跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.136) 您好!臺灣時間:2025/09/20 02:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊喻評
研究生(外文):Yu-Ping Yang
論文名稱:摻雜鉑金屬與石墨烯之二氧化鈦光觸媒合成及光催化活性研究
論文名稱(外文):Synthesis and Photocatalytic Activity of Titania Photocatalyst Doped with Platinum and Graphene
指導教授:楊鴻銘楊鴻銘引用關係
指導教授(外文):Hung-Ming Yang
口試委員:王茂齡吳和生
口試委員(外文):Maw-Ling WangHo-Shing Wu
口試日期:2014-05-31
學位類別:碩士
校院名稱:國立中興大學
系所名稱:化學工程學系所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:190
中文關鍵詞:光催化反應溶膠凝膠法二氧化鈦石墨烯奈米片
外文關鍵詞:photocatalytic reactionsol-gel methodtitaniagraphene nonoplateletplatinum
相關次數:
  • 被引用被引用:0
  • 點閱點閱:219
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文之研究目的在探討二氧化鈦光觸媒負載鉑金屬並摻雜石墨烯奈米片之光催化活性,其製備方法為以溶膠凝膠法合成二氧化鈦,並利用光還原法將鉑金屬離子還原沉積在二氧化鈦的表面,再將石墨烯奈米片(graphene nonoplatelet, GNP)摻雜於二氧化鈦中,將其應用於光催化反應。觸媒製備變數包含煅燒溫度、溶劑種類、水量、分散劑種類及比例、GNP比例、鉑比例添加、及不同波長紫外光源製備負載鉑金屬。以石英玻璃反應器在50 ppm甲基橙水溶液250 ml於150分鐘紫外光照射下進行觸媒活性反應測試,光催化反應變因包含不同波長光源、不同初濃度之甲基橙水溶液及光降解亞甲基藍水溶液。
實驗結果顯示,添加1 wt% 石墨烯奈米片於二氧化鈦中並負載1 wt%鉑金屬之觸媒能夠有效提升觸媒的分散情況及反應活性,負載於二氧化鈦上之鉑顆粒尺寸均一且細小,其顆粒尺寸約為2-3 nm。於150 min光催化反應,其甲基橙水溶液之降解率可達88.9 %。
以異丙氧基鈦合成之二氧化鈦為基材所製備的Pt(1)( TiO2(99)GNP(1))(99)觸媒進行光催化反應,當以365 nm波長之光源進行光照反應,經150 min甲基橙轉化率可達91.4 %;而以同觸媒對亞甲基藍水溶液進行光降解反應,於可見光波長420 nm光照下,其反應常數為1.2 min-1,是無添加石墨烯奈米片觸媒Pt(1)TiO2(99)的1.3倍,顯示Pt(1)( TiO2(99)GNP(1))(99)之高催化活性。
In this thesis, the purpose is to study the photocatalytic activity of titania photocatalyst, which is supported by platinum and doped with graphene nonoplatelet (GNP). The preparation of the novel photocatlyst is as follows:sythesis of titania by sol-gel method, deposition of platinum by photoreduction, then doping with GNP. The photocatalytic activity of the catalyst is tested by photodegadation of methyl orange using quartz glass reactor under the UV light illumination. The parameters of catalyst preparation include temperature of calcination, amount of water, kinds and ratios of dispersant, weight of CTMAB addition, weight of GNP doping, loading of platinum, and sources of UV light for photoreduction of platinum. Operating conditions in photocatalytic reaction included initial concentration of methyl orange solution, wavelength of illumination and photodegradation of methylene blue.
The results revealed that the doping of 1 wt% graphene-nanoplatelet and loading of 1wt% platinum in titania effectively improve the dispersion and reaction activity of the catalyst. The particle size of platinum metal is very small to be 2-3 nm and distributed uniformly. Under 150 min of the UV light illumination, the conversion of photodegradation of methyl orange solution is above 88 %.
