跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.182) 您好!臺灣時間:2025/10/09 19:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:賴昶憲
研究生(外文):Lai,Chang Hsien
論文名稱:製鋁工業廢水的混凝處理
論文名稱(外文):Coagulation treatment of aluminum industrial wastewater
指導教授:呂晃志
指導教授(外文):LEU,HOANG-JYH
口試委員:呂晃志林孫基林屏杰
口試委員(外文):LEU,HOANG-JYHLIN,SUN-JIPing-Jei Lin
口試日期:2018-07-26
學位類別:碩士
校院名稱:逢甲大學
系所名稱:綠色能源科技碩士學位學程
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:59
中文關鍵詞:製鋁廢水微奈米級氫氧化鈣生物成分絮凝劑
外文關鍵詞:wastewater of aluminum-manufacturingcalcium hydroxidebio-flocculant agent
相關次數:
  • 被引用被引用:0
  • 點閱點閱:384
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
製鋁工業於整個重金屬體系中,承載了舉足輕重的地位,其具有賦予鋁特殊的金屬性質與高度附加價值的能力,開拓了鋁金屬產品更寬廣的應用範圍及商業市場。凡從事鋁金屬之冶煉、鑄造、電鍍等產業,則是依附在製鋁工業中所被需求,近年來,由於市場需求關係和自然資源日益缺乏且環保意識抬頭,研究重點集中在後端的廢水處理及汙泥減量。
本實驗使用混凝絮凝來處理鋁電鍍含磷廢水,目的是把材料微
奈米化和使用生物成分的絮凝劑來做汙泥減量、有效的絮凝和處理,
接著再跟傳統的方法來做比較。第一部分為探討傳統石灰和微奈米
級氫氧化鈣、氫氧化鎂、鹼凝劑混凝處理後的汙泥量和磷指數的比
較。研究結果顯示,傳統石灰所產生的汙泥量,乾重為28 g,磷指
數為 2500 mg/l;微奈米級氫氧化鈣的汙泥量,乾重為5.28 g,磷指數
為1100 mg/l,有極佳的表現。
第二部分為探討不同克重數的微奈米級氫氧化鈣加入生物絮凝
藥劑(SC)的成效。研究結果顯示,100 ml 的製鋁廢水加入微奈米級
氫氧化鈣3.5 g,SC 水溶液1.5 g 產生的汙泥量,乾重為2.8 g,磷指數
為 300 mg/l,優於一般所處理廢水之結果。
第三部分為根據上述之結果,減量 SC 的用量,降低絮凝的成本,
調配19 g 沸石:1 g SC 之比例來混合使用。研究結果顯示,100 ml 的
廢水加入微奈米級氫氧化鈣3.5 g,沸石 SC 混合粉0.2 g 大幅減少了汙
泥的產量及磷的數值,並且透過此類混凝處理,能有效縮短處理廢
水製程之步驟且降低後端能源之消耗。

The aluminum-manufacturing industry stands in a pivotal po-sition of heavy metal systems entirely. It not only imparts special heavy metal properties and highly added value to aluminum but also provides a wide range of application and commercial market to aluminum products. Among all of the aluminum manufacturing procedures, including smelting, casting and electroplating, are all depend on the demand of aluminum industry. To date, due to the market demands, lack of natural recourses and awareness of envi-ronmental protection, the research will be focused on waste water treatment and sludge reduction of aluminum-manufacturing indus-try.
The study will be divided into three parts. The mainly used is nano-sized coagulant, and the materials are micronized for compar-ison. First of all, the amount of the sludge of traditional lime, calci-um hydroxide, magnesium hydroxide and alkali coagulant will be compared and analysis. According to the result, the amount of the dry sludge provided by traditional lime weight 28 g and has a phosphorus index of 2500 mg/l; on the other hand, calcium hy-droxide shows great performance on wasted produce, it has a weight of the dry sludge of 5.28g and a phosphorus index of 1100 mg/l.
Second, the effect of adding different amount of calcium hy-droxide into flocculating agent SC will be investigated. The result shows that there will have a weight of the dry sludge of 2.8g and a phosphorus index of 300 mg/l while adding 3.5 g of calcium hy-droxide and 1.5 g of SC solution into 100 ml of aluminum-manufacturing water waste which is better than the waste-water treatment in general industry.
Eventually, according to the result above, a blending ratio of zeolite to SC is 19:1 will be introduced into the waste-water treat-ment to reduce the cost. The result shows the blending prescription greatly reduces sludge yield and the value of phosphorous index. Additionally, the waste-water treatment that going under the blend-ing prescription process will be more effective and reduce the cost of resources.

