|
Archer, N. P., & Wang, S. H. (1993). Learning Bias in Neural Networks and an Approach to Controlling Its Effects in Monotonic Classification. Ieee Transactions on Pattern Analysis and Machine Intelligence, 15(9), 962-966. Arun Kumar, M., & Gopal, M. (2010). A Comparison Study on Multiple Binary-Class SVM Methods for Unilabel Text Categorization. Pattern Recognition Letters, 31(11), 1437-1444. Boser, B. E., Guyon, I. M., & Vapnik, V. N. (1992). A training algorithm for optimal margin classifiers. Paper presented at the Proceedings of the fifth annual workshop on Computational learning theory, Pittsburgh, Pennsylvania, United States. Burges, C. J. C. (1998). A tutorial on Support Vector Machines for pattern recognition. Data Mining and Knowledge Discovery, 2(2), 121-167. Cao, L., Zhang, C., Yu, P. S., & Zhao, Y. (2010). D 3 M Methodology. 27-47. doi: 10.1007/978-1-4419-5737-5_2 Courant, R., & Hilbert, D. (1953). Methods of mathematical physics (1st English ed.). New York,: Interscience Publishers. Courant, R., & Hilbert, D. (1970). Methods of Mathematical Physics (Vol. I, II). New York: Wiley Interscience. Cristianini, N., & Shawe-Taylor, J. (2000). Support Vector Machines and other kernel-based learning methods Cambridge University Press, 2000 - Ordering Information. Davis, S. M., & Botkin, J. W. (1994). The monster under the bed : how business is mastering the opportunity of knowledge for profit. New York: Simon & Schuster. Decherchi, S., Ridella, S., Zunino, R., Gastaldo, P., & Anguita, D. (2010). Using Unsupervised Analysis to Constrain Generalization Bounds for Support Vector Classifiers. Ieee Transactions on Neural Networks, 21(3), 424-438. doi: Doi 10.1109/Tnn.2009.2038695 Dembczyński, K., Kotłowski, W., & Słowiński, R. (2008). Ensemble of Decision Rules for Ordinal Classification with Monotonicity Constraints Rough Sets and Knowledge Technology. In G. Wang, T. Li, J. Grzymala-Busse, D. Miao, A. Skowron & Y. Yao (Eds.), (Vol. 5009, pp. 260-267): Springer Berlin / Heidelberg. Doumpos, M., & Pasiouras, F. (2005). Developing and testing models for replicating credit ratings: A multicriteria approach. Computational Economics, 25, 327–341. Doumpos, M., & Zopounidis, C. (2009). Monotonic Support Vector Machines for Credit Risk Rating. new Mathematics and Natural Computation 5(3), 557 - 570. Doumpos, M., Zopounidis, C., & Golfinopoulou, V. (2007). Additive Support Vector Machines for Pattern Classification. IEEE Transactions on Systems, Man and Cybernetics - Part B: Cybernetics, 37(3), 540-550. Duivesteijn, W., & Feelders, A. (2008). Nearest Neighbour Classification with Monotonicity Constraints , . Paper presented at the 2008 European Conference on Machine Learning and Knowledge Discovery in Databases, Antwerp, Belgium Springer-Verlag. Evgeniou, T., Boussios, C., & Zacharia, G. (2005). Generalized Robust Conjoint Estimation. Marketing Science, 24(3), 415-429. doi: 10.1287/mksc.1040.0100 Evgeniou, T., C., & Boussios, e. a. (2005). Generalized Robust Conjoin Estimation. Marketing Science, 24(3), 415 - 429. Falck, T., Suykens, J., & De Moor, B. (2009). Robustness Analysis for Least Squares Kernel Based Regression: an Optimization Approach. Paper presented at the The 48th IEEE Conference on Decision and Control (CDC 2009) Shanghai, China. Gamarnik, D. (1998). Efficient learning of monotone concepts via quadratic optimization. In: Proceedings of the eleventh annual conference on computational learning theory, ACM Press, New York., 134–143. Greco, S., Matarazzo, B., & Słowiński, R. (1998). A new rough set approach to evaluation of bankruptcy risk. In: Zopounidis, C. (ed.) Operational