跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.152) 您好!臺灣時間:2025/11/06 04:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:康智超
研究生(外文):Jr-Chao Kang
論文名稱:應用化學水浴法及濺鍍法製作薄膜太陽能電池之ZnS緩衝層薄膜特性分析
論文名稱(外文):Study on the characteristics for ZnS buffer layer of thin-film PV solar cell fabricated by Chemical Bath Deposition and Sputtering methods
指導教授:蔡福人
指導教授(外文):Fu-Ren Tsai
學位類別:碩士
校院名稱:崑山科技大學
系所名稱:光電工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:129
中文關鍵詞:硫化鋅緩衝層化學水浴沉積法濺鍍法CuInSe2薄膜太陽能電池
外文關鍵詞:ZnSbuffer layerCBDSputteringCuInSe2 thin film solar
相關次數:
  • 被引用被引用:0
  • 點閱點閱:825
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要採用化學水浴沉積法(Chemical Bath Deposition,CBD)及濺鍍法(Sputtering)兩種製程方法製備CuInSe2(CIS)太陽能電池之硫化鋅緩衝層薄膜,CBD則分為(1)靜泡溶液反應成膜及(2)攪拌溶液反應成膜兩種成長方式。實驗前兩製程於各別進行前製分析後,先分別於鈉鈣玻璃基板進行硫化鋅薄膜的成長,經分析取得最佳製程參數再鍍製於CIS/Mo/Soda-lime進行堆疊,並藉由四點探針電性分析下量測其p-n二極體特性曲線,以便研判各製程下最佳參數之薄膜是否具備優良的二極體特性以利作為CIS太陽能電池元件之緩衝層。
經實驗分析後發現濺鍍法於製程壓力2.5mtorr、射頻濺鍍功率400W較易於控制薄膜之成膜速率且於兩製程法中能具較均勻緻密及較佳結晶性的薄膜品質。而對於CBD兩成長方式試劑添加濃度則採用前製實驗所獲得理想參數,分別為硫酸鋅0.08mol/L、硫脲0.24mol/L、氨水2mol/L、聯氨1.5mol/L、檸檬酸鈉0.03mol/L。經分析比較後發現,靜泡溶液反應成膜(90℃、30min)薄膜表面品質雖能有優於攪拌溶液反應成膜(80℃、30min)的表現,但於結晶性及成膜速率則較不及攪拌溶液反應成膜的結果,且在光學特性分析上則顯示攪拌溶液反應成膜於兩製程法中能具較佳的表現。經分別與CIS/Mo/Soda-lime堆疊後,電性分析量測下發現,各製程法皆能有效形成p-n接面,其中以攪拌溶液反應成膜(80℃、30min)可得較佳結果,故能確定化學水浴沉積法攪拌溶液反應成膜為較佳的成長CuInSe2太陽能電池硫化鋅緩衝層的製程方法,同時從結果中也顯示化學水浴沉積法在去除攪拌的成膜影響因子之靜泡溶液反應成膜於太陽能電池緩衝層應用也具有其可行性。


This study used chemical bath deposition (CBD) and sputtering two process prepared zinc sulfide buffer layer of a CuInSe2 (CIS) solar cells. CBD process is divided into two methods: (1) static solution reaction film; (2) stirring-mix solution reaction film. Two process completed the individual system analysis the experiment, the ZnS films are firstly grown on soda-lime glass substrate, then the optimal process parameters can be obtained by analysis, then they can be stacked and coated in CIS / Mo / Soda-lime. Then they are measured by four-point probe electrical analysis to obtain p-n diode characteristic curve. So that best parameters of the film in the process can be judged whether they have an excellent diodecharacteristics of buffer layer for CIS solar cells.
