[1] A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature 238 (1972) 37-38.
[2] T.R. Esch, I. Gadaczek, T.Bredow, Surface structures and thermodynamics of low-index of rutile, brookite and anatase - A comparative DFT study, Appl. Surf. Sci. 288 (2014) 275-287.
[3] K. B. Jeremy, T. Hughbanks, G.J. Miller, Structural-electronic relationships in inorganic solids powder neutron diffraction studies of the rutile and anatase polymorphs of titanium doxide at 15 and 295 K, J. Am. Chem. SOC. 109 (1987) 3639-3646.
[4] M. Pelaez, N.T. Nolan, S.C. Pillai, M. K. Seery, P. Falaras, A.G. Kontos, P.S.M. Dunlop, J.W.J. Hamilton, J.A. Byrne, K. O'Shea, M.H. Entezari, D.D. Dionysiou, A review on the visible light active titanium dioxide photocatalysts for environmental applications, Appl. Catal. B-Environ. 125 (2012) 331-349.
[5] E.M. Levin, H.F. McMurdie, C.R. Robbins, Phase Diagrams for Ceramists. The American Cermic Society 76 (1975) 4150-4999.
[6] C.J. Brinker, G.W. Scherer, The Physics and Chmistry of Sol-Gel Processing. ACADEMIC PRESS,UK (1990).
[7] 湯偉鉦, 蘇一哲, 溶膠-凝膠法製備奈米複合材料, 化學 71 (2012) 39-51.[8] C.S. Fang, and Y.W. Chen, Preparation of titania particles by thermal hydrolysis of TiCl4 in n-propanol solution, Mate. Chem. Phys. 78 (2003) 739-745.
[9] K. Tsukuma, T. Akiyama, H. Imai, Liquid phase deposition film of tin oxide, J. Non-Cryst. Solids 210 (1997) 48-54.
[10] 鄭玫玲, 金、鉑擔載於二氧化鈦上進行光催化甲醇重組產氫之研究, 國立中央大學材料科學與工程研究所碩士論文 (2007).[11] A.L. Linsebigler, G. Lu, J. T. Yates, Jr., Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results, Chem. Rev 95 (1995) 735-758.
[12] J. Zhang, S. Yan, L. Fu, F. Wang, M. Yuan, G. Luo, Q. Xu, X. Wang, C. Li, Photocatalytic degradation of rhodamine B on anatase, rutile, and brookite TiO2, Chi. J. Catal. 32 (2011) 983-991.
[13] C.R. Estrellan, C. Salim, H. Hinode, Photocatalytic decomposition of perfluorooctanoic acid by iron and niobium co-doped titanium dioxide, J. Hazard. Mater. 179 (2010) 79-83.
[14] Q.H. Zhang, W.D. Han, Y.J. Hong, J.G.Yu, Photocatalytic reduction of CO2 with H2O on Pt-loaded TiO2 catalyst, Catal. Today 148 (2009) 335-340.
[15] A. Hagfeldtt, M. Gratzel, Light-induced redox reactions in nanocrystalline systems, Chem. Rev. 95 (1995) 49-68.
[16] N. Serpone, P. Maruthamuthu, P. Pichat, E. Pelizzetti, H. Hidaka, Exploiting the interparticle electron transfer process in the photocatalysed oxidation of phenol, 2-chlorophenol and pentachlorophenol: chemical evidence for electron and hole transfer between coupled semiconductors, J. Photochem.Photobiol. A-Chem. 85 (1995) 247-255.
[17] J. L. Tomaino, A. D. Jameson, J. W. Kevek, M. J. Paul, A. M. van der Zande, R. A. Barton, P. L. McEuen, E. D. Minot, Y.S. Lee, Terahertz imaging and spectroscopy of large area single-layer graphene, Optical Society of America (2010).
[18] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V.Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films, Science 22 (2004).
[19] 莊鎮宇, 石墨烯簡介與熱裂解化學氣相合成方法合成石墨烯的近期發展, 物理雙月刊 33 (2011) 155-162.[20] A.K. Geim, P. Kim, Graphene, a newly isolated form of carbon, provides a rich lode of novel fundamental physics and practical applications, Sci.Am. (2008) 90-97.
[21] X. An, J.C. Yu, Graphene -based photocatalytic composites, RSC Advances 1 (2011) 1426-1434.
[22] C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene, Science 321 (2008) 285.
[23] A. Du, Z. Zhu, S.C. Smith, Multifunctional porous graphene for nanoelectronics and hydrogen storage new properties revealed by first principle calculations, J. AM. CHEM. SOC. 132 (2010) 2876-2877.
[24] D.R. Dreyer, R.S. Ruoff, C.W. Bielawski, From Conception to Realization An Historial Account of Graphene and Some Perspectives for Its Future, Angewandte Chemie International Edition 49 (2010) 9336 – 9344.
[25] J. Huang, L.J. Cote, J. Kim, V.C. Tung, J. Luo, F. Kim, New insight into an old material-graphene oxide as surfactant sheets, 工業材料雜誌 291 (2011) 123-134.
[26] K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, J.H. Ahn, P. Kim, J.Y. Choi, B.H. Hong, Large-scale pattern growth of graphene films for stretchable transparent electrodes, Nature 457 (2009) 706-710.
[27] W.S. Hummers, R.E. Offeman, Preparation of graphitic oxide, 80(1957) 1339.
[28] S. Park, R.S. Ruoff, Chemical methods for the production of graphenes, Nat. Nanotechnol. 58 (2009) 1-8.
[29] J.Wu, M. Agrawal, H.A. Becerril, Z. Bao, Z. Liu, Y. Chen, and P. Peumans, Organic light-emitting diodes on solution-processed graphene transparent electrodes, ACS Nano 4 (2010) 43-48.
