跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/06 23:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:賴欣怡
研究生(外文):shin-i Lai
論文名稱:晶圓直接接合製程物理及化學機制探討
指導教授:胡塵滌胡塵滌引用關係
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:94
中文關鍵詞:晶圓接合鍵結直接接合
相關次數:
  • 被引用被引用:4
  • 點閱點閱:260
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本實驗目的為研究晶圓直接接合製程裡物理或化學鍵結機制,尋找適當之製程參數,以期能在微機電系統與積體電路系統中使用。並針對晶圓直接接技術製作矽晶圓-矽晶圓之接合,探討含水與不含水之黏著,晶圓表面OH-基的多少,與鍵結機械強度的相關性等,並探索在絕緣層上黏著時化學鍵結與物理鍵結的機制。
本實驗執行可達下列成果:
1. 建立拉伸式斷裂強度實驗,在絕緣層上矽晶圓以晶片黏著法施工後,鍵結強度評估方法。
2. 建立紅外線吸收光譜實驗對預鍵結或鍵結後絕緣層上矽晶圓化學鍵種類之鑒別。
3. 直接接合界面之截面蝕刻後,金相之討論。
4. 三點彎曲機械實驗在晶圓以直接接合製程後,實驗結果之討論。

論文摘要………………………………………………………………Ⅰ
目錄……………………………………………………………………Ⅱ
表目錄…………………………………………………………………Ⅴ
圖目錄…………………………………………………………………Ⅵ
第一章 前言…………………………………………………………01
第二章 文獻回顧……………………………………………………03
2-1. WDB之簡介與機制……………………………………………03
2-2. WDB之應用……………………………………………………03
2-2-1. 積體電路(IC)上的應用 ……………………………03
2-2-2. 微機電(MEMS)上的應用 ……………………………06
2-2-3. 異質接合上的應用 ……………………………………07
2-2-4. 其他方面的應用-保護表面……………………………08
2-3. Si-Si鍵結的歷史回顧………………………………………08
2-4. Si-Si鍵結之分類 — HL, HB........................10
2-4-1. 親水性鍵結 ……………………………………………10
2-4-2. 斥水性鍵結 ……………………………………………11
第三章 實驗程序……………………………………………………20
3-1. 晶圓清洗(Wafer Cleaning)步驟……………………………20
3-2. 接合(contacting)步驟………………………………………22
3-3. 退火(annealing)步驟…………………………………………23
3-4. 實驗方法與儀器介紹 …………………………………………23
3-4-1. 接觸角量測(Contact Angle Measurement)…………23
3-4-2. 陽極接合機(Anodic Bonder)…………………………23
3-4-3. 紅外線照相術(IR photography)………………………24
3-4-4. 傅立葉轉換紅外線光譜(FTIR)…………………………25
3-4-5. 拉伸試驗(Tensile test)………………………………28
3-4-6. 三點彎曲試驗(3-point bending test)………………29
3-4-7. 截面OM、SEM觀測 (Cross Section observation)……31
3-4-8. 液氮冷處理製程 (Cryogenic Process) ………………32
第四章 結果與討論 …………………………………………………41
4-1. 紅外線照相術(IR photography)………………………………41
4-2. 接觸角量測(Contact angle Measurement)…………………42
4-3. 傅立葉轉換紅外線光譜(FTIR)…………………………………43
4-4. 截面觀察(Cross-Section Observation)……………………48
4-5. 拉伸試驗(Tensile test) ……………………………………51
4-6. 三點彎曲測試(3-point bending test)……………………53
4-7. 液氮冷處理製程 (Cryogenic Process) ……………………54
第五章 結論…………………………………………………………87
參考文獻………………………………………………………………89

參 考 文 獻
1. Jan Haisma and G.A.C.M. Spierings, “Contact bonding, including direct-bonding in a historical and recent context of materials science and technology, physics and chemistry. Historical review in a broader scope and comparative outlook”, Materials Science and Engineering , R37, p.1~60, (2000)
2. James B. Kuo and Ker-Wei Su, CMOS VLSI ENGINEERING:Silicon-on-Insulator (SOI), Kluwer Academic Publishers, 1998, p.1~11
3. Andreas Plößl and Gertrud Kräuter, “Wafer Direct Bonding : tailoring adhesion between brittle materials”, Materials Science and Engineering, R25, p.1~88, (1999)
4. Martin A. Schmidt, “Wafer-to-Wafer Bonding for Microstructure Formation”, Proceedings of the IEEE, 86. No.8, p.1575, (1998)
5. T. R. Chung, L. Yang, N. Hosoda, B. Takagi, T. Suga, “Wafer direct bonding of compound semiconductors and silicon at room temperature by the surface activated bonding method” , Appl. Surf. Sci. 117-118, p. 808, (1997)
6. T. R. Chung, L. Yang, N. Hosoda, T. Suga, “Room temperature GaAs-Si and InP-Si wafer direct bonding by the surface activated bonding method”, Nucl. Instrum. Methods Phys. Res. B, Beam Interact. Mater. At., 121, p. 203, (1997)
7. F. A. Kish, F. M. Steranka, D.C. DeFevere, D. A. Vanderwater, K. G. Park, C. P. Kuo, T. D. Osentowski, M. J. Peanasky, J. G. Yu, R. M. Fletcher, D. A. Steigerwald, M. G. Craford, V. M. Robbins, “Very high-efficiency semiconductor wafer-bonded transparent-substrate (AlxGa1—x)0.5In0.5P/GaP light-emitting diodes”, Appl. Phys. Lett. 64, p.2839, (1994)
8. J. H. Wang, M. S. Jin, V. H. Ozguz, S. H. Lee, “N-channel metal-oxide-semiconductor transistors fabricated in a silicon film bonded onto sapphire” ,Appl. Phys. Lett. 64, p. 724, (1994)
9. K. Eda, M. Sugimoto, Y. Tomita, “Direct heterobonding of lithium niobate onto lithium tantalite”, Appl. Phys. Lett. 66, p.827, (1995)
10. Marin Alexe, Gerhard Kästner, Dietrich Hesse, and Ulrich Gösele, “Ferroelectric-semiconductor heterostructures obtained by direct wafer bonding”, Appl. Phys. Lett. 70, p.3416, (1997)
11. Q. —Y. Tong, R. Gafiteanu, U. M. Gösele, “Reversible Silicon Wafer Bonding for Surface Protection : Water-Enhanced Debonding”, J. Electrochem. Soc. 139, L.101 (1992)