The photodegradation of the methyl orange solution is also performed by the catalyst Pt(1)( TiO2(99)GNP(1))(99) under irradiation of UV light (365 nm), and the conversion of the degradation is 91.4 % in 150 min. The reaction rate constant for photodegradation of the methylene blue solution under irradiation of visible light (420 nm), is 1.2 min-1 which is 1.3 times of the catalyst Pt(1)TiO2(99) without doping GNP, showing the high catalytic efficiency of Pt(1)( TiO2(99)GNP(1))(99).
誌謝 i
摘要 ii
Abstract iii
目錄 v
圖目錄 x
表目錄 xviii
符號說明 xxii
第一章 緒論 1
1.1. 前言 1
1.2. 研究目的與方法 2
1.2.1. 研究目的 2
1.2.2. 研究方法 3
第二章 文獻回顧與基本原理 6
2.1. 二氧化鈦基本性質 6
2.1.1. 二氧化鈦的構造及特性 6
2.2. 觸媒之製備方法 9
2.2.1. 溶膠-凝膠法(Sol-Gel method) 9
2.2.2. 水熱法 (Hydrothermal method) 12
2.2.3. 熱水解法 (Thermal hydrolysis method) 12
2.2.4. 含浸法 (Impregnation method) 12
2.2.5. 液相沉積法 (Liquid phase deposition, LPD) 13
2.2.6. 微乳膠法 (Microemulsion method) 13
2.2.7. 化學氣相沉積法 (Chemical vapor deposition, CVD) 13
2.2.8. 光催化還原法(Photocatalytic reduction method) 14
2.2.9. 沉澱固著法(Deposition-precipitation method) 15
2.3. 半導體光催化反應原理 16
2.3.1. 量子尺寸效應(Quantum Size Effects) 16
2.3.2. 光催化原理及機制 17
2.3.3. 二氧化鈦光催化之反應 18
2.4. 二氧化鈦光觸媒之改質 19
2.4.1. 摻入過渡金屬離子 20
2.4.2 金屬原子負載 20
2.4.3. 複合半導體 21
2.5. 石墨烯 23
2.5.1石墨烯之基本特性 23
2.5.2. 石墨烯之製備與合成方法 27
2.5.3 石墨烯之應用 29
2.6. 光觸媒反應文獻回顧 32
第三章 實驗設備與方法 37
3.1. 實驗藥品 37
3.2. 實驗設備 39
3.3. 分析儀器 39
3.3.1. 場發射掃描式電子顯微鏡 (Field Emission Scanning Electron Microscope, FE-SEM) 40
3.3.2. X光能量散佈儀(X-ray Energy Dispersive Spectrometer, EDS) 41
3.3.3. 穿透式電子顯微鏡(Transmitted Electron Microscope, TEM) 41
3.3.4. 傅立葉轉換紅外線光譜儀(FT-IR) 42
3.3.5. 熱重分析儀(Thermogravimetric Analysis, TGA)氣相層析儀 43
3.3.6. X-ray繞射儀(X-ray Diffraction Spectrometer) 44
3.3.7. BET表面積與孔洞分析儀(Brunauer-Emmett-Teller) 46
3.3.8. 紫外-可見光光譜儀(UV-vis Spectrophotometer) 47
3.4. 實驗方法 48
3.5. 觸媒於甲基橙及亞甲基藍光催化反應 51
3.5.1. 觸媒於甲基橙光催化反應之反應機構 51
3.5.2. 觸媒於亞甲基藍光催化反應之反應機構 52
3.5.3. 觸媒於甲基橙及亞甲基藍光催化反應計算 53
3.6. 甲基橙(MO)及亞甲基藍(MB)水溶液檢量線 56
第四章 觸媒活性與特性分析 58
4.1. 前言 58
4.2. 不同煅燒溫度對二氧化鈦光觸媒之影響 62
4.3. 不同溶劑種類製備二氧化鈦對光觸媒之影響 74
4.4. 不同水量添加對二氧化鈦光觸媒之影響 84
4.5. 石墨烯性質探討 94
4.6. 不同分散劑對TiO2(99)GNP(1)光觸媒之影響 97
4.7. 不同分散劑CTMAB比例對TiO2(99)GNP(1)光觸媒之影響 108
4.8. 不同鉑比例添加量對TiO2(99)GNP(1)光觸媒之影響 118
4.9. 添加不同石墨烯奈米片比例對光觸媒之影響 133
4.10. 不同紫外光波長製備添加 0.5 wt%鉑對 TiO2(99)GNP(1)光觸媒之影響 146
4.11. 結論 158
第五章 光催化反應操作條件探討 161
5.1. 前言 161
5.2. 不同初濃度甲基橙水溶液對光催化反應之影響 161
5.3. 不同波長光源對甲基橙光催化反應之影響 166
5.4. 不同混光源對甲基橙光催化反應之影響 171
5.5. 光降解亞甲基藍水溶液 175
5.6. 結論 179
第六章 總結 181
6.1. 觸媒製備與特性分析 181
6.2. 光催化反應 183
參考文獻 186
[1] A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature 238 (1972) 37-38.
