跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.59) 您好!臺灣時間:2025/10/16 09:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:沈祐任
研究生(外文):Yo-Jen Shang
論文名稱:CDK4-CyclinD在細胞生長中對代謝重組角色之探討
論文名稱(外文):The Role of CDK4-CyclinD in Metabolic Reprogramming of Cell Growth
指導教授:柯逢春
指導教授(外文):Ferng-Chun Ke
口試委員:黃火鍊黃娟娟李明亭蕭培文
口試日期:2014-07-30
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:分子與細胞生物學研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:48
中文關鍵詞:CDK4cyclin DFascaplysinPHD3HIF-1αc-MycMetabolic reprogrammingmTORC1
外文關鍵詞:CDK4cyclin DFascaplysinPHD3HIF-1αc-MycMetabolic reprogrammingmTORC1
相關次數:
  • 被引用被引用:0
  • 點閱點閱:378
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
生命的延續建築在細胞複製的忠實性(Fidelity)上,因此細胞對於細胞生長的機制勢必會有精密的調控。當細胞進行增生時會發生旺盛的代謝重組 (Metabolic reprogramming) ,包含Warburg effect和Glutamine-dependent anaplerosis兩種現象,並且透過PI3K/AKT/mTOR pathway。當細胞受到生長因子刺激時, mechanistics target of rapamycin complex 1 (mTORC1) 可以使Hypoxia induce factor-1α (HIF-1α) 和c-Myc大量表現,進而促進代謝重組。在果蠅的研究中指出,CDK4-cyclin D complex會透過 Prolyl hydroxylase (PHD) 系統影響細胞生長,另外的研究指出,PHD3會對Pyruvate kinase M2 isoform (PKM2) 進行hydroxylation,使得PKM2 recruit HIF-1α到Hypoxia response elements (HREs) 上,表現更多的PKM2和PHD3,對此路徑形成正迴饋的訊號放大。本實驗對HeLa細胞處理CDK4-cyclin D complex活性抑制劑Fascaplysin來探討CDK4-cyclin D complex對於細胞生長之調控,結果顯示CDK4-cyclin D complex除了導致c-Myc表現量上升外,還透過轉譯調控來促進PHD3、HIF-1α的蛋白質表現量。 c-Myc表現量上升能使得Anaplerosis大量活化,導致mTORC1能夠維持活性,同時造成抑制mTORC2的活性,PHD3和HIF-1α的表現量上升可能去促進PKM2的hydroxylation和對於HREs目標基因的表現,形成一正迴饋迴路放大PHD3和PKM2,進而促進代謝重組而影響細胞生長。

The mechanism of cell growth is strictly regulated.Two phenomena of metabolic reprogramming are involved in cell growth, including Warburg effect and Glutamine-dependent anaplerosis, which are regulated by PI3K/AKT/mTOR pathway. Under growth factors stimulation, cellular protein levels of Hypoxia induce factor-1α (HIF-1α) and c-Myc are massively increased by mechanistics target of rapamycin complex 1 (mTORC1). Our data show that CDK4-cyclin D complex increases protein level of c-Myc. Furthermore, our results demonstrate that increased c-Myc causes activation of anaplerosis that sustains the activity of mTORC1 but not that of mTORC2. In Drosophila studies, it has been shown that the promotion of cell growth by CDK4-cyclin D complex is mediated through Prolyl hydroxylase (PHD). A recent study demonstrated that hydroxylation of Pyruvate kinase M2 isoform (PKM2) by PHD3 enhances recruitment of HIF-1α to hypoxia response elements (HREs) and results in increased expression of PKM2 and PHD3. Consistently, our study shows that treatment with Fascaplysin, the inhibitor of CDK4-cyclin D complex, decreases the protein level of PHD3 in HeLa cell. It appears that PHD3 is involved in the hydroxylation of PKM2, which leads to the positive feedback to protein level of PHD3 and promotes metabolic reprogramming in cell growth.