Tools in the Management of Financial Risks, Kluwer Academic Publishers, Dordrech., 121–136. Gruber, C., Gruber, T., Krinninger, S., & Sick, B. (2010). Online Signature Verification With Support Vector Machines Based on LCSS Kernel Functions. IEEE Transactions on Systems, Man and Cybernetics - Part B: Cybernetics, 40(4), 1088-1101. Hu, Q., Che, X., Zhang, L., Zhang, D., Guo, M., & Yu, D. (2011). Rank Entropy Based Decision Trees for Monotonic Classification. Knowledge and Data Engineering, IEEE Transactions on, PP(99), 1-1. Hua, Z. S., Wang, Y., Xu, X. Y., Zhang, B., & Liang, L. (2007). Predicting Corporate Financial Distress Based on Integration of Support Vector Machine and Logistic Regression. Expert Systems with Applications, 33(2), 434-440. Huang, W., Nakamoria, Y., & Wang, S. Y. (2005). Forecasting stock market movement direction with support vector machine. Computers & Operations Research, 32, 2513–2522. Huang, Z., Chen, H., Hsu, C.-J., Chen, W.-H., & Wu, S. (2004). Credit rating analysis with support vector machines and neural networks: a market comparative study. Decision Support Systems, 37(4), 543-558. doi: 10.1016/s0167-9236(03)00086-1 Khemchandani, R., Jayadeva, & Chandra, S. (2009). Knowledge based proximal support vector machines. European Journal of Operational Research, 195(3), 914-923. doi: DOI 10.1016/j.ejor.2007.11.023 Kim, H. S., & Sohn, S. Y. (2010). Support vector machines for default prediction of SMEs based on technology credit. European Journal of Operational Research, 201(3), 838-846. doi: DOI 10.1016/j.ejor.2009.03.036 Kramer, K. A., Hall, L. O., Goldgof, D. B., Remsen, A., & Luo, T. (2009). Fast Support Vector Machines for Continuous Data. Ieee Transactions on Systems Man and Cybernetics Part B-Cybernetics, 39(4), 989-1001. doi: Doi 10.1109/Tsmcb.2008.2011645 Lauer, F., Suen, C. Y., & Bloch, G. (2007). A Trainable Feature Extractor for Handwritten Digit Recognition Pattern Recognition, 40(6), 1816-1824. Li, S. T., Shiue, W., & Huang, M. H. (2006). The Evaluation of Consumer Loans Using Support Vector Machines. Expert Systems with Applications, 30(4), 772-782. Müller, K.-R., Smola, A., Rätsch, G., Schölkopf, B., Kohlmorgen, J., & Vapnik, V. (1997). Predicting time series with support vector machines. Paper presented at the International Conference on Artificial Neural Networks
Mariéthoz, J., & Bengio, S. (2007). A Kernel Trick for Sequences Applied to Text-Independent Speaker Verification Systems. Pattern Recognition, 40(8), 2315-2324. Mercer, J. (1909). Functions of Positive and Negative Type, and their Connection with the Theory of Integral Equations. Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, 209(ArticleType: research-article / Full publication date: 1909 / Copyright © 1909 The Royal Society), 415-446. Michael Doumpos, & Zopounidis, C. (2009). Monotonic Support Vector Machines for Credit Risk Rating. New Mathematics and Natural Computation, 5(3), 557-570. doi: 10.1142/S1793005709001520 Mukherjee, S., Osuna, E., & Girosi, F. (1997). Nonlinear prediction of chaotic time series using a support vector machine. Paper presented at the IEEE Workshop on Neural networks for Signal Processing 7, Amelia Island, FL. Na, M. G., Park, W. S., & Lim, D. H. (2008). Detection and Diagnostics of Loss of Coolant Accidents Using Support Vector Machines. IEEE Transactions Nuclear Science, 55(1), 628-636. Pazzani, M. J., Mani, S., & Shankle, W. R. (2001). Acceptance of rules generated by machine learning among medical experts. Methods of Information in Medicine, 40, 380-385. Pelckmans, K., Espinoza, M., Brabanter, J., Suykens, J. A. K., & Moor, B. (2005). Primal-Dual