After experimental analysis, it can be found that the sputtering process pressure with 2.5 mtorr and the RF sputtering power with 400W are easier to control film growth rate with a more uniform and compact crystallinity film quality at the two process methods. As referring previous experiments for CBD methods, the desired parameters with 0.08 mol/L zinc sulfate, 0.24 mol/L thiourea, 2 mol/L ammonia, 1.5 mol/L hydrazine and 0.03 mol/L citric acid sodium, are adopted for the growth mode of reagent concentration. It is found by analyses that film quality performance of static bubble reaction film with (90 ° C, 30min) is better than stirring the solution reaction film with (80 ° C, 30min), but its crystalline film growth rate is worse than that of stirring-mix solution reaction film, and stirring-mix solution reaction film is also with better performance at optical properties analysis. Through the electrical analysis measurement after stack CIS / Mo / Soda-lime, it can be found that all process method can effectively form a p-n junction, among them, stirring-mix solution reaction film with (80 ° C, 30min) can get better results. Thus, it can determine that the CBD with stirring the solution reaction film can obtain the better ZnS buffer layer of CuInSe2 solar cell. From the results also proved that the CBD with static solution reaction film has its feasibility to obtain ZnS buffer layer of CuInSe2 solar cell.


摘要 ....................................................i
Abstract ..............................................iii
致謝 ....................................................v
目錄 ...................................................vi
表目錄 ..................................................x
圖目錄 .................................................xi
第一章 緒論 .............................................1
1.1 前言 ...............................................1
1.2 太陽能電池之種類與發展 .............................2
1.2.1 矽晶太陽能電池(Silicon Crystalline Solar Cell) ...3
1.2.2 化合物太陽能電池(Compound Solar Cell) ............4
1.2.3 有機太陽能電池(Organic Solar Cells) ..............5
1.3 太陽能電池原理特性介紹 .............................6
1.3.1 太陽幅射光譜 .....................................6
1.3.2 P-N接面二極體及I-V特性曲線 .......................8
1.3.3 太陽能電池發電原理 ..............................12
1.3.4 太陽能電池等效電路與效能參數 ....................14
1.4 研究動機 ..........................................18
第二章 背景理論 ........................................20
2.1 CuInSe2薄膜太陽能電池之介紹 .......................20
2.1.1 CuInSe2薄膜太陽能電池之研究背景 .................20
2.1.2 CuInSe2薄膜太陽能電池材料特性 ...................21
2.1.3 CuInSe2薄膜太陽能電池結構分析 ...................24
2.2 緩衝層介紹 ........................................28
2.2.1 緩衝層簡介 .......................................28
2.2.2 緩衝層之文獻回顧 .................................29
2.3 硫化鋅(Zinc Sulfide)特性與結構 ....................33
2.4 薄膜製備技術 ......................................35
2.5 濺鍍法 ............................................38
2.5.1 真空濺鍍原理介紹 ................................38
2.5.2 射頻濺鍍法(RF Sputtering) .......................40
2.6 化學水浴沉積法(Chemical Bath Deposition,CBD) ......42
2.6.1 化學水浴沉積法介紹 ..............................42
2.6.2 化學水浴沉積法優缺 ..............................43
第三章 實驗方法與儀器介紹 ..............................45
3.1 實驗流程與步驟 ....................................45
3.1.1 實驗材料 ........................................46
3.1.2 玻璃基板清洗流程 ................................47
3.2 濺鍍法薄膜製備實驗 ................................50
3.3 化學水浴沉積法薄膜製備實驗 ........................54
3.3.1 化學水浴沉積法之ZnS化學反應機制 .................60
3.4 儀器設備介紹 ......................................62
3.4.1 表面輪廓儀(α-Step) .............................62
3.4.2 X光繞射儀(X-Ray Diffraction) ....................63
3.4.3 掃描式電子顯微鏡(SEM) ...........................66
3.4.4 X射線能量散佈分析儀(EDS) ........................68
3.4.5 紫外光/可見光光譜儀(UV-VIS Spectrophotometer) ...69
3.4.6 霍爾量測儀(Hall-Measurement) ....................70
3.4.7 四點探針(Four-Point Probe) ......................72
第四章 結果與討論 ......................................74
4.1 熱退火處理參數設置實驗分析 ........................74
4.2 濺鍍法實驗分析 ....................................77
4.3 化學水浴沉積法實驗前製分析 ........................81
4.4 化學水浴沉積法/濺鍍法製備ZnS薄膜分析 ..............94
4.4.1 薄膜厚度與表面粗糙度分析 ........................94
4.4.2 X光繞射儀分析 ..................................103
4.4.3 表面微結構分析 .................................107
4.4.4 透光率及能隙分析 ...............................114
4.4.5 p-n 二極體特性分析 .............................118
第五章 結論與未來展望 .................................121
5.1 結論 .............................................121
5.2 未來展望與建議 ...................................124
參考文獻 ..............................................126
自傳 ..................................................129

[1] D. Lidgate ,“Green energy”, Engineering Science and Education Journal,1992, Vol.1, No.5, pp.221-227.
