2 catalysts,&;quot; International Journal of Hydrogen Energy, vol. 34, no. 18, 2009, pp. 7648-7655. 75.P. H. Matter, D. J. Braden and U. S. Ozkan, &;quot;Steam reforming of methanol to H2 over nonreduced Zr-containing CuO/ZnO catalysts,&;quot; Journal of Catalysis, vol. 223, no. 2, 2004, pp. 340-351. 76.P. H. Matter and U. S. Ozkan, &;quot;Effect of pretreatment conditions on Cu/Zn/Zr-based catalysts for the steam reforming of methanol to H2,&;quot; Journal of Catalysis, vol. 234, no. 2, 2005, pp. 463-475. 77.Y. Tanaka, T. Utaka, R. Kikuchi, K. Sasaki and K. Eguchi, &;quot;Water gas shift reaction over Cu-based mixed oxides for CO removal from the reformed fuels,&;quot; Applied Catalysis A: General, vol. 242, no. 2, 2003, pp. 287-295. 78.Y. Tanaka, T. Takeguchi, R. Kikuchi and K. Eguchi, &;quot;Influence of preparation method and additive for Cu–Mn spinel oxide catalyst on water gas shift reaction of reformed fuels,&;quot; Applied Catalysis A: General, vol. 279, no. 1-2, 2005, pp. 59-66. 79.J. Papavasiliou, G. Avgouropoulos and T. Ioannides, &;quot;In-situ combustion synthesis of structured Cu-Ce-O and Cu-Mn-O catalysts for the production and purification of hydrogen,&;quot; Applied Catalysis B: Environmental, vol. 66, no. 3-4, 2006, pp. 168-174. 80.J. Papavasiliou, G. Avgouropoulos and T. Ioannides, &;quot;Combined steam reforming of methanol over Cu–Mn spinel oxide catalysts,&;quot; Journal of Catalysis, vol. 251, no. 1, 2007, pp. 7-20. 81.J. W. Evans, M. S. Wainwright, A. J. Bridgewater and D. J. Young, &;quot;On the determination of copper surface area by reaction with nitrous oxide,&;quot; Applied Catalysis, vol. 7, no. 1, 1983, pp. 75-83. 82.C. J. G. Van Der Grift, A. F. H. Wielers, B. P. J. Joghi, J. Van Beijnum, M. De Boer, M. Versluijs-Helder and J. W. Geus, &;quot;Effect of the reduction treatment on the structure and reactivity of silica-supported copper particles,&;quot; Journal of Catalysis, vol. 131, no. 1, 1991, pp. 178-189. 83.M. F. Luo, P. Fang, M. He and Y. L. Xie, &;quot;In-situ XRD, raman, and TPR studies of CuO/Al2O3 catalysts for CO oxidation,&;quot; Journal of Molecular Catalysis A: Chemical, vol. 239, no. 1-2, 2005, pp. 243-248. 84.H. Yahiro, K. Nakaya, T. Yamamoto, K. Saiki and H. Yamaura, &;quot;Effect of calculation temperature on the catalytic activity of copper supported on γ-Alumina for the water-gas-shift reaction,&;quot; Catalysis Communication, vol. 7, no. 4, 2006, pp. 228-231. 85.Y. Kawamura, K. Yamamoto, N. Ogura, T. Katsumata and A. Igarashi, &;quot;Preparation of Cu/ZnO/Al2O3 catalyst for a micro methanol reformer,&;quot; Journal of Power Sources, vol. 150, 2005, pp. 20-26. 86.A. P. Tsai and M. Yoshimura, &;quot;Highly active quasicrystalline Al-Cu-Fe catalyst for steam reforming of methanol,&;quot; Applied Catalysis A: General, vol. 214, no. 2, 2001, pp. 237-241. 87.M. Turco, G. Bagnasco, C. Cammarano, P. Senese, U. Costantino and M. Sisani, &;quot;Cu/ZnO/Al2O3 catalysts for oxidative steam reforming of methanol: The role of Cu and the dispersing oxide matrix,&;quot; Applied Catalysis B: Environmental, vol. 77, no. 1-2, 2007, pp. 46-57. 88.C. J. Jiang, D. L. Trimm and M. S. Wainwright, &;quot;Kinetic study of steam reforming of methanol over copper-based catalysts,&;quot; Applied Catalysis A: General, vol. 93, no. 2, 1993, pp. 245-255. 89.N. Shimoda, K. Faungnawakij, R. Kikuchi, T. Fukunaga and K. Eguchi, &;quot;Catalytic performance enhancement by heat treatment of CuFe2O4 spinel and γ-alumina composite catalysts for steam reforming of dimethyl ether,&;quot; Applied Catalysis A: General, vol. 365, no. 1, 2009, pp. 71-78. 