Monotone Kernel Regression. Neural Processing Letters, 22(2), 171-182. doi: 10.1007/s11063-005-5264-1 Pelckmans, K., Espinoza, M., De Brabanter, J., Suykens, J. A. K., & De Moor, B. (2005). Prime-Dual Monotone Kernel Regression. Neural Processing Letters, 22(2), 171-182. Pendharkar, P. C. (2005). A data envelopment analysis-based approach for data preprocessing. IEEE Transactions on Knowledge and Data Engineering, 17(10), 1379-1388. Pendharkar, P. C., & Rodger, J. A. (2003). Technical efficiency-based selection of learning cases to improve forecasting accuracy of neural networks under monotonicity assumption. Decision Support Systems, 36(1), 117-136. doi: Doi 10.1016/S0167-9236(02)00138-0 Potharst, R., & Feelders, A. J. (2002). Classification trees for problems with monotonicity constraints. SIGKDD Explor. Newsl., 4(1), 1-10. doi: 10.1145/568574.568577 Ravikumar, B., Thukaram, D., & Khincha, H. P. (2009). An Approach Using Support Vector Machines for Distance Relay Coordination in Transmission System. IEEE Transactions on Power Delivery, 24(1), 79-88. Ryu, Y. U., Chandrasekaran, R., & Jacob, V. (2007). Data classification using the isotonic separation technique: Application to breast cancer prediction. European Journal of Operational Research, 181, 842–854. Schölkopf, B., & Smola, A. J. (2002). Learning with kernels : support vector machines, regularization, optimization, and beyond. Cambridge, Mass.: MIT Press. Shilton, A., Palaniswami, M., Ralph, D., & Tsoi, A. C. (2005). Incremental training of support vector machines. Ieee Transactions on Neural Networks, 16(1), 114-131. doi: Doi 10.1109/Tnn.2004.836201 Shin, K. S., Lee, T. S., & Kim, H. J. (2005). An application of support vector machines in bankruptcy prediction model. Expert Systems with Applications, 28(1), 127-135. doi: DOI 10.1016/j.eswa.2004.08.009 Smola, A. J., Schölkopf, B., & Muller, K. R. (1998). The connection between regularization operators and support vector kernels. Neural Networks, 11(4), 637-649. Trafalis, T. B. (1999). Primal-dual Optimization methods in Neural Networks and Support Vector Machines training. University of Oklahoma. Van Gestel, T., Baesens, B., Suykens, J. A. K., Van den Poel, D., Baestaens, D. E., & Willekens, M. (2006). Bayesian Kernel Based Classification for Financial Distress Detection. European Journal of Operational Research,, 172(3), 979-1003. Vapnik, V. N. (1995). The nature of statistical learning theory. New York: Springer. Vapnik, V. N. (1998). Statistical learning theory. New York: Wiley. Vazirigiannis, M., Halkidi, M., & Gunopulos, D. (2003). Uncertainty handling and quality assessment in data mining. London ; New York: Springer. Wang, S. H. (1995). The Unpredictability of Standard Back-Propagation Neural Networks in Classification Applications. Management Science, 41(3), 555-559. Wang, S. H. (2003). Adaptive non-parametric efficiency frontier analysis: a neural-network-based model. Computers & Operations Research, 30(2), 279-295. Wouter Duivesteijn, & Feelders, A. (2008). Nearest Neighbour Classification with Monotonicity Constraints. Lecture Notes in Computer Science, 5211/2008, 301-306. doi: 10.1007/978-3-540-87479-9_38 Xu, Y., Wang, X.-B., Ding, J., Wu, L.-Y., & Deng, N.-Y. (2010). Lysine Acetylation Sites Prediction Using an Ensemble of Support Vector Machine Classifiers Journal of Theoretical Biology, 264(1), 130-135. Yu, H.-F., Hsieh, C.-J., Chang, K.-W., & Lin, C.-J. (2010). Large linear classification when data cannot fit in memory. Paper presented at the Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining, Washington, DC, USA.
|