跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.59) 您好!臺灣時間:2025/10/15 04:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:徐仕尚
研究生(外文):Hsu,Shih Shang
論文名稱:MarketEfficiencyofTaiwanIndexFuturesMarket
論文名稱(外文):台灣指數期貨市場效率性-濾嘴法則之研究
指導教授:郭維裕郭維裕引用關係
指導教授(外文):Yang , Connie Guang-Hwa
學位類別:碩士
校院名稱:國立政治大學
系所名稱:國際貿易研究所
學門:商業及管理學門
學類:貿易學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:42
中文關鍵詞:台灣指數期貨未平倉量濾嘴法則
外文關鍵詞:Taiwan Index Futures MarketFilter rulesmomentumopen interestRollover
相關次數:
  • 被引用被引用:0
  • 點閱點閱:212
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:3


本文採用1998年九月2日到2003九月30日的台灣指數期貨每日收盤價,總共1304筆資料。我們希望能藉由濾嘴法則以收盤價及交易量和未平倉量來衡量台灣指數期貨的效率性。而實證結果也證實可以藉由濾嘴法則濾除掉市場上的小波動,並進而預測出主要的價格趨勢。



This thesis adopts futures data, which are the daily closing prices of the Taiwan Stock Exchange Capitalization Weighted Stock Index futures contracts. The sample period is from September 2, 1998 to September 30, 2003, a total of 1304 transaction days. The goal we want to achieve is to test and verify the momentum by filter rules based on price and volume in the futures market in Taiwan. In addition, the open interest is substituted for the trading volume to exam its effect on the futures price. The empirical results show that we can predict the price trend as long as we employ an appropriate range value to filter out “the noise”.



Content
Abstract
1. Introduction............................................................................................................1
2. Methodology and Data ………………………………………………………...5
2.1 Methodology………………………………………………………..….………….5
2.1.1 Filter Rules of Price Strategy………………………………………………...….5
2.1.2 Filter Rules of Price and Trading Volume Strategy…………………….….……8
2.2 Data Description…………………………………………………………...……..10
3. Empirical Results……………………………………………………………....12
3.1 Overview of Empirical Results…………………….…………………….............12
3.2 Returns to Price-only strategies…………………………………………………..13
3.3 Returns to the Price-volume Filter Strategies…………………………………….14
3.4 Returns to Price-Open-Interest Strategies………………………………………..17
4. Conclusions and Recommendations………………………………………..20
4.1 Conclusions……………………………………………………………………....20
4.2 Recommendations for Further Researches……………………………………….20
Reference……………………………………………………………………………..22
Figure and Table Content
Figure 1 Demonstration of the average fluctuation…………………………….......26
Table 1 Sample statistics for TAIEX futures for the period September 2, 1998 - September 30, 2003…………………………………………………………………..27
Table 2 Price-only filter results…………………………………………………….28
Table 3 Returns to Price-Volume filters with 1-day moving average and 4% price filter level…………………………………………………………………………….29
Table 4 Returns to Price-Volume filters with 1-day moving average and 5% price filter level…………………………………………………………………………….30
Table 5 Returns to Price-Volume filters with 1-day moving average and 6% price filter level…………………………………………………………………………….31
Table 6 Returns to Price-Volume filters with 3-day moving average and 4% price filter level…………………………………………………………………………….32
Table 7 Returns to Price-Volume filters with 3-day moving average and 5% price filter level…………………………………………………………………………….33
Table 8 Returns to Price-Volume filters with 3-day moving average and 6% price filter level…………………………………………………………………………….34
Table 9 Returns to Price-O.I filters with 1-day moving average and 4% price filter level…………………………………………………………………………………..35
Table 10 Returns to Price-O.I filters with 1-day moving average and 5% price filter level...………………………………………………………………………………...36
Table 11 Returns to Price-O.I filters with 1-day moving average and 6% price filter level…………………………………………………………………………………..37
Table 12 Returns to Price-O.I filters with 4-day moving average and 4% price filter level…………………………………………………………………………………..38
Table 13 Returns to Price-O.I filters with 4-day moving average and 5% price filter level…………………………………………………………………………………..39
Table 14 Returns to Price-O.I filters with 4-day moving average and 6% price filter level…………………………………………………………………………………..40
Table 15 Returns to Price-O.I filters with 10-day moving average and 4% price filter level…………………………………………………………………………………..41
Table 16 Returns to Price-O.I filters with 10-day moving average and 5% price filter level…………………………………………………………………………………..42
Table 17 Returns to Price-O.I filters with 10-day moving average and 6% price filter level…………………………………………………………………………………..43