90.K. Eguchi, N. Shimoda, K. Faungnawakij, T. Matsui, R. Kikuchi and S. Kawashima, &;quot;Transmission electron microscopic observation on reduction process of copper-iron spinel catalyst for steam reforming of dimethyl ether,&;quot; Applied Catalysis B: Environmental, vol. 80, no. 1-2, 2008, pp. 156-167. 91.L. Gao, G. Sun and S. Kawi, &;quot;A study on methanol steam reforming to CO2 and H2 over the La2CuO4 nanofiber catalyst,&;quot; Journal of Solid State Chemistry, vol. 181, no. 1, 2008, pp. 7-13. 92.P. P. Fedorov, M. V. Nazarkin and R. M. Zakalyukin, &;quot;On polymorphism and morphotropism of rare earth sesquioxides,&;quot; Crystallography Reports, vol. 47, no. 2, 2002, pp. 281-286. 93.K. Faungnawakij, N. Shimoda, T. Fukunaga, R.i Kikuchi and K. Eguchi, &;quot;Cu-based spinel catalysts CuB2O4 (B = Fe, Mn, Cr, Ga, Al, Fe0.75Mn0.25) for steam reforming of dimethyl ether,&;quot; Applied Catalysis A: General, vol. 341, no. 1-2, 2008, pp. 139-145. 94.G. C. Chinchen, C. M. Hay, H. D. Vandervell and K. C. Waugh, &;quot;The measurement of copper surface areas by reactive frontal chromatography,&;quot; Journal of Catalysis, vol. 103, no. 1, 1987, pp. 79-86. (Chapter 3) 95.C. Song, &;quot;Fuel processing for low-temperature and high-temperature fuel cells: Challenges, and opportunities for sustainable development in the 21st century,&;quot; Catalysis Today, vol. 77, no. 1-2, 2002, pp. 17-49. 96.R. A. Lemons, &;quot;Fuel cells for transportation,&;quot; Journal of Power Sources, vol. 29, no. 1-2, 1990, pp. 251-264. 97.S. Sá, H. Silva, L. Brandão, J. M. Sousa and A. Mendes, &;quot;Catalysts for methanol steam reforming—A review,&;quot; Applied Catalysis B: Environmental, vol. 99, no. 1-2, 2010, pp. 43-57. 98.P. K. Cheekatamarla, C. M. Finnerty, &;quot;Reforming catalysts for hydrogen generation in fuel cell applications,&;quot; Journal of Power Sources, vol. 160, no. 1, 2006, pp. 490-499. 99.E. Schloeman, &;quot;Advances in ferrite microwave materials and devices,&;quot; Journal of Magnetism and Magnetic Materials, vol. 209, no. 1-3, 2000, pp. 15-20. 100.V. G. Harris, A. Geiler, Y. Chen, S. D. Yoon, M. Wu, A. Yang, Z. Chen, P. He, P. V. Parimi, X. Zuo, C. E. Patton, M. Abe, O. Acher and C. Vittoria, &;quot;Recent advances in processing and applications of microwave ferrites,&;quot; Journal of Magnetism and Magnetic Materials, vol. 321, no. 14, 2009, pp. 2035-2047. 101.T. K. Kundu, S. Mishra, N. Karak and P. Barik, &;quot;Effect of Ti4+ ions doping on microstructure and dc resistivity of nickel ferrites,&;quot; Journal of Physics and Chemistry of Solids, vol. 73, no. 4, 2012, pp. 579-583. 102.S. E. Shirsath, B. G. Toksha, M. L. Mane, V. N. Dhage, D. R. Shengule and K. M. Jadhav, &;quot;Frequency, temperature and In3+ dependent electrical conduction in NiFe2O4 powder,&;quot; Powder Technology, vol. 212, no. 1, 2011, pp. 218-223. 103.S. E. Shirsath, S. S. Jadhav, B. G. Toksha, S. M. Patange and K. M. Jadhav, &;quot;Influence of Ce4+ ions on the structural and magnetic properties of NiFe2O4,&;quot; Journal of Applied Physics, vol. 110, 2011, pp. 013914-1-013914-8. 104.G. Herrera and M. M. P. Moreno, &;quot;Microstructure dependence of the magnetic properties of sintered Ni–Zn ferrites by solid-state reaction doped with V2O3,&;quot; Journal of Materials Science, vol. 47, no. 4, 2012, pp. 1758-1766. 105.A. Ceylan, S. Ozcan, C. Ni and S. I. Shah, &;quot;Solid state reaction synthesis of NiFe2O4 nanoparticles,&;quot; Journal of Magnetism and Magnetic Materials, vol. 320, no. 6, 2008, pp. 857-863. 106.P. T. A. Santos, A. C. F. M. Costa, R. H. G. A. Kiminami, H. M. C. Andrade, H. L. Lira and L. Gama, &;quot;Synthesis of a NiFe2O4 catalyst for the preferential oxidation of carbon monoxide (PROX),&;quot; Journal of Alloys and Compounds, vol. 483, no. 1-2, 2009, pp. 399-401. 