跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.213) 您好!臺灣時間:2025/11/11 04:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:楊適存
論文名稱:摻雜Eu3+與Sm3+之Y2O3螢光體的製備與其光激發光特性之研究
論文名稱(外文):The preparation and photoluminescence of Y2O3 phosphors doped Eu3+ and Sm3+ ions
指導教授:徐開鴻陳適範陳適範引用關係
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:材料及資源工程系碩士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
中文關鍵詞:螢光體Y2O3激活劑光激發光
相關次數:
  • 被引用被引用:0
  • 點閱點閱:546
  • 評分評分:
  • 下載下載:30
  • 收藏至我的研究室書目清單書目收藏:0
本實驗主要在利用固態合成法製備摻雜Sm3+與Eu3+離子的Y2O3螢光材料及探討其光激發光的特性,並研究燒成溫度及燒成時間的改變對於粒徑大小、形狀與分散性之影響。稀土元素Sm和Eu之添加含量對於螢光體之光激發光特性之影響及其能量轉換機制也做一探討。適當的Sm3+和Eu3+離子之添加含量及最佳化的製程參數,將以相關檢測儀器加以比較探討。由x-ray繞射儀瞭解結構與相之生成,SEM監測粉末顆粒之大小形狀,利用PL光譜儀量測其激發光譜與發射光譜。此次的實驗結果顯示,提高燒成溫度並不會使晶粒有明顯的成長,但隨著燒成溫度的提高,發光強度卻有所提升。另外燒成時間的增加亦會使發光強度增強。隨著激活劑濃度的增加,發光強度也跟著變強,但在濃度過高時會發生濃度消光效應,反而造成發光強度下降。在1500℃、3小時的燒成條件下,螢光體有較佳的發光強度。Eu3+ 離子添加在Y2O3螢光體試樣,其莫耳比例為0.85Y2O3:0.15Eu3+時,有較強的發光強度,其發光波長為611nm和629nm(5D0à7F2),而摻雜在Y2O3中的Sm3+離子,主要以(4G5/2-->6H7/2)能階轉換,其主要波長為607nm和616nm,莫耳濃度比為0.99Y2O3:0.01Sm3+時,有較佳的發光強度。
Contents
Abstract(Chinese)……………………………………………………………….. I
Abstract(English)………………………………………………………………...II
Contents…………………………………………………………………………...III
Tables List…………………………………………………………………………V
Figures List……………………………………………………………………….VI
Chapter 1 Introduction…………………………………………………………1
1.1 The Application of Phosphors……………………………………………….3
1.2 The Classification of Phosphors……………………………………………..5
1.2.1 The Classification of Phosphors by The Different Composition…….5
1.2.2 The Classification of Phosphors by The Color Property…………….5
1.2.3 The Classification of Phosphors by The Property of Phosphors…….7
Chapter 2 Literatures Review………………….………...…………………….15
2.1 Luminescence Phenomena…………………………………………………15
2.2 Luminescence mechanism of Phosphors…………………………………..17
2.2.1 Energy Absorption and Emission of Phosphors……………………17
2.2.2 Properties Associated with Phosphors……………………………...20
2.2.3 Design of a Phosphor……………………………………………….20
2.3 The Intrinsic Properties of Y2O3 Phosphors……………………………….22
2.3.1 The Absorption and Emission of Y2O3:Eu3+ and Y2O3:Sm3+………22
2.3.2 The Selection Rules of Y2O3 Phosphors……………………………24
2.3.3 The Influence of the Host Lattice Y2O3…………………………….26
2.3.4 Crystal Structure of Y2O3:Eu3+ and Y2O3:Sm3+…………………….27
2.3.5 The Line Emissions of Rare Earth Ions(Eu3+, Sm3+ and Ce3+)……..28
2.4 Terms Relating to The Phosphor…………………………………………...30
2.4.1 Color and Wavelength………………………………………………30
2.4.2 The CIE Coordination………………………………………………31
Chapter 3 Experimental Procedures…………………………….…………49
3.1 Raw materials and Apparatus………………………………………………49
3.1.1 Raw materials……………………………………………………….49
3.1.2 Apparatus…………………………………………………………...49
3.2 Preparation of Phosphor powder………...………………………………….50
3.2.1 Mixing and Drying………………………………………………….50
3.2.2 Firing…………………………………………………………….…..50
3.3 Analysis of Phosphor Powder………………………………………….…...51
3.3.1 Thermal Analysis…………………………………………….……...51
3.3.2 Crystal Structure…………………………………………….………51
3.3.3 Morphology Evaluation………………………………………….…51
3.3.4 Particle Size Distribution…………………………………….……..51
3.3.5 Luminescence Property……………………………………….……52
Chapter 4 Results and Discussion…………………………………….……63
4.1 Approach in the Experiment………………………………………….……63
4.1.1 Feasibility Study…………………………………………………....63
4.1.2 Thermal Analysis…………………………………………….……..64
4.2 Photoluminescence Property of Y2O3 Phosphors…………………….……64
4.2.1 The Influence of Temperature on Luminescence Property………...64
4.2.2 The Influence of Time on Luminescence Property………………...67
4.2.3 The Influence of the Different Activator(Eu3+,Sm3+) on
Luminescence Property…………………...………..………………..69
4.3 Sintering of phosphor powders……………………………………….……75
4.3.1 X-ray Diffraction Analysis and Crystalline Structure……….……..75
4.3.2 Crystal Growth of Y2O3 Phosphors………………………….……..77
4.3.3 Particle Size Distribution………………………………….………..79
Chapter 5 conclusion………………………………………………….……...105
Reference…………………………………………………………….…….……..107
Reference
[1] Donald R. Askeland(Ed), ‘The Science and Engineering of Materials”, PWS Publishing Company(Boston),671(1994).