誌 謝 I
摘 要 II
Abstract III
目 錄 V
圖 目 錄 VIII
第一章 緒論 1
1-1 前言 1
1-2 研究動機和目的 2
第二章 文獻回顧與理論基礎 4
2-1 廢水種類 4
2-2 製鋁工藝 7
2-3 金屬廢水處理現況 9
2-4 金屬污水處理工藝 11
2-4-1 化學沉澱法 11
2-4-2 物理處理法 13
2-4-3 電化學處理 13
2-5 汙泥 14
2-5-1 汙泥來源與特性 14
2-5-2 汙泥處理方法 15
2-5-3 汙泥減量技術 16
2-5-4 汙泥脫水 17
2-6直接絮凝與混凝絮凝 18
2-6-1 直接絮凝 18
2-6-2 混凝 18
2-6-3 現況評估 18
2-6-4 絮凝劑的選擇 19
2-7 絮凝原理 19
2-7-1 電荷中和 20
2-7-2 靜電貼片 20
2-7-3 聚合物橋接 22
第三章 實驗方法 23
3-1 實驗材料與儀器 23
3-1-1 實驗材料 23
3-1-2 實驗儀器 24
3-1-3 檢測儀器 24
3-1-4 SC-A510 介紹 24
3-1-5 鹼凝劑介紹 26
3-2 實驗流程 27
3-2-1 廢水水質 27
3-2-2 實驗參數 29
3-3 測試方法 29
3-3-1 紫外線可見光分光光譜儀 29
3-3-2 攜帶型多參數比色計 30
3-3-3 粒徑分析原理 30
第四章 結果與討論 32
4-1 分光光譜儀分析 32
4-2 水中金屬檢測 33
4-2-1 含鋁量分析 33
4-2-2 含磷量分析 34
4-3 汙泥、澄清實體 35
4-3-1 汙泥 35
4-3-2 澄清實體分析 36
4-4 粒徑分析 42
第五章 結論 44
參考文獻 45
附錄 49


[1]J. M. Chimenos, A. I. Fernandez, A. Hernandez, L. Haurie, F. Espiell, and C. Ayora, "Optimization of phosphate removal in anodizing aluminium wastewater," Water Res, vol. 40, no. 1, pp. 137-43, Jan 2006.
[2]D. Wang, F. Guo, Y. Wu, Z. Li, and G. Wu, "Technical, economic and environmental assessment of coagulation/filtration tertiary treatment processes in full-scale wastewater treatment plants," Journal of Cleaner Production, vol. 170, pp. 1185-1194, 2018.
[3]M. Lee, M. Kim, Y. Kim, and M. Han, "Consideration of rainwater quality parameters for drinking purposes: A case study in rural Vietnam," J Environ Manage, vol. 200, pp. 400-406, Sep 15 2017.
[4]X. Xia et al., "Characterization and coagulation-flocculation performance of a composite flocculant in high-turbidity drinking water treatment," Chemosphere, vol. 206, pp. 701-708, Apr 30 2018.
[5]Z. M. Magriotis, P. V. B. Leal, P. F. de Sales, R. M. Papini, P. R. M. Viana, and P. A. Arroyo, "A comparative study for the removal of mining wastewater by kaolinite, activated carbon and beta zeolite," Applied Clay Science, vol. 91-92, pp. 55-62, 2014.
[6]C.-F. Huang, A.-C. Huang, Y.-F. Hsieh, F.-J. Chu, and T.-J. Wan, "The effects of magnetic nanoparticles embedded with SA/PVA and pH on chemical-mechanical polishing wastewater and magnetic particle regeneration and recycle," Water Resources and Industry, vol. 18, pp. 9-16, 2017.
[7]D. Wu, X. Yi, R. Tang, C. Feng, and C. Wei, "Single microbial fuel cell reactor for coking wastewater treatment: Simultaneous carbon and nitrogen removal with zero alkaline consumption," Sci Total Environ, vol. 621, pp. 497-506, Apr 15 2018.
[8]N. Neuberger, H. Adidharma, and M. Fan, "Graphene: A review of applications in the petroleum industry," Journal of Petroleum Science and Engineering, vol. 167, pp. 152-159, 2018.
[9]M. Salgot and M. Folch, "Wastewater treatment and water reuse," Current Opinion in Environmental Science & Health, vol. 2, pp. 64-74, 2018.
[10]A. Paz, J. Carballo, M. J. Perez, and J. M. Dominguez, "Biological treatment of model dyes and textile wastewaters," Chemosphere, vol. 181, pp. 168-177, Aug 2017.