107.M. M. Rashad and O. A. Fouad, &;quot;Synthesis and characterization of nano-sized nickel ferrites from fly ash for catalytic oxidation of CO,&;quot; Materials Chemistry and Physics, vol. 94, no. 2-3, 2005, pp. 365-370. 108.M. S. Lee, J. Y. Lee, D. W. Lee, D. J. Moon and K. Y. Lee, &;quot;The effect of Zn addition into NiFe2O4 catalyst for high-temperature shift reaction of natural gas reformate assuming no external steam addition,&;quot; International Journal of Hydrogen Energy, vol. 37, no. 15, 2012, pp. 11218-11226. 109.J. Y. Lee, D. W. Lee, Y. K. Hong and K. Y. Lee, &;quot;The CO removal performances of Cr-free Fe/Ni catalysts for high temperature WGSR under LNG reformate condition without additional steam,&;quot; International Journal of Hydrogen Energy, vol. 36, no. 14, 2011, pp. 8173-8180. 110.J. Y. Lee, D. W. Lee, M. S. Lee and K. Y. Lee, &;quot;Cs-promoted Ni/Fe catalyst as a Cr-free, high temperature shift catalyst for steam methane reformate without additional supply of steam,&;quot; Catalysis Communications, vol. 15, no. 1, 2011, pp. 37-40. 111.A. C. F. M. Costa, R. T. Lula, R. H. G. A. Kiminami, L. F. V. Gama, A. A. D. Jesus and H. M. C. Andrade, &;quot;Preparation of nanostructured NiFe2O4 catalysts by combustion reaction,&;quot; Journal of Materials Science, vol. 41, no. 15, 2006, pp. 4871-4875. 112.S. Feng, W. Yang and Z. Wang, &;quot;Synthesis of porous NiFe2O4 microparticles and its catalytic properties for methane combustion,&;quot; Materials Science and Engineering: B, vol. 176, no. 18, 2011, pp. 1509-1512. 113.S. M. Hoque, Md. A. Choudhury and Md. F. Islam, &;quot;Characterization of Ni–Cu mixed spinel ferrite,&;quot; Journal of Magnetism and Magnetic Materials, vol. 251, no. 3, 2002, pp. 292-303. 114.E. P. Barrett, L. G. Joyner and P. P. Halenda, &;quot;The determination of pore volume and area distributions in porous substances. I. computations from nitrogen isotherms,&;quot; Journal of the American Chemical Society, vol. 73, no. 1, 1951, pp. 373-380. 115.W. K. Jozwiak, E. Kaczmarek, T. P. Maniecki, W. Ignaczak and W. Maniukiewicz, &;quot;Reduction behavior of iron oxides in hydrogen and carbon monoxide atmospheres,&;quot; Applied Catalysis A: General, vol. 326, no. 1, 2007, pp. 17-27. 116.L. J. Swartzendruber, Binary Alloy Phase Diagrams, Materials Park, Ohio: The Materials Information Society, 1990, pp. 1408-1410. 117.M. Bahgat, M. K. Paek and J. J. Pak, &;quot;Reduction kinetics and mechanisms of NiFe2O4 with synthesis of nanocrystalline Fe-Ni alloy,&;quot; Materials Transactions, vol. 48, no. 12, 2007, pp. 3132-3139. 118.D. J. Chakrabarti, D. E. Laughlin, S. W. Chen, Y. A. Chang, Binary Alloy Phase Diagrams, Materials Park, Ohio: The Materials Information Society, 1990, pp. 1442-1446. (Chapter 4) 119.H. Yamashita, M. Yoshikawa, T. Funabiki and S. Yoshida, &;quot;Catalysis by amorphous metal alloys. Part 2.-Effects of oxygen pretreatment on the catalytic activity of amorphous and crystallised Ni-P alloys,&;quot; Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, vol. 81, no. 10, 1985, pp. 2485-2493. 120.H. Okamoto, &;quot;Fe-Zr (Iron-Zirconium),&;quot; Journal of Phase Equilibria, vol. 18, no. 3, 1997, pp. 316. 121.Z. Song, X. Bao, U. Wild, M. Muhler and G. Ertl, &;quot;Oxidation of amorphous Ni–Zr alloys studied by XPS, UPS, ISS and XRD,&;quot; Applied Surface Science, vol. 134, no. 1-4, 1998, pp. 31-38. 122.A. Nobile, W. C. Mosley, J. S. Holder and K. N. Brooks, &;quot;Deuterium absorption and material phase characteristics of Zr2Fe,&;quot; Journal of Alloys and Compounds, vol. 206, no. 1, 1994, pp. 83-93. 