[2] T.R. Esch, I. Gadaczek, T.Bredow, Surface structures and thermodynamics of low-index of rutile, brookite and anatase - A comparative DFT study, Appl. Surf. Sci. 288 (2014) 275-287.
[3] K. B. Jeremy, T. Hughbanks, G.J. Miller, Structural-electronic relationships in inorganic solids powder neutron diffraction studies of the rutile and anatase polymorphs of titanium doxide at 15 and 295 K, J. Am. Chem. SOC. 109 (1987) 3639-3646.
[4] M. Pelaez, N.T. Nolan, S.C. Pillai, M. K. Seery, P. Falaras, A.G. Kontos, P.S.M. Dunlop, J.W.J. Hamilton, J.A. Byrne, K. O'Shea, M.H. Entezari, D.D. Dionysiou, A review on the visible light active titanium dioxide photocatalysts for environmental applications, Appl. Catal. B-Environ. 125 (2012) 331-349.
[5] E.M. Levin, H.F. McMurdie, C.R. Robbins, Phase Diagrams for Ceramists. The American Cermic Society 76 (1975) 4150-4999.
[6] C.J. Brinker, G.W. Scherer, The Physics and Chmistry of Sol-Gel Processing. ACADEMIC PRESS,UK (1990).
[7] 湯偉鉦, 蘇一哲, 溶膠-凝膠法製備奈米複合材料, 化學 71 (2012) 39-51.
[8] C.S. Fang, and Y.W. Chen, Preparation of titania particles by thermal hydrolysis of TiCl4 in n-propanol solution, Mate. Chem. Phys. 78 (2003) 739-745.
[9] K. Tsukuma, T. Akiyama, H. Imai, Liquid phase deposition film of tin oxide, J. Non-Cryst. Solids 210 (1997) 48-54.
[10] 鄭玫玲, 金、鉑擔載於二氧化鈦上進行光催化甲醇重組產氫之研究, 國立中央大學材料科學與工程研究所碩士論文 (2007).
[11] A.L. Linsebigler, G. Lu, J. T. Yates, Jr., Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results, Chem. Rev 95 (1995) 735-758.
[12] J. Zhang, S. Yan, L. Fu, F. Wang, M. Yuan, G. Luo, Q. Xu, X. Wang, C. Li, Photocatalytic degradation of rhodamine B on anatase, rutile, and brookite TiO2, Chi. J. Catal. 32 (2011) 983-991.
[13] C.R. Estrellan, C. Salim, H. Hinode, Photocatalytic decomposition of perfluorooctanoic acid by iron and niobium co-doped titanium dioxide, J. Hazard. Mater. 179 (2010) 79-83.
[14] Q.H. Zhang, W.D. Han, Y.J. Hong, J.G.Yu, Photocatalytic reduction of CO2 with H2O on Pt-loaded TiO2 catalyst, Catal. Today 148 (2009) 335-340.
[15] A. Hagfeldtt, M. Gratzel, Light-induced redox reactions in nanocrystalline systems, Chem. Rev. 95 (1995) 49-68.
[16] N. Serpone, P. Maruthamuthu, P. Pichat, E. Pelizzetti, H. Hidaka, Exploiting the interparticle electron transfer process in the photocatalysed oxidation of phenol, 2-chlorophenol and pentachlorophenol: chemical evidence for electron and hole transfer between coupled semiconductors, J. Photochem.Photobiol. A-Chem. 85 (1995) 247-255.