12. J. B. Lasky, S.R. Stiffler, F. R. White, and J. R. Abernathey, IEDM Tech. Dig., p. 648 (IEEE, New York, 1985).
13. J. B. Lasky, “Wafer bonding for silicon-on-insulator technologies”, Appl. Phys. Lett. 48, p.78 (1986)
14. M. Shimbo, K. Furukawa, K. Furuda, K. Tanzawa, “silicon-to-silicon direct bonding method”, J. Appl. Phys. 60(8), 1986, 2987
15. Q. —Y. Tong, X. -L. Xu, and H. Shen, “Diffusion and oxide viscous flow mechanism in SDB process and silicon wafer rapid thermal bonding”, Electronics Letters 26, p. 697, (1990).
16. K. —Y. Ahn, R. Stengl, T. Y. Tan, U. Gösele, “Stability of interfacial oxide layers during silicon wafer bonding”, J. Appl. Phys. 65, p.561 (1989).
17. H. Takagi, R. Maeda, T. R. Chung, and T. Suga, “Low-temperature direct bonding of silicon and silicon dioxide by surface activation method”, Sensors and Actuators, A70, p. 164, (1998).
18. 材料分析 汪建民主編 中國材料科學學會 民國八十七年十月十日初版
19. S. Bengtsson, “Semiconductor wafer bonding : a review of interfacial properties and applications”, J. Elec. Mat. 21, p.841, (1992)
20. M. Grundner and H. Jacob, “Investigations on hydrophilic and hydrophobic silicon (100) wafer surface by x-ray photoelectron and high-resolution electron energy loss-spectroscopy”, Appl. Phys. A.39, p.73, (1992)
21. Canaria, Christie A., Lees, Inez N., Wun, Aetna W., Miskelly, Gordon M., Sailor, Michael J., “Characterization of the carbon-silicon stretch in methylated porous silicon-observation of an anomalous isotope shift in the FTIR spectrum”, Inorganic Chemistry Communications 5(8), p.560, (2002)
22. C. Y. Wang, J. Z. Zheng, Z. X. Shen, Y. Lin, A. T. S. Wee, “Elimination of O2 plasma damage of low-k methyl silsesquioxane film by As implantation”, Thin solid film 397, p.90, (2001)
23. S. Kalem, D.Göbelek, R. Kurtar, Z. Misirh, “The effects of surface treatment on optical and vibrational properties of stain-etched silicon”, NanoStructured Materials 6, p.847, (1995)
24. J.R. During, Applications of FT-IR spectroscopy, Amsterdam, Elsevier, (1990)
25. Resnik Drago, Vrtacnik Danilo, Aljancic Uroš, Amon Slavko, “Study of low-temperature direct bonding of (111) and (100) silicon wafers under various ambient and surface conditions”, Sensors and Actuators A80, p.68, (2000)
26. T. Aoyama, T. Yamazaki, T. Ito, “Nonuniformities of native oxides on Si(001) surfaces formed during wet chemical cleaning”, Appl. Phys. Lett. 61, p.102, (1992)
27. Jiwei Jiao, Deren Lu,Bin Xiong, Weiyuan Wang, “Low-temperature silicon direct bonding and interface behaviours”, Sensors and Actuators A50, p.117, (1995)
28. Takeo Hattori, Kazuhiko Takase, Hiroaki Yamagishi, “Chemical structures of native oxides formed during wet chemical treatments”, Jpn. J. Appl. Phys. 28, L296, (1989)
29. Kiyoshi Mitani, Diego Feijoo, Giho Cha and Uirich Gösele, “A new evaluation method of silicon wafer direct bonding interfaces and bonding strength by KOH etching”, Jpn. J. App. Phys. 31, p.969, (1992)
30. B. K. Ju, Y. H. Lee, K. H. Tchah, and M. H. Oh, “On the anisotropically etched bonding interface of directly bonded (100) silicon wafer pairs”, J. Electrochem. Soc. 142, p.547, (1995)
31. H. Camon, and Z. Moktadir, “Simulation of silicon etching with KOH”, Microeletronics Journal 28, p. 509, (1997)
32. Lawrence H. Van Vlack, Elements of Materials Science and Engineering, 6th ed, Addison-Wesley Publishing Company, Readings, MA, p.311, (1989)
33. H. Takagi, K. Kikuchi, R. Maeda, “Surface activated bonding of silicon wafers at room temperature”, Appl. Phys. Lett. 68, p.2222 , (1996)
34. Bernhard Müller, and Axel Stoffel, “Tensile strength characterization of low-temperature fusion-bonded silicon wafers”, J. Micromech. Microeng., 1, p.161, ( 1991),
35. J.W. Lee, C. S. Kang, O. S. Song, and C. K. Kim, “Application of linear annealing method to Si∥SiO2/Si wafer direct bonding”, Thin solid film, 394, p.271, (2001).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top