123.V. A. Yartys, H. Fjellvåg, B. C. Hauback and A. B. Riabov, &;quot;Neutron diffraction studies of Zr-containing intermetallic hydrides with ordered hydrogen sublattice. I. Crystal structure of Zr2FeD5,&;quot; Journal of Alloys and Compounds, vol. 274, no. 1-2, 1998, pp. 217-221. 124.A. A. Lavrentyev, B. V. Gabrelian, P. N. Shkumat, I. Y. Nikiforov, I. Y. Zavaliy and O. Y. Khyzhun, &;quot;Electronic structure of Zr4Fe2O: Ab initio APW+LO calculations and X-ray spectroscopy studies,&;quot; Journal of Physics and Chemistry of Solids, vol. 74, no. 4, 2013, pp. 590-594. 125.I. Y. Zavaliy, A. B. Riabov, V. A. Yartys, G. Wiesinger, H. Michor and G. Hilscher, &;quot;(Hf,Zr)2Fe and Zr4Fe2O0.6 compounds and their hydrides: phase equilibria, crystal structure and magnetic properties,&;quot; Journal of Alloys and Compounds, vol. 265, no. 1-2, 1998, pp. 6-14. 126.E. Clementi, D. L. Raimondi and W. P. Reinhardt, &;quot;Atomic screening constants from SCF functions. II. atoms with 37 to 86 electrons,&;quot; The Journal of Chemical Physics, vol. 47, no. 4, 1967, pp. 1300-1307. 1967; 47: 1300-1307. 127.C. D. Wagner, W. M. Riggs, L. E. Davis and J. F. Moulder, Handbook of X-ray Photoelectron Spectroscopy, G.E. Muilenberg (editor), Perkin-Elmer, Physical Electronics Division, 1979. 128.J. F. Moulder, W. F. Stickle, P. E. Sobol and K. D. Bomben, Handbook of X-ray Photoelectron Spectroscopy, J. Chastain, R.C. King (editor), Perkin-Elmer, Physical Electronics Division, 1992. 129.S. Badrinarayanan and S. Sinha, &;quot;An XPS study of the nitrogen-implanted Zr76Fe24 metglass,&;quot; Journal of Physics: Condensed Matter, vol. 2, no. 43, 1990, pp. 8721-8724. 130.K. L. Håkansson, H. I. P. Johansson, and L. I. Johansson, &;quot;High-resolution core-level study of ZrC(100) and its reaction with oxygen,&;quot; Physical Review B, vol. 48, no. 4, 1993, pp. 2623-2626. 131.M. C. Biesinger, B. P. Payne, A. P. Grosvenor, L. W. M. Lau, A. R. Gerson and R. St. C. Smart, &;quot;Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni,&;quot; Applied Surface Science, vol. 257, no. 7, 2011, pp. 2717-2730. 132.A. Baiker, M. Maciejewski, S. Tagliaferri and P. Hug, &;quot;Carbon-monoxide oxidation over catalysts prepared by in-situ activation of amorphous gold-silver-zirconium and gold-iron-zirconium alloys,&;quot; Journal of Catalysis, vol. 151, no. 2, 1995, pp. 407-419. 133.B. Walz, P. Oelhafen, H. J. Güntherodt and A. Baiker, &;quot;Surface oxidation of amorphous Ni-Zr alloys,&;quot; Applied Surface Science, vol. 37, no. 3, 1989, pp. 337-352. 134.D. L. Cocke, M. S. Owens and R. B. Wright, &;quot;The surface oxidation and reduction chemistry of zirconium-nickel compounds examined by XPS,&;quot; Applied Surface Science, vol. 31, no. 3, 1988, pp. 341-369. 135.S. Kameoka and A. P. Tsai, &;quot;Oxidation behavior and catalytic property of intermetallic compound AuCu,&;quot; Catalysis Today, vol. 132, no. 1-4, 2008, pp. 88-92. 136.S. Sinha, S. Badrinarayanan and A. P. B. Sinha, &;quot;Interaction of oxygen with Zr76Fe24 metglass: An X-ray photoelectron spectroscopy study,&;quot; Journal of the Less Common Metals, vol. 125, 1986, pp. 85-95. 137.K. Duckers, H. P. Bonzel and D. A. Wesner, &;quot;Surface core level shifts of Pt(111) measured with Y Mχ radiation (132.3 eV),&;quot; Surface Science, vol. 166, no. 1, 1986, pp. 141-158. 138.B. J. Tan, K. J. Klabunde and P. M. A. Sherwood, &;quot;X-ray photoelectron spectroscopy studies of solvated metal atom dispersed catalysts. Monometallic iron and bimetallic iron-cobalt particles on alumina,&;quot; Chemistry of Materials, vol. 2, no. 2, 1990, pp. 186-191. (Chapter 5)
|