[17] J. L. Tomaino, A. D. Jameson, J. W. Kevek, M. J. Paul, A. M. van der Zande, R. A. Barton, P. L. McEuen, E. D. Minot, Y.S. Lee, Terahertz imaging and spectroscopy of large area single-layer graphene, Optical Society of America (2010).
[18] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V.Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films, Science 22 (2004).
[19] 莊鎮宇, 石墨烯簡介與熱裂解化學氣相合成方法合成石墨烯的近期發展, 物理雙月刊 33 (2011) 155-162.
[20] A.K. Geim, P. Kim, Graphene, a newly isolated form of carbon, provides a rich lode of novel fundamental physics and practical applications, Sci.Am. (2008) 90-97.
[21] X. An, J.C. Yu, Graphene -based photocatalytic composites, RSC Advances 1 (2011) 1426-1434.
[22] C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene, Science 321 (2008) 285.
[23] A. Du, Z. Zhu, S.C. Smith, Multifunctional porous graphene for nanoelectronics and hydrogen storage new properties revealed by first principle calculations, J. AM. CHEM. SOC. 132 (2010) 2876-2877.
[24] D.R. Dreyer, R.S. Ruoff, C.W. Bielawski, From Conception to Realization An Historial Account of Graphene and Some Perspectives for Its Future, Angewandte Chemie International Edition 49 (2010) 9336 – 9344.
[25] J. Huang, L.J. Cote, J. Kim, V.C. Tung, J. Luo, F. Kim, New insight into an old material-graphene oxide as surfactant sheets, 工業材料雜誌 291 (2011) 123-134.
[26] K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, J.H. Ahn, P. Kim, J.Y. Choi, B.H. Hong, Large-scale pattern growth of graphene films for stretchable transparent electrodes, Nature 457 (2009) 706-710.
[27] W.S. Hummers, R.E. Offeman, Preparation of graphitic oxide, 80(1957) 1339.
[28] S. Park, R.S. Ruoff, Chemical methods for the production of graphenes, Nat. Nanotechnol. 58 (2009) 1-8.
[29] J.Wu, M. Agrawal, H.A. Becerril, Z. Bao, Z. Liu, Y. Chen, and P. Peumans, Organic light-emitting diodes on solution-processed graphene transparent electrodes, ACS Nano 4 (2010) 43-48.
[30] 劉偉仁, 下世代能源材料-石墨烯, 物理雙周刊 33 (2011) 178-182.
[31] 游源祥, 石墨烯/高分子奈米複合材料, 化學 70 (2012) 53-67.
[32] A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature 238 (1972) 37.
[33] R.W. Matthews, Photooxidation of organic impurities in water using thin films of titanium dioxide, J. Phys. Chem 91 (1987) 3328-3333.
[34] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Visible-light photocatalysis in nitrogen-doped titanium oxides, Science 293 (2001) 269.
[35] M. AL-Shahry, W.B. Ingler Jr., S.U.M. Khan,Efficient Photochemical water splitting by a chemically modified n-TiO2, Science 297 (2002) 2243.
[36] L. Zhang, Y. Zhu, Y. He, W. Li, H. Sun, Preparation and performances of mesoporous TiO2 film photocatalyst supported on stainless steel, Appl. Catal. B-Environ. 40 (2003) 287-292.
[37] W.G. Zhang , L.L. Zhang , Z.J. Jiang , R.Q. Li, Synthetic route to the nano-sized titania with high photocatalyticactivity using a mixed structure-directing agent, Mater. Chem. Phys. 105 (2007) 414-418.
[38] D. L. Liao, B. Q. Liao, Shape, size and photocatalytic activity control of TiO2 nanoparticles with surfactants, J. Photochem. Photobiol. A-Chem. 187 (2007) 363-369.
[39] A.K.L. Sajjad, S. Shamaila, B. Tian, F. Chen, J. Zhang, One step activation of WOx/TiO2 nanocomposites with enhanced photocatalytic activity, Appl. Catal. B-Environ. 91 (2009) 397-405.
