|
[1]A. C. Lund and C. A. Schuh, "Topological and chemical arrangement of binary alloys during severe deformation", J. Appl. Phys., 95, 4815-4822 (2004) [2]W. L. Johnson, "Bulk Glass-Forming Metallic Alloys: Science and Technology", MRS Bull., 24, 42-56 (1999) [3]A. Inoue, B. Shen, H. Koshiba, H. Kato, and A. R. Yavari, "Cobalt-based bulk glassy alloy with ultrahigh strength and soft magnetic properties", Nature Mater., 2, 661-663 (2003) [4]N. H. Pryds, "Bulk amorphous Mg-based alloys", Mater. Sci. Eng. A, 375-377,186-193 (2004) [5]A. Inoue, "Stabilization of Metallic Supercooled Liquid and Bulk Amorphous Alloys", Acta Mater., 48, 279-306 (2000) [6]T. Mukai, T. G. Nieh, Y. Kawamura, A. Inoue, and K. Higashi, "Influence of Strain Rate on Compressive Mechanical Behavior of Pd40Ni40P20 Bulk Metallic Glass", Intermetallics, 10, 1071-1077 (2002) [7]W. J. Wright, R. B. Schwarz, and W. D. Nix, "Localized heating during serrated plastic flow in bulk metallic glasses", Mater. Sci. Eng. A, 319-321, 229-232 (2000) [8]D. M. Xing, T. H. Zhang, W. H. Li, and B. C. Wei, "The Characterization of Plastic Flow in Three Different Bulk Metallic Glass Systems", J. Alloys Compd., 433, 318-323 (2007) [9]W. Klement, R.H. Willens, and P. Duwez, "Non-crystalline Structure in Solidified Gold–Silicon Alloys", Nature 187, 869(1960) [10]A. Inoue, H. Yamaguchi, T. Zhang, and T. Masumoto, "Al-La-Cu Amorphous Alloys with a Wide Supercooled Liquid Region", Mater. Trans., JIM, 31, 104 (1990) [11]H. M. Chen, Y. C. Chang, T. H. Hung, X. H. Du, J. C. Huang, J. S. C. Jang, and P. K. Liaw, "Compression Behavior of Mg-Cu-Gd Bulk Metallic Glasses with Various Specimen Height to Diameter Ratios", Mater. Trans., 48, 1802-1805 (2007) [12]C. P. Chou and F. Spaepen, "Some mechanical properties of phase separated Pd 0.74Au0.08Si0.38 Metallic Glasses", Acta Metall., 23, 609-613(1975) [13]G. Y. Yuan and A. Inoue, "The effect of Ni substitution on the glass-forming ability and mechanical properties of Mg–Cu–Gd metallic glass alloys", J. Alloys Compd., 387, 134-138 (2005) [14]Z. G. Li, X. Hui, C. M. Zhang, and G. L. Chen, "Formation of Mg–Cu–Zn–Y bulk metallic glasses with compressive strength over gigapascal", J. Alloys Compd., 454, 168-173 (2008) [15]G. Y. Yuan, K. Amiya, and A. Inoue, "Structural relaxation, glass-forming ability and mechanical properties of Mg–Cu–Ni–Gd alloys", J. Non-Cryst. Solids, 351, 729-735 (2005) [16]C. Fan, P. K. Liaw, T. W. Wilson, H. Choo, Y. F. Gao, C. T. Liu, T. Proffen, and J. W. Richardson, "Pair distribution function study and mechanical behavior of as-cast and structurally relaxed Zr-based bulk metallic glasses", Appl. Phys. Lett., 89, 231920 (2006) [17]G. He, W. Loser, J. Eckert, and L. Schultz, "Phase transformation and mechanical properties of Zr-base bulk glass-forming alloys", Mater. Sci. Eng. A, 352, 179-185 (2003) [18]S. W. Lee, M. Y. Huh, E. Fleury, and J. C. Lee, "Crystallization-induced plasticity of Cu–Zr containing bulk amorphous alloys", Acta Mater., 54, 349-355 (2006) [19]Shinn, M., Hultman, L., and Barnett, S.A., "Growth, structure, and microhardness of epitaxial TiN/NbN superlattices", Journal of Materials Research, 7, 901-911 (1992) [20]Hoagland, R.G., Mitchell, T.E., Hirth, J.P., and Kung, H., "On the strengthening effects of interfaces in multilayer fcc metallic composites", Philosophical Magazine a-Physics of Condensed Matter Structure Defects and Mechanical Properties, 82, 643-664 (2002) [21]Barshilia, H.C. and Rajam, K.S., "Characterization of Cu/Ni multilayer coatings by nanoindentation and atomic force microscopy", Surface & Coatings Technology, 155, 195-202 (2002) [22]Tan, X.H. and Shen, Y.L., "Modeling analysis of the indentation-derived yield properties of metallic multilayered composites", Composites