致謝 i
中文摘要 ii
英文摘要 iii
目錄 iv
圖目錄 vi
引言 1
細胞生長是細胞進行自我複製的基礎 1
細胞生長需要代謝重組(Metabolic reprogram) 2
Warburg effect 2
Glutamine-dependent anaplerosis and cataplerosis 4
細胞生長中心調節路徑 PI3K/AKT/mTOR pathway 5
PI3K/AKT/mTOR pathway對Metabolic reprogram之調控 6
c-Myc對細胞生長的正迴饋調控 7
HIF-1α與c-Myc共同調控細胞生長 8
PHD2影響HIF-1α蛋白質含量 9
PHD3影響PKM2和HIF-1α交互作用促進Warburg effect 10
CDK4-cyclinD complex促細胞生長 11
材料與方法 15
細胞培養 15
細胞內涵物萃取 16
蛋白質濃度測定 17
蛋白質電泳與西方轉漬法 17
流式細胞儀細胞週期分析 18
結果 20
抑制Mitotic spindle形成使得細胞週期停滯 20
抑制CDK4-Cyclin D complex活性造成細胞週期延遲 20
抑制CDK4-Cyclin D comple活性造成HIF-1α 蛋白質含量減少 21
抑制CDK4-Cyclin D comple活性造成PHD2蛋白質含量減少 22
抑制26S proteosome活性造成HIF-1α蛋白質含量增加 22
抑制CDK4-Cyclin D complex活性造成c-Myc蛋白質含量減少 23
抑制CDK4-Cyclin D complex活性造成PHD3蛋白質含量減少 23
抑制26S proteosome活性造成PHD3蛋白質量增加 24
抑制CDK4-Cyclin D complex活性造成mTORCs活性變化 24
討論 26
CDK4-Cyclin D complex活性對於細胞週期的影響 26
CDK4-Cyclin D complex促使HIF-1α蛋白質含量上升 26
CDK4-Cyclin D complex透過c-Myc調控細胞生長 27
CDK4-Cyclin D complex透過PHD3蛋白質促使代謝重組發生 28
CDK4-Cyclin D complex影響PI3K/AKT/mTOR pathway 29
結果圖 31
參考文獻 40


參考文獻
1.Erol, A., Deciphering the intricate regulatory mechanisms for the cellular choice between cell repair, apoptosis or senescence in response to damaging signals. Cellular Signalling, 2011. 23(7): p. 1076-1081.
2.Vicencio, J.M., et al., Senescence, apoptosis or autophagy? Gerontology, 2008. 54(2): p. 92-99.
3.Besson, A., S.F. Dowdy, and J.M. Roberts, CDK inhibitors: Cell cycle regulators and beyond. Developmental Cell, 2008. 14(2): p. 159-169.
4.Malumbres, M. and M. Barbacid, Cell cycle, CDKs and cancer: a changing paradigm. Nature Reviews Cancer, 2009. 9(3): p. 153-166.
5.Cajigas, I.J., T. Will, and E.M. Schuman, Protein homeostasis and synaptic plasticity. Embo Journal, 2010. 29(16): p. 2746-2752.
6.Lipkowitz, S. and A.M. Weissman, RINGs of good and evil: RING finger ubiquitin ligases at the crossroads of tumour suppression and oncogenesis. Nature Reviews Cancer, 2011. 11(9): p. 629-643.
7.Polager, S. and D. Ginsberg, p53 and E2f: partners in life and death. Nature Reviews Cancer, 2009. 9(10): p. 738-748.
8.Heiden, M.G.V., L.C. Cantley, and C.B. Thompson, Understanding the Warburg Effect: The Metabolic Requirements of Cell Proliferation. Science, 2009. 324(5930): p. 1029-1033.
9.Bauer, D.E., et al., Cytokine stimulation of aerobic glycolysis in hematopoietic cells exceeds proliferative demand. Faseb Journal, 2004. 18(9): p. 1303-+.
10.Warburg, O., Respiratory Impairment in Cancer Cells. Science, 1956. 124(3215): p. 269-270.
11.Warburg, O., Origin of Cancer Cells. Science, 1956. 123(3191): p. 309-314.