[11]W. L. Sun, Y. Z. Qu, Q. Yu, and J. R. Ni, "Adsorption of organic pollutants from coking and papermaking wastewaters by bottom ash," J Hazard Mater, vol. 154, no. 1-3, pp. 595-601, Jun 15 2008.
[12]L. Maya-Altamira, A. Baun, I. Angelidaki, and J. E. Schmidt, "Influence of wastewater characteristics on methane potential in food-processing industry wastewaters," Water Res, vol. 42, no. 8-9, pp. 2195-203, Apr 2008.
[13]K. Sivagami, K. P. Sakthivel, and I. M. Nambi, "Advanced oxidation processes for the treatment of tannery wastewater," Journal of Environmental Chemical Engineering, 2017.
[14]T. C. Lee and F. J. Liu, "Recovery of hazardous semiconductor-industry sludge as a useful resource," J Hazard Mater, vol. 165, no. 1-3, pp. 359-65, Jun 15 2009.
[15]V. Mymrin et al., "Environmentally clean ceramics from printed circuit board sludge, red mud of bauxite treatment and steel slag," Journal of Cleaner Production, vol. 164, pp. 831-839, 2017.
[16]J. Kang et al., "The utilization of waste by-products for removing silicate from mineral processing wastewater via chemical precipitation," Water Res, vol. 125, pp. 318-324, Nov 15 2017.
[17]J. J. da Rosa and J. Rubio, "The FF (flocculation–flotation) process," Minerals Engineering, vol. 18, no. 7, pp. 701-707, 2005.
[18]A. E. Burakov et al., "Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: A review," Ecotoxicol Environ Saf, vol. 148, pp. 702-712, Feb 2018.
[19]P. Ma, H. Ma, S. Sabatino, A. Galia, and O. Scialdone, "Electrochemical treatment of real wastewater. Part 1: Effluents with low conductivity," Chemical Engineering Journal, vol. 336, pp. 133-140, 2018.
[20]M. A. Luiz, F. F. Sidney Seckler, and P. R. Passos, "Full-scale effects of addition of sludge from water treatment stations into processes of sewage treatment by conventional activated sludge," Journal of Environmental Management, vol. 215, pp. 283-293, 2018.
[21]Z. Meng et al., "Optimizing dewaterability of drinking water treatment sludge by ultrasound treatment: Correlations to sludge physicochemical properties," Ultrasonics Sonochemistry, vol. 45, pp. 95-105, 2018.
[22]H. Wei, B. Gao, J. Ren, A. Li, and H. Yang, "Coagulation/flocculation in dewatering of sludge: A review," Water Research, vol. 143, pp. 608-631, 2018.
[23]C. S. Lee, J. Robinson, and M. F. Chong, "A review on application of flocculants in wastewater treatment," Process Safety and Environmental Protection, vol. 92, no. 6, pp. 489-508, 2014.
[24]T. Suopajärvi, H. Liimatainen, O. Hormi, and J. Niinimäki, "Coagulation–flocculation treatment of municipal wastewater based on anionized nanocelluloses," Chemical Engineering Journal, vol. 231, pp. 59-67, 2013.
[25]M. SimonBiggs, Graeme JJameson,Yao-deYan, "Aggregate structures formed via a bridging flocculation mechanism," pp. Pages 13-22, 1 December 2000,.
[26]A. Ahmad, S. Wong, T. Teng, and A. Zuhairi, "Improvement of alum and PACl coagulation by polyacrylamides (PAMs) for the treatment of pulp and paper mill wastewater," Chemical Engineering Journal, vol. 137, no. 3, pp. 510-517, 2008.
[27]F. Renault, B. Sancey, P. M. Badot, and G. Crini, "Chitosan for coagulation/flocculation processes – An eco-friendly approach," European Polymer Journal, vol. 45, no. 5, pp. 1337-1348, 2009.
[28]M. A. A. Razali, Z. Ahmad, M. S. B. Ahmad, and A. Ariffin, "Treatment of pulp and paper mill wastewater with various molecular weight of polyDADMAC induced flocculation," Chemical Engineering Journal, vol. 166, no. 2, pp. 529-535, 2011.
[29]B. Bolto and J. Gregory, "Organic polyelectrolytes in water treatment," Water Research, vol. 41, no. 11, pp. 2301-2324, 2007.
[30]Y.-g. Zhang et al., "Correction of FTIR acquired photodetector response spectra from mid-infrared to visible bands using onsite measured instrument function," Infrared Physics & Technology, vol. 92, pp. 78-83, 2018.


電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top