Science and Technology, 65, 1639-1646 (2005) [23]Li, Q.Z., "Effect of dislocation source length on yield strength of nanostructured metallic multilayer thin films", Materials Science and Engineering: A, 493, 288-291(2008) [24]Wen, S.P., Zong, R., Zeng, F., Gao, Y., and Pan, F., "Investigation of the wear behaviors of Ag/Cu multilayers by nanoscratch", Wear, 265, 1808-1813 (2008) [25]Anil Gannepalli and Surya K Mallapragada, "Molecular dynamics studies of plastic deformation during silicon nanoindentation", Nanotechnology, 12, 250-257(2001) [26]Schiotz, J. and Jacobsen, K.W., "A maximum in the strength of nanocrystalline copper", Science, 301, 1357-1359 (2003) [27]B. C. Snyder, J. Wadsworth, and O. D. Sherby, "Superplastic behavior in ferrous laminated composites", Acta Metall., 32, 919-932 (1984) [28]Inoue A, Zhang W, Tsurui T, Yavari AR, Greer AL , "Unusual room-temperature compressive plasticity in nanocrystal-toughened bulk copper-zirconium glass", Philos Mag Lett, 85, 221-237 (2005) [29]Xu D, Lohwongwatana B, Duan G, Johnson WL, Garland C, "Bulk metallic glass formation in binary Cu-rich alloy series – Cu100-xZrx (x=34, 36, 38.2, 40 at.%) and mechanical properties of bulk Cu64Zr36 glass", Acta Mater, 52, 2621–2624 (2004) [30]Zhang Y, Wang WH, Greer AL, "Making metallic glasses plastic by control of residual stress", Nat. Mater., 5, 857-860 (2006) [31]T. G. Nieh, T. W. Barbee, and J. Wadsworth, "Tensile properties of a free-standing Cu/Zr nanolaminate (or compositionally-modulated thin film) ", Scripta Mater., 41, 929-935 (1999) [32]A. Donohue, F. Spaepen, R. G. Hoagland, and A. Misra, "Suppression of the shear band instability during plastic flow of nanometer-scale confined metallic glasses", Appl. Phys. Lett., 91, 241905 (2007) [33]C. C. Hays, C. P. Kim, and W. L. Johnson, "Microstructure Controlled Shear Band Pattern Formation and Enhanced Plasticity of Bulk Metallic Glasses Containing in situ Formed Ductile Phase Dendrite Dispersions", Phys. Rev. Lett., 84, 2901-2904 (2000) [34]G. He, J. Eckert, W. Loser, and L. Schultz, "Novel Ti-base nanostructure–dendrite composite with enhanced plasticity", Nature Mater., 2, 33-37 (2002) [35]D. H. Hofmann, D. C., J. Y. Suh, A. Wiest, M. L. Lind, M. D. Demetriou, and W. L. Johnson, "Development of tough, low-density titanium-based bulk metallic glass matrix composites with tensile ductility", Proc. Natl. Acad. Sci. U.S.A, 105, 20136-20140 (2008) [36]D. C. Hofmann, J. Y. Suh, A. Wiest, G. Duan, M. L. Lind, M. D. Demetriou, and W. L. Johnson, "Designing metallic glass matrix composites with high toughness and tensile ductility", Nature, 451, 1085-1089 (2008) [37]Wei Hua Wang , Z. Bian, Ping Wen, Yong Zhang, M.X. Pan, D.Q. Zhao, "Role of addition in formation and properties of Zr-based bulk metallic glasses", Intermetallics, 10, 1249-1257 (2002) [38]Vinogradov, O., "A new method of molecular statics in polycrystals Applications", Computational Materials Science, 39, 611-615 (2007) [39]A. Inoue, T. Zhang, T. Masumoto, "Al-La-Ni amorphous alloys with a wide supercooled liquid region", Mater. Trans. JIM, 30, 965 (1989) [40]A. Inoue, "Stabilization of metallic supercooled liquid and bulk amorphous alloys", Acta Mater., 48, 279 (2000) [41]J.C. Huang, J.P. Chu, J.S.C. Jang, "Recent progress in metallic glasses in Taiwan", Intermetallic, 17, 973-987 (2009) [42]X. H. Du, J. C. Huang, K. C. Hsieh, Y. H. Lai, H. M. Chen, J. S. C. Jang, and P. K. Liaw, "Two-glassy-phase bulk metallic glass with remarkable plasticity", Appl. Phys. Lett., 91, 131901 (2007) [43]Y. M. Wang, J. Li, A. V. Hamza, and J. T. W. Barbee, "Ductile crystalline–amorphous nanolaminates", Proc. Natl. Acad. Sci. U.S.A, 104, 11155-11160 (2007) [44]Schiotz, J., Di Tolla, F.D., and Jacobsen, K.W., "Softening