Alexander, S., 1961, “Price Movements in Speculative Markets: Trends or Random Walks.” Industrial Management Review, 2, 7-26.
Berkowitz, A., D. Logue, and E. Noser, 1988, “The Total Costs of Transactions on the NYSE.” Journal of Finance, 43, 97-112.
Chan, L.,C., Jagadeesh , and J. Lakonishok, 1996,“Momentum strategies,” Journal of Finance, 51, 1681-1713.
Cooper, M., 1999, “Filter rules based on price and volume in individual security overreaction”, Review of Financial Studies, 12, 901-935.
DeBondt, M. Werner, and H. Thaler, 1987, “Further evidence on investor overreaction and stock market seasonality”, Journal of Finance, 42, 557-581.
DeBondt, M. Werner, and H. Thaler, 1985, “Does the stock market overreact?”, Journal of Finance, 40, 793-805.
Delong, B., A. Shleifer, L. Summers and R. Waldmann, 1990, “Positive Feedback Investment Strategies and destabilizing Rational Speculation”, Journal of Finance, 45, 379-395.
Fabozzi, F., C. Ma, W. Chittenden, and R. Pace, 1995, “Predicting intraday price reversals”, Journal of Portfolio Management, 21, 42-53.
Fama, F., 1991, “Efficient capital markets”, 11, Journal of Finance, 46, 1575-1617.
Fama, F., and M. Blume, 1966, “Filter Rules and Stock-Market Trading”, Journal of Business, 39,226-241
Fama, F., 1970, “Efficient Capital Markets: A Review of Theory and Empirical Work”, Journal of Finance, 25, 383-417.
Fama, F., and K. French, 1993, “Common risk factors in the returns on stocks and bonds”, Journal of Financial Economics 33, 3-56.
Givoly, D., and J. Lakonishok, 1979, “The information content of financial analysts’ forecasts of earnings: Some evidence on semi-strong inefficiency”, Journal of Accounting and Economics,1,165-185.
Grundy, K. and B. Malkiel, 1996, “Reports of beta’s death have been greatly exaggerated,” The Journal of Portfolio Management, 36-44.
Jegadeesh, N., 1990, “Evidence of predictable behavior of security returns”, Journal of Finance, 45, 881-898.
Jegadeesh, N., and S. Titman, 1993, “Returns to buying winners and selling losers: Implications for stock market efficiency” Journal of Finance, 48, 65—91.
Jegadeesh, N. and S. Titman, 1995,"Short-Horizon Return Reversals and the Bid-Ask Spread", Journal of Financial Intermediation, 4 ,116-133.
Jansen C., 1978, "Symposium on Some anomalous Evidence Regarding Market
Efficiency", Journal of Financial Economics, 6, 93-330.
Jensen, M. and G. Bennington, 1970, ''Random Walks and Technical Theories: Some Additional Evidence”, Journal of Finance, 25, 469-482.
Lakonishok, J., A. Shleifer, and R. Vishny, 1994, “Contrarian investment,extrapolation, and risk”, Journal of Finance, 49, 1541-1578.
Phillips, M., and C. Smith, l980, ‘‘Trading Costs for Listed Options: The Implications for Market Efficiency”, Journal of Financial Economics, 8,179-201.
Praetz, D., 1976, “Rates of Return on Filter Tests.” Journal of Finance, 31, 71-75.
PRAETZ, D., 1979, “A General Test of a Filter Effect”, Journal of Financial and Quantitative Analysis, 14, 385-397.
Roll, R., “On Computing Means and the Small Firm Effect”, Journal of Financia1 Economics, 12, 371-386.
Sweeney, J., 1986, “Beating the Foreign Exchange Market”, Journal of Finance, 41, 163-182.
Sweeney, J., 1988, “Some New Filter Tests: Methods and Results”, Journal of Financial and Quantitative Analysis, 23, 285-300.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top