[2] J. L. Shay and J. H. Werink, ”Ternary Chalcopyrite Semiconductor Growth, Electronic Properties and Application”,Pergamon, Dxforv,1975.
[3] Michael Gratzel, “Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells”, Journal of Photochemistry and Photobiology A: Chemistry 164 ,2004, 3–14.
[4] M. C. Scharber, D. Muhlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger, and C. J. Brabec, Adv. Mater. 18, ,2006,789.
[5] 林明獻,“太陽電池技術入門”全華圖書股份有限公司,台北,2008二版。
[6] D. Hariskos, S. Spiering and M. Powalla, “Buffer layers in. Cu(In,Ga)Se2 solar cells and modules”, Thin Solid Films, Vol.480-481, 2005, pp.99-109.
[7] Mickelsen, R.A., Chen, W.S., Hsiao, Y.R., Lowe, V.E. IEEE Trans. Electron Devices, 31, 1984, p542.
[8] Hedstrom, J., et al., “ZnO/CdS/Cu(In,Ga)Se2 thin film solar cells with improved performance” IEEE, 1993, p. 364-371.
[9] R. Noufi, A. M. Gabor, J. R. Tuttle, A. L. Tennant, M. A. Contreras, D. S. Albin, J. J.Carapella, “Method of fabricating high-efficiency Cu(In,Ga)(SeS). Sub. 2 thin films for solar cells”1995,∥ US patent: 5441897.
[10] Ingrid Repins, Miguel A. Contreras, Brian Egaas, Clay DeHart, John Scharf, Craig L. Perkins, Bobby To and Rommel Noufi, Progress in Photovoltaics: Research and Applications 16, 2008, p.235.
[11] Wagner, S., Proc. Symp. Matr. New Process. Tech. Photovolt. Electrochem Soc. , 1983, Vol. 83-11, p410.
[12] Haalboom, T., Godecke, T., Ernst, F., Ruhle, R., Herberholz, R., Schock, H.-W., Beilharz, C., and Benz, K.W. Inst. Phys. Conf. Ser. 152E, 1998, p249.
[13] H. Neumann and R. D. Tamlinson, Solar Cell, 28,1990,301.
[14] Moller, H.J., ─Semiconductors for solar cells,∥ 1993.
[15] R. N. Bhattacharya, P. J. Sebastian and X. Mathew,“ Preparation and characterization of copper indium diselenide films by electroless deposition” Solar Energy Materials and Solar Cell, 63, 2000,p.315-323.
[16] R. Ugarte, R. Schrebler and R. Cordova, “Electrodeposition of CuInSe2 thin films in a glycine acid medium” Thin Solid Films, 340, 1999,p.117-123.
[17] R. Woodyard and G. A. Candies, “Radiation resistance of thin-film solar cells for space photovoltaic power” Solar Cells,31, 1991,p.297-329.