12.Guppy, M., E. Greiner, and K. Brand, The Role of the Crabtree Effect and an Endogenous Fuel in the Energy-Metabolism of Resting and Proliferating Thymocytes. European Journal of Biochemistry, 1993. 212(1): p. 95-99.
13.Brand, K., Glutamine and Glucose-Metabolism during Thymocyte Proliferation - Pathways of Glutamine and Glutamate Metabolism. Biochemical Journal, 1985. 228(2): p. 353-361.
14.Hedeskov, C.J., Early Effects of Phytohaemagglutinin on Glucose Metabolism of Normal Human Lymphocytes. Biochemical Journal, 1968. 110(2): p. 373-&;.
15.Roos, D. and J.A. Loos, Changes in Carbohydrate Metabolism of Mitogenically Stimulated Human Peripheral Lymphocytes .2. Relative Importance of Glycolysis and Oxidative-Phosphorylation on Phytohemagglutinin Stimulation. Experimental Cell Research, 1973. 77(1-2): p. 127-135.
16.Wang, T., C. Marquardt, and J. Foker, Aerobic Glycolysis during Lymphocyte-Proliferation. Nature, 1976. 261(5562): p. 702-705.
17.Heiden, M.G.V., et al., Evidence for an Alternative Glycolytic Pathway in Rapidly Proliferating Cells. Science, 2010. 329(5998): p. 1492-1499.
18.Luo, W.B., et al., Pyruvate Kinase M2 Is a PHD3-Stimulated Coactivator for Hypoxia-Inducible Factor 1. Cell, 2011. 145(5): p. 732-744.
19.DeBerardinis, R.J., et al., The biology of cancer: Metabolic reprogramming fuels cell growth and proliferation. Cell Metabolism, 2008. 7(1): p. 11-20.
20.Gao, X.L., et al., Pyruvate Kinase M2 Regulates Gene Transcription by Acting as a Protein Kinase. Molecular Cell, 2012. 45(5): p. 598-609.
21.Hatzivassiliou, G., et al., ATP citrate lyase inhibition can suppress tumor cell growth. Cancer Cell, 2005. 8(4): p. 311-321.
22.Kuhajda, F.P., et al., Fatty-Acid Synthesis - a Potential Selective Target for Antineoplastic Therapy. Proceedings of the National Academy of Sciences of the United States of America, 1994. 91(14): p. 6379-6383.
23.Pizer, E.S., et al., Inhibition of fatty acid synthesis delays disease progression in a xenograft model of ovarian cancer. Cancer Research, 1996. 56(6): p. 1189-1193.
24.Curi, R., P. Newsholme, and E.A. Newsholme, Metabolism of Pyruvate by Isolated Rat Mesenteric Lymphocytes, Lymphocyte Mitochondria and Isolated Mouse Macrophages. Biochemical Journal, 1988. 250(2): p. 383-388.
25.Kovacevic, Z. and J.D. Mcgivan, Mitochondrial Metabolism of Glutamine and Glutamate and Its Physiological Significance. Physiological Reviews, 1983. 63(2): p. 547-605.
26.Reitzer, L.J., B.M. Wice, and D. Kennell, Evidence That Glutamine, Not Sugar, Is the Major Energy-Source for Cultured Hela-Cells. Journal of Biological Chemistry, 1979. 254(8): p. 2669-2676.
27.Hahn-Windgassen, A., et al., Akt activates the mammalian target of rapamycin by regulating cellular ATP level and AMPK activity. Journal of Biological Chemistry, 2005. 280(37): p. 32081-32089.
28.Alessi, D.R., et al., Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase B alpha. Current Biology, 1997. 7(4): p. 261-269.
29.Sarbassov, D.D., et al., Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science, 2005. 307(5712): p. 1098-1101.
30.Inoki, K., et al., TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nature Cell Biology, 2002. 4(9): p. 648-657.
31.Zhang, Y., et al., Rheb is a direct target of the tuberous sclerosis tumour suppressor proteins. Nature Cell Biology, 2003. 5(6): p. 578-581.
32.Li, Y., et al., TSC2: filling the GAP in the mTOR signaling pathway. Trends in Biochemical Sciences, 2004. 29(1): p. 32-38.