[40] J. Tian, J. Wang, J. Dai, X. Wang, Y. Yin, N-doped TiO2/ZnO composite powder and its photocatalytic performance for degradation of methyl orange, Surf. Coat. Technol. 204 (2009) 723-730.
[41] C.C. Mao, H.S. Weng, Promoting effect of adding carbon black to TiO2 for aqueous photocatalytic degradation of methyl orange, Chem. Eng. J. 155 (2009) 744-749.
[42] W. Sangchay, L. Sikong, K. Kooptarnond, Comparison of photocatalytic reaction of commercial P25 and synthetic TiO2-AgCl nanoparticles, Procedia Engineering 32 590-596.
[43] R. Jaiswal, N. Patel, D.C. Kothari, A. Miotello, Improved visible light photocatalytic activity of TiO2 co-doped with Vanadium and Nitrogen, Appl. Catal. B-Environ. 126 (2012) 47-54.
[44] M. Behpour, V. Atouf, Study of the photocatalytic activity of nanocrystalline S, N-codoped TiO2 thin films and powders under visible and sun light irradiation, Appl. Surf. Sci. 258 (2012) 6595-6601.
[45] J.W. Shi, X. Yan, H.J. Cui, X. Zong, M.L. Fu, S. Chen, L. Wang, Low-temperature synthesis of CdS/TiO2 composite photocatalysts: Influence of synthetic procedure on photocatalytic activity under visible light, J. Mol. Catal. A-Chem. 356 (2012) 53-60.
[46] D. Papoulis, S. Komarneni, D. Panagiotaras, E. Stathatos, D. Toli, K. C. Christoforidis, M. Fernandez-Garcia, H. Li, S. Yin, T. Sato, H. Katsuki, Halloysite-TiO2 nanocomposites: Synthesis, characterization and photocatalytic activity, Appl. Catal. B-Environ. 132 (2013) 416-422.
[47] Y.L. Min, K. Zhang, W. Zhao, F.C. Zheng, Y.C. Chen, Y.G. Zhang, Enhanced chemical interaction between TiO2 and graphene oxide for photocatalytic decolorization of methylene blue, Chem. Eng. J. 193 (2012) 203-210.
[48] 陳到達, 熱分析. 渤海堂文化事業有限公司 (1992).
[49] E.Y. Choi, T.H. Han, J. Hong, J.E. Kim, S.H. Lee, H.W. Kim, S.O. Kim, Noncovalent functionalization of graphene with end-functional polymers, J. Mater. Chem. 20 1907-1912.
[50] I.K. Konstantinou, T.A. Albanis, TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: A review, Appl. Catal. B-Environ. 49 (2004) 1-14.
[51] A. Nezamzadeh-Ejhieh, S. Hushmandrad, Solar photodecolorization of methylene blue by CuO/X zeolite as a heterogeneous catalyst, Appl. Catal. A-Gen. 388 (2010) 149-159.
[52] K.S. Yoo, H. Choi, D.D. Dionysiou, Synthesis of anatase nanostructured TiO2 particles at low temperature using ionic liquid for photocatalysis, Catal. Commun. 6 (2005) 259-262.
[53] Y. Ebina , T. Sasaki , M. Harada, M. Watanabe, Restacked perovskite nanosheets and their Pt-loaded materials as photocatalysts, Chem. Mat. 10 (2002) 4390-4395.
[54] R.A. Spurr, W. Myers, Quantitative analysis of anatase-rutile mixtures with an X-ray diffractometer, Anal. Chem. 29 (1957) 760-762.
[55] S. Liu, H. Sun, S. Liu, S. Wang, Graphene facilitated visible light photodegradation of methylene blue over titanium dioxide photocatalysts, Chem. Eng. J. 214 (2013) 298-303.
[56] K. Dai, H. Chen, T. Peng, D. Ke, H. Yi, Photocatalytic degradation of methyl orange in aqueous suspensionof mesoporous titania nanoparticles, chemosphere 69 (2007)1361-1367.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top