[2] S.C Tu(Ed), “The Structure and Property of Crystal”, Bouhaitang Co. (Taiwan), 362(1987).
[3] Paul Goldberg et al., “Luminescence of Inorganic Solids”, Academic Press, 2(1966).
[4] Kurt Nassau, “The Physics and Chemistry of Color”, John Wiley and Sons. Inc., U.S.A.,354-359(1983).
[5] R.C. Ropp, “Luminescence and The Solid State”, 138 Mountain Avenue, Warren, U.S.A., 242-243(1991).
[6] M.J.Weber, P.Lecoq, R.C.Ruchti and W.M. Yen, “Scintllator and Phosphor Materials”, Materials Research Society, Pittsburgh, Pennsylvania, 495-509(1994).
[7] H.Yamamoto and H.Matsukiyo, ”Problems and Progress in Cathode-ray Phosphors for High-definition Displays”, J. of Lumin. 48&49, p.43(1991).
[8] T. Wellker, ”Recent Developments on Phosphors for Fluorescent Lamps and Cathode-ray Tube”, J. of Lumin. 48&49, p.49(1991).
[9] Phosphor members committee(Ed), “Phosphors Handbook”, OHM Society, Tokyo, (1987).
[10] J.E. Yang(Ed.), “The Application and Investigation of Luminescence Materials in Electronic Industry”, Technical Report of ITRI, Hsinchu, Taiwan(1992).
[11] S.C. Tu(Ed), “The Structure and Property of Crystal”, Bouhaitang Co. Taiwan, p326(1987).
[12] S. Cotton(Ed), “Lanthanides and Actinides”, Macmillan, London, 1991 pp. 191 (1990).
[13] G.Blasse, B. C. Grabmaier, “Luminescence Materials”, pring-Verlag(1994)p.1.
[14] K. Nassau, “The Physics and Chemistry of Color”, John Wiley and Sons. Inc., USA, p.354-359(1983).
[15] B.G.Yacobi and D.B.Holt, “Cathodoluminescence Microscopy of Inorganic Solid”, Plenum, USA, pp.21-54,(1990).
[16] Ozawa. L. “CRTs are forever as video display devices,” Materials Chemistry and Physics, Volume: 51, Issue: 2, November, pp. 107-113(1997).
[17] K.Takagi, K.S.Chen and T.Ishii,”A Study of the Relation between Firing Temperature and Lattice Distortion of Zinc Sulfide Phosphors”, Chinese J. Materials Science, volume 23, pp.152-159(1991).
[18] B.D. Cullity, “Elements of X-ray Diffraction”, 2rd edition, Addison-Wesley publishing company, pp.1-31(1978).
[19] Henderson B, lmbusch GF, “Optical Spectroscopy of Inorganic Solid”, Ed. Oxford, RC.Ropp, pp.45-50(1990).
[20] Dibartolo B, “Optical Interactions in Solids”, Wiley, New York, pp. 37-42 (1968).
[21] Jorgensen CK, “Absorption Spectra and Chemical Bonding in Complexes”, Pergamom, Oxford, pp.43-50 (1962).