[30] 劉偉仁, 下世代能源材料-石墨烯, 物理雙周刊 33 (2011) 178-182.
[31] 游源祥, 石墨烯/高分子奈米複合材料, 化學 70 (2012) 53-67.[32] A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature 238 (1972) 37.
[33] R.W. Matthews, Photooxidation of organic impurities in water using thin films of titanium dioxide, J. Phys. Chem 91 (1987) 3328-3333.
[34] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Visible-light photocatalysis in nitrogen-doped titanium oxides, Science 293 (2001) 269.
[35] M. AL-Shahry, W.B. Ingler Jr., S.U.M. Khan,Efficient Photochemical water splitting by a chemically modified n-TiO2, Science 297 (2002) 2243.
[36] L. Zhang, Y. Zhu, Y. He, W. Li, H. Sun, Preparation and performances of mesoporous TiO2 film photocatalyst supported on stainless steel, Appl. Catal. B-Environ. 40 (2003) 287-292.
[37] W.G. Zhang , L.L. Zhang , Z.J. Jiang , R.Q. Li, Synthetic route to the nano-sized titania with high photocatalyticactivity using a mixed structure-directing agent, Mater. Chem. Phys. 105 (2007) 414-418.
[38] D. L. Liao, B. Q. Liao, Shape, size and photocatalytic activity control of TiO2 nanoparticles with surfactants, J. Photochem. Photobiol. A-Chem. 187 (2007) 363-369.
[39] A.K.L. Sajjad, S. Shamaila, B. Tian, F. Chen, J. Zhang, One step activation of WOx/TiO2 nanocomposites with enhanced photocatalytic activity, Appl. Catal. B-Environ. 91 (2009) 397-405.
[40] J. Tian, J. Wang, J. Dai, X. Wang, Y. Yin, N-doped TiO2/ZnO composite powder and its photocatalytic performance for degradation of methyl orange, Surf. Coat. Technol. 204 (2009) 723-730.
[41] C.C. Mao, H.S. Weng, Promoting effect of adding carbon black to TiO2 for aqueous photocatalytic degradation of methyl orange, Chem. Eng. J. 155 (2009) 744-749.
[42] W. Sangchay, L. Sikong, K. Kooptarnond, Comparison of photocatalytic reaction of commercial P25 and synthetic TiO2-AgCl nanoparticles, Procedia Engineering 32 590-596.
[43] R. Jaiswal, N. Patel, D.C. Kothari, A. Miotello, Improved visible light photocatalytic activity of TiO2 co-doped with Vanadium and Nitrogen, Appl. Catal. B-Environ. 126 (2012) 47-54.
[44] M. Behpour, V. Atouf, Study of the photocatalytic activity of nanocrystalline S, N-codoped TiO2 thin films and powders under visible and sun light irradiation, Appl. Surf. Sci. 258 (2012) 6595-6601.
[45] J.W. Shi, X. Yan, H.J. Cui, X. Zong, M.L. Fu, S. Chen, L. Wang, Low-temperature synthesis of CdS/TiO2 composite photocatalysts: Influence of synthetic procedure on photocatalytic activity under visible light, J. Mol. Catal. A-Chem. 356 (2012) 53-60.
[46] D. Papoulis, S. Komarneni, D. Panagiotaras, E. Stathatos, D. Toli, K. C. Christoforidis, M. Fernandez-Garcia, H. Li, S. Yin, T. Sato, H. Katsuki, Halloysite-TiO2 nanocomposites: Synthesis, characterization and photocatalytic activity, Appl. Catal. B-Environ. 132 (2013) 416-422.
[47] Y.L. Min, K. Zhang, W. Zhao, F.C. Zheng, Y.C. Chen, Y.G. Zhang, Enhanced chemical interaction between TiO2 and graphene oxide for photocatalytic decolorization of methylene blue, Chem. Eng. J. 193 (2012) 203-210.
[48] 陳到達, 熱分析. 渤海堂文化事業有限公司 (1992).
[49] E.Y. Choi, T.H. Han, J. Hong, J.E. Kim, S.H. Lee, H.W. Kim, S.O. Kim, Noncovalent functionalization of graphene with end-functional polymers, J. Mater. Chem. 20 1907-1912.
[50] I.K. Konstantinou, T.A. Albanis, TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: A review, Appl. Catal. B-Environ. 49 (2004) 1-14.
[51] A. Nezamzadeh-Ejhieh, S. Hushmandrad, Solar photodecolorization of methylene blue by CuO/X zeolite as a heterogeneous catalyst, Appl. Catal. A-Gen. 388 (2010) 149-159.
[52] K.S. Yoo, H. Choi, D.D. Dionysiou, Synthesis of anatase nanostructured TiO2 particles at low temperature using ionic liquid for photocatalysis, Catal. Commun. 6 (2005) 259-262.
[53] Y. Ebina , T. Sasaki , M. Harada, M. Watanabe, Restacked perovskite nanosheets and their Pt-loaded materials as photocatalysts, Chem. Mat. 10 (2002) 4390-4395.
[54] R.A. Spurr, W. Myers, Quantitative analysis of anatase-rutile mixtures with an X-ray diffractometer, Anal. Chem. 29 (1957) 760-762.
[55] S. Liu, H. Sun, S. Liu, S. Wang, Graphene facilitated visible light photodegradation of methylene blue over titanium dioxide photocatalysts, Chem. Eng. J. 214 (2013) 298-303.
[56] K. Dai, H. Chen, T. Peng, D. Ke, H. Yi, Photocatalytic degradation of methyl orange in aqueous suspensionof mesoporous titania nanoparticles, chemosphere 69 (2007)1361-1367.