ofnanocrystalline metals at very small grain sizes", Nature, 391, 561-563 (1998) [45]Denis Saraev and Miller, R.E., "Atomatic-scale simulations of nanoindentation-induced plasticity in copper crystals with nanomete-sized nickel coatings", Acta mater., 54, 33-45 (2006) [46]Ioannis N. Mastorakos, Aikaterini Bellou, David F. Bahr, and Hussein M. Zbib, "Size-dependent strength in nanolaminate metallic systems", J. Mater. Res., 26, 1179-1187 (2011) [47]I.N. Mastorakos, N. Abdolrahim, and H.M. Zbib, "Deformation mechanisms in composite nano-layered metallic and nanowire structures", Int. J. Mech. Sci., 52, 295 (2010) [48]Kim, K.J., Yoon, J.H., Cho, M.H., and Jang, H., "Molecular dynamics simulation of dislocation behavior during nanoindentation on a bicrystal with a Sigma=5 (210) grain boundary", Materials Letters, 60, 3367-3372 (2006) [49]Hohenberg P., K. W., "Inhomogenerous electron gas", Physical Review B, 136, 964 (1964) [50]W. Kohn, L. J. Sham, "Self-Consustent Equation Including Exchange and Correlation Effects", Phys. Rev, 140, A1133-A1138 (1965) [51]Hager, W.W. and Zhang, H.C., "A new conjugate gradient method with guaranteed descent and an efficient line search", Siam Journal on Optimization, 16, 170-192 (2005) [52]Zhang, L., Zhou, W.J., and Li, D.H., "Some descent three-term conjugate gradient methods and their global convergence", Optimization Methods & Software, 22, 697-711 (2007) [53]Quapp, W., "A growing string method for the reaction pathway defined by a Newton trajectory", Journal of Chemical Physics, 122, 174106 (2005) [54]Broyden, C.G., "The Convergence of a Class of Double-rank Minimization Algorithms", Journal of the Institute of Mathematics and Its Applications, 6, 76-90 (1970) [55]Fletcher, R., "A New Approach to Variable Metric Algorithms", Computer Journal, 13, 317-322 (1970) [56]Goldfarb, D., "A Family of Variable Metric Updates Derived by Variational Means", Mathematics of Computation, 24, 23-26 (1970) [57]Shanno, D.F., "Conditioning of Quasi-Newton Methods for Function Minimization", Mathematics of Computation, 24, 647-656 (1970) [58]Byrd, R.H., Lu, P.H., Nocedal, J., and Zhu, C.Y., "A limited memory algorithm for bound constrained optimization", Siam Journal on Scientific Computing, 16, 1190-1208 (1995) [59]P. A. T. Olsson, S. Melin and C. Persson, "Atomistic simulations of tensile and bending properties of single-crystal bcc iron nanobeams", Physical Review B. , 76, 224112 (2007). [60]E. Bitzek, P. Koskinen, F. Gahler, M. Moseler and P. Gumbsch, "Structural Relaxation Made Simple", Phys. Rev. Lett. , 97, 170201 (2006). [61]Andrei, N., "Scaled memoryless BFGS preconditioned conjugate gradient algorithm for unconstrained optimization", Optimization Methods & Software, 22, 561-571 (2007) [62]Liu, D.C. and Nocedal, J., "On the limited memory bfgs method for large-scale optimization", Mathematical Programming, 45, 503-528 (1989) [63]D. J. Wales and J. P. K. Doye, "Global optimization by basin-hopping and the lowest energy structures of Lennard-Jones clusters containing up to 110 atoms", Journal of Physical Chemistry A, 101, 5111-5116 (1997) [64]K. A. Jackson, M. Horoi, I. Chaudhuri, T. Frauenheim, and A. A. Shvartsburg, "Unraveling the shape transformation in silicon clusters", Physical Review Letters, 93, 013401 (2004) [65]S. Hamad, C. R. A. Catlow, and S. M. Woodley, "Structure and Stability of Small TiO2 Nanoparticles", J. Phys. Chem. B, 109, 15741-15748 (2005) [66]V. Rosato, M. Guillope, and B. Legrand, "Thermodynamical and Structural-Properties of Fcc Transition-Metals Using a Simple Tight-Binding Model", Philosophical Magazine a-Physics of Condensed Matter Structure Defects and Mechanical Properties, 59, 321-336 (1989) [67]Daw, M.S. and Baskes, M.I., "Embedded-atom method –derivation and application to impurities, surfaces,and other defects in metals", Physical Review B, 29, 6443-6453 (1984) [68]Foiles,S.M.,Baskes,M.I.,and Daw, M.S., "Embedded-atom-method functions for the fcc metals cu, ag, au, ni, pd, pt, and their alloys", Physical Review B, 33, 7983-7991 (1986) [69]M.A. Karolewski, "Tight-binding potentials for sputtering simulations with fcc and bcc metals", Radiation Effects and Defects in Solids, 153, 235-239 (2001) [70]F. Willaime, C. Massobrio, "Development of an N-body interatomic potential for hcp and bcc zirconium", Physical Review B, 43, 14 (1991) [71]F. Ercolessi and J. B. Adams, "Interatomic Potentials from 1st-Principles Calculations - the Force-Matching Method", Europhysics Letters, 26, 583-588 (1994) [72]N. Chandra, S. Namilae, and C. Shet, "Local elastic properties of carbon nanotubes in the presence of Stone-Wales defects", Physical Review B, 69, 94101 (2004) [73]N. Tokita, M. Hirabayashi, C. Azuma, T. Dotera, "Voronoi space division of a polymer: Topological effects, free volume, and surface end segregation", Journal of Chemical Physcs., 120, 496 (2004) [74]D. Srolovitz, K. Maeda, V. Vitek, and T. Egami, "Structural defects in amorphous solids statistical analysis of a computer model", Philosophical Magazine A., 44, 847-866 (1981) [75]N. Miyazaki, and Y. Shiozaki, "Calculation of mechanical properties of solids using molecular dynamics method", JSME International journal Series A., 39, 606 (1996) [76]H. Rafii-Tabar, "Computational model ling of thermo-mechanical and transport properties of carbon nanotubes", Physics Reports, 390, 235-452 (2004) [77]A. Gannepalli and S. K. Mallapragada, "Molecular dynamics studies of plastic deformation during silicon nanoindentation", Nanotechnology, 12, 250-257 (2001) [78]A. J. Cao, Y. Q. Cheng, and E. Ma, "Structural processes that initiate shear localization in metallic glass", Acta Materialia, 57, 5146-5155 (2009) [79]Frenkel,D. and Smit, B., "Understanding Molecular Simulation" ;Academic Press:San Diego(1996) [80]Allen, M.P. and Tildesley, D.J., "Computer Simulation of Liquids"; Oxford Science:London(1991) [81]Rapaport, D.C., "The Art of Molecular Dynamics Simulation"; Cambridge University Press:London(1997) [82]Haile, J.M., "Molecular Dynamics Simulation"; Wiley-Interscience:New York(1992) [83]J.F. Nye. "Physical properties of crystals"; Oxford University Press, (1957) [84]Y.Q. Cheng , A.J. Cao, E. Ma, "Correlation between the elastic modulus and the intrinsic plastic behavior of metallic glasses: The roles of atomic configuration and alloy composition", Acta Materialia, 57, 3253-3267 (2009) [85]Johnson WL, Samwer K., "A Universal Criterion for Plastic Yielding of Metallic Glasses with a (T/Tg)2/3 Temperature Dependence", Phys Rev Lett, 95, 195501 (2005) [86]Duan G, Blauwe KD, Lind ML, Schramm JP, Johnson WL., "Compositional dependence of thermal, elastic, and mechanical properties in Cu-Zr-Ag bulk metallic glasses", Scripta Mater, 58, 159 (2008) [87]F. Cleri, V. Rosato, "Tight-binding potentials for transition metals and alloys", Physical Review B, 48, 1 (1993) [88]C. Kittel, "Introduction to Solid State Physics" (1966) [89]G. Simmons and H. Wang, "Single Crystal Elastic Constans and Calculated Aggregated Properties" (1971) [90]Mingwei Chen, "Mechanical Behavior of Metallic Glasses: Microscopic Understanding of Strength and Ductility", Annu. Rev. Mater. Res., 38 ,14.1-14.25 (2008) [91]Argon AS, "Plastic deformation in metallic glasses", Acta Metall. 27,47-58 (1979) [92]Ming Che Liu, "Mechanical Properties and Deformation Behaviors in Amorphous/Nanocrystalline Multilayers under Microcompression", Department of Materials and Optoelectronic Science National Sun Yat-sen University Doctorate Dissertation (2011)
|