[22] van Schaik W, Blasse G,”Chemical Materials”, volume 4, pp.410(1992).
[23] S. Larach, R.E Shrader and P.N.Yocom,”Luminescence from Erbium-Activated Group II-VI Compounds Containing Alkali Metal Compensators”, J.Electrochem. Soc., Solid State Science, 116(4).pp. 471-473(1969).
[24] http://www.philips.com.tw.
[25] Schlotter.P. and Baur.J. “Fabrication and characterization of GaN/InGaN/AlGaN double heterostructure LEDs and their application in luminescence conversion LEDs”, Materials Science and Engineering, Volume: 59, Issue: 1-3, May 6, pp. 390 — 394(1999).
[26] D.B. Judd and G.Wyszechi, “Color in Bussiness, Science and Industry”, 3rd edition, John Wiley & Sons, Inc., New York, pp.40-68(1975).
[27] K. Nassau, “Color for Science, Art and Technology”, ELSEVIER, Amsterdam, pp.31-60(1998).
[28] Setaram Corp., “Setsys 16/18-Commissioning/Maintenance”, pp.41(1998).
[29] Microtrac Corp., ” Microtrac x100 software for the window operating system”, pp.11(1999).
[30] Shimadzu Corp.(Ed), “Introduction Manual of RF-5301PC”, Shimadzu Corp., 12-1(1995)
[31] Dirksen GJ. Blasse G, J. Alloys Compounds, pp.191-121(1993).
[32] Moine B, Courtois B, Pedrini C, Journal of Physical France 50:2105(1989).
[33] Chen. Wei .Journal of Physics and Chemistry of Solids. Volume: 60, Issue: 3, March, 1999, pp.371-378.
[34] Tang. Tzu-Piao.” Photoluminescence of ZnS: Sm phosphor prepared in a reductive atmosphere”. Ceramics Internationa. Volume: 26, Issue: 2, March 1, 2000, pp. 153-158.
[35] Rambabu U.” Fluorescence spectra of Sm3+-doped rare earth oxybromide powder phosphors”. Materials Letters, Volume: 38, Issue: 2, January, 1999, pp. 121-124.
[36] J.Lin, Q. Su,”Crystal structure dependence of luminescence rare earth ion(Ce3+,Sm3+,Tb3+)”, Materials Research Bulletin, Volume: 31, Issue: 2,1996, pp. 189-196.
[37] B. Bihari, H.Eiler,” Spectra of dynamics of monoclinic Eu2O3 and Eu3+:Y2O3 nanocrytals”, Journal of Luminescence 75,pp.1-10(1997).
[38] S. Erdei, F.W. Ainger, “Preparation of Eu3+:YVO4 red and Ce3+, Tb3+:LaPO4 green Phosphors by hydrolyzed colloid reaction technique”, Materials Letters 30,pp.389-393(1997).
[39] S. Ruan, J. Zhou, “Synthesis of Y3Al5O12:Eu3+ phosphor by sol-gel method and its luminescence behavior”, Journal of Alloys and Compounds 275-277. pp.72-75(1998).
[40] S.R.Jansen, J.M.Nigechel, “Eu-dpoed Barium Aluminum Oxynitride with the β-Alumina-Type Structure as New Blue Emitting Phosphor”, Journal of the Electrochemical Society 146(2), pp.800-806(1999).
[41] U.Rambabu, A.Mathur, “Fluorescence spectra of Eu3+ and Tb3+ doped lanthanide oxychloride powder phosphors” Materials Chemistry and Physics 61, pp.156-162(1999).
[42] H.Eilers, B.M.Tissue, ”Laser spectroscopy of nanocrystalline Eu2O3 and Eu3+:Y2O3”, Chemical Physics Letters 251,pp.74-78(1996).
[43] Plasmaco, Inc, Highland, NY 12528, USA, “Growth and characterization of Y2O3: Eu3+ phosphor films by sol-gel process” Solid State Communications 99, pp.439-443(1996).
[44] M.Nogami, T.Yamazaki, “Fluorescence properties of Eu3+ and Eu2+ in Al2O3-SiO2 glass” Journal of Luminescence 78, pp.63-68(1998).
[45] X.Ouyang, A.H.Kitai, “Rare-earth-doped transparent yttrium silicate thin film phosphors for color display”, The Solid Film 254,pp.268-272(1995).
[46] V.Bondar, “Structure and luminescence properties of individual and multi-layer thin film systems based on oxide phosphors”, Materials Science and Engineering B69-70, pp.505-509(2000).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top