33.Long, X., et al., Rheb binds and regulates the mTOR kinase. Current Biology, 2005. 15(8): p. 702-713.
34.Hay, N. and N. Sonenberg, Upstream and downstream of mTOR. Genes &; Development, 2004. 18(16): p. 1926-1945.
35.Tee, A.R. and J. Blenis, mTOR, translational control and human disease. Seminars in Cell &; Developmental Biology, 2005. 16(1): p. 29-37.
36.Wullschleger, S., R. Loewith, and M.N. Hall, TOR signaling in growth and metabolism. Cell, 2006. 124(3): p. 471-484.
37.Sarbassov, D.D., S.M. Ali, and D.M. Sabatini, Growing roles for the mTOR pathway. Current Opinion in Cell Biology, 2005. 17(6): p. 596-603.
38.Barata, J.T., et al., Activation of PI3K is indispensable for interleukin 7-mediated viability, proliferation, glucose use, and growth of T cell acute lymphoblastic leukemia cells. Journal of Experimental Medicine, 2004. 200(5): p. 659-669.
39.Edinger, A.L. and C.B. Thompson, Akt maintains cell size and survival by increasing mTOR-dependent nutrient uptake. Molecular Biology of the Cell, 2002. 13(7): p. 2276-2288.
40.Roos, S., et al., Mammalian target of rapamycin in the human placenta regulates leucine transport and is down-regulated in restricted fetal growth. Journal of Physiology-London, 2007. 582(1): p. 449-459.
41.Wiernan, H.L., J.A. Wofford, and J.C. Rathmell, Cytokine stimulation promotes glucose uptake via phosphatidylinositol-3 kinase/Akt regulation of Glut1 activity and trafficking. Molecular Biology of the Cell, 2007. 18(4): p. 1437-1446.
42.Xu, R.H., et al., Synergistic effect of targeting mTOR by rapamycin and depleting ATP by inhibition of glycolysis in lymphoma and leukemia cells. Leukemia, 2005. 19(12): p. 2153-2158.
43.Elstrom, R.L., et al., Akt stimulates aerobic glycolysis in cancer cells. Cancer Research, 2004. 64(11): p. 3892-3899.
44.Plas, D.R., et al., Akt and Bcl-x(L) promote growth factor-independent survival through distinct effects on mitochondrial physiology. Journal of Biological Chemistry, 2001. 276(15): p. 12041-12048.
45.Rathmell, J.C., et al., Akt-directed glucose metabolism can prevent Bax conformation change and promote growth factor-independent survival. Molecular and Cellular Biology, 2003. 23(20): p. 7315-7328.
46.Bauer, D.E., et al., ATP citrate lyase is an important component of cell growth and transformation. Oncogene, 2005. 24(41): p. 6314-6322.
47.Chang, Y.S., et al., KGF induces lipogenic genes through a PI3K and JNK/SREBP-1 pathway in H292 cells. Journal of Lipid Research, 2005. 46(12): p. 2624-2635.
48.Csibi, A., et al., The mTORC1 Pathway Stimulates Glutamine Metabolism and Cell Proliferation by Repressing SIRT4. Cell, 2013. 153(4): p. 840-854.
49.David, C.J., et al., HnRNP proteins controlled by c-Myc deregulate pyruvate kinase mRNA splicing in cancer. Nature, 2010. 463(7279): p. 364-U114.
50.Luo, W.B. and G.L. Semenza, Emerging roles of PKM2 in cell metabolism and cancer progression. Trends in Endocrinology and Metabolism, 2012. 23(11): p. 560-566.
51.Hitosugi, T., et al., Tyrosine Phosphorylation Inhibits PKM2 to Promote the Warburg Effect and Tumor Growth. Science Signaling, 2009. 2(97).
52.Christofk, H.R., et al., Pyruvate kinase M2 is a phosphotyrosine-binding protein. Nature, 2008. 452(7184): p. 181-U27.
53.Christofk, H.R., et al., The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature, 2008. 452(7184): p. 230-U74.