[18] Kimura, R., T. Nakada, and P. Fons, Photoluminescence properties of sodium incorporation in CuInSe2 and CuIn3Se5 thin films. Solar energy materials and solar cells, 67,2001: p. 289-295.
[19] D. Abou-Rasa, G. Kostorza, D. Bremaudb, M. Kalin, F.V.Kurdesau, A.N. Tiwari, M.Dobelic, "Formation and characterisation of MoSe2 for Cu(In,Ga)Se2 based solar cells," Thin Solid Films, 2005, vol. 480-481, pp. 433.
[20] Kazmerski, L.L., Photovoltaics: A review of cell and module technologies. Renewable and sustainable energy reviews, 1997. 1: p. 71-170.
[21] A. Romeo, M. Terheggen, D. Abou-Ras, D.L. Batzner, F.-J. Haug, M. Kalin, D. Rudmann, and A.N. Tiwarid, “Development of thin-film Cu(In,Ga)Se2 and CdTe solar cells,” Progress in Photovoltaics: Research and Applications, 12, 2004, p. 93.
[22] J.C. Bernede , M. ZOAETER , S. Marsillac , N. Barreau , C. Ould El Moctar , K. Benchoulk , and A. Khelil , IEEE,2001,13-16.
[23] Tokio Nakada *, M.H.a., a, Eiji Hayashib, Band offset of high efficiency CBD-ZnSyCIGS thin film solar cells. Thin Solid Films, 2003. 431-432: p. 242-248.
[24] Nakada, T., and Mizutani, M., Proc. 28th IEEE PVSC, Anchorage, 15-22, 2000, p529.
[25] Shigeo Shionoya, “PHOSPHOR HANDBOOK”, CRC Press LLC,New York, U.S.A,1999, p.4.
[26]李世鴻,“積體電路製程技術”,台北,五南圖書出版公司,1998年初版。
[27]行政院國家科學委員會著,“真空技術與應用”,精密儀器發展中心出版,2001,p379。
[28] J. Y. Choi, K. J. Kim, J. B. Yoo and D. Kim, “Properties of Cadmium Sulfide Thin Films Deposited by Chemical Bath Deposition with Ultrasonication,” Sol. Energy, 64,1998,41-47.
[29] S . Kundu, “Chemical bath deposited zinc sulfide buffer layers for copper indium gallium sulfur-selenide solar cells and device analysis”,Thin Solid Films 471,2005,298—303.
[30]林麗娟,X光繞射原理及其應用,工業材料 86 期,1994年2月。
[31] Q.Liu,G.B.Mao,J.P.Ao, “Properties and Applications of ZnS Buffer Layers for Cu(In,Ga)Se2 Thin Film Solar Cells,”Journal Of Semiconductors,2007,Vol.28,No.5.
[32] L.G.Sillen,A.E.Martell,J.Bjerrum, “Stability Constants of Metal Ion Complexs”Chemical Society Special Publication [M]. London: The Chemical Society,1964, No.17.
[33] 巫文全,“化學浴沉積法合成CIGS薄膜太陽能電池ZnS緩衝層與特性之研究”,私立逢甲大學材料工程與科學所碩士論文,2007年。
[34] Johnston DA,Carletto M H,Reddy KTR,et a1, “Chemical bath Deposition of zinc sulfide based buffer layers using lOW toxicity materials[J], ”Thin Solid Films,2002,(403—404),102.
[35] Q.Liu,G.B.Mao,J.P.Ao, “The influence of some complexing agents upon chemical bath depositing ZnS thin films,”Journal Of Functional Materials,3,2007,38.
[36] X.D.Gao,X.M.Li,W.D.Yu,Thin Solid Films 468,2004,43.
[37] G.A.Kitaev,A.A.Uritkaya,S.G.Mokrushin,Russ.J.Phys.Chem. 39,1965,1101.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top