54.Adhikary, S. and M. Eilers, Transcriptional regulation and transformation by MYC proteins. Nature Reviews Molecular Cell Biology, 2005. 6(8): p. 635-645.
55.Mamane, Y., et al., eIF4E - from translation to transformation. Oncogene, 2004. 23(18): p. 3172-3179.
56.Ruggero, D., et al., The translation factor eIF-4E promotes tumor formation and cooperates with c-Myc in lymphomagenesis. Nature Medicine, 2004. 10(5): p. 484-486.
57.Nilsson, J.A. and J.L. Cleveland, Myc pathways provoking cell suicide and cancer. Oncogene, 2003. 22(56): p. 9007-9021.
58.Fantin, V.R., J. St-Pierre, and P. Leder, Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer Cell, 2006. 9(6): p. 425-434.
59.Shim, H., et al., c-Myc transactivation of LDH-A: Implications for tumor metabolism and growth. Proceedings of the National Academy of Sciences of the United States of America, 1997. 94(13): p. 6658-6663.
60.Osthus, R.C., et al., Accelerated publication - Deregulation of glucose transporter 1 and glycolytic gene expression by c-Myc. Journal of Biological Chemistry, 2000. 275(29): p. 21797-21800.
61.Gordan, J.D., C.B. Thompson, and M.C. Simon, HIF and c-Myc: sibling rivals for control of cancer cell metabolism and proliferation. Cancer Cell, 2007. 12(2): p. 108-113.
62.Wise, D.R., et al., Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proceedings of the National Academy of Sciences of the United States of America, 2008. 105(48): p. 18782-18787.
63.Gao, P., et al., c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature, 2009. 458(7239): p. 762-U100.
64.Coller, H.A., et al., Expression analysis with oligonucleotide microarrays reveals that MYC regulates genes involved in growth, cell cycle, signaling, and adhesion. Proceedings of the National Academy of Sciences of the United States of America, 2000. 97(7): p. 3260-3265.
65.O''Connell, B.C., et al., A large scale genetic analysis of c-Myc-regulated gene expression patterns. Journal of Biological Chemistry, 2003. 278(14): p. 12563-12573.
66.Li, F., et al., Myc stimulates nuclearly encoded mitochondrial genes and mitochondrial biogenesis. Molecular and Cellular Biology, 2005. 25(14): p. 6225-6234.
67.Wiesener, M.S., et al., Widespread, hypoxia-inducible expression of HIF-2 alpha in distinct cell populations of different organs. Faseb Journal, 2002. 16(14): p. 271-+.
68.Wang, G.L., et al., Hypoxia-Inducible Factor-1 Is a Basic-Helix-Loop-Helix-Pas Heterodimer Regulated by Cellular O-2 Tension. Proceedings of the National Academy of Sciences of the United States of America, 1995. 92(12): p. 5510-5514.
69.Kaelin, W.G. and P.J. Ratcliffe, Oxygen sensing by metazoans: The central role of the HIF hydroxylase pathway. Molecular Cell, 2008. 30(4): p. 393-402.
70.Gordan, J.D., et al., HIF-2 alpha promotes hypoxic cell proliferation by enhancing c-Myc transcriptional activity. Cancer Cell, 2007. 11(4): p. 335-347.
71.Koshiji, M., et al., HIF-1 alpha induces cell cycle arrest by functionally counteracting Myc. Embo Journal, 2004. 23(9): p. 1949-1956.
72.Zhang, H.F., et al., HIF-1 inhibits mitochondrial biogenesis and cellular respiration in VHL-deficient renal cell carcinoma by repression of C-MYC activity. Cancer Cell, 2007. 11(5): p. 407-420.
73.Hu, C.J., et al., Differential roles of hypoxia-inducible factor 1 alpha (HIF-1 alpha) and HIF-2 alpha in hypoxic gene regulation. Molecular and Cellular Biology, 2003. 23(24): p. 9361-9374.
74.Kim, J.W., et al., HIF-1-mediated expression of pyruvate dehydrogenase kinase: A metabolic switch required for cellular adaptation to hypoxia. Cell Metabolism, 2006. 3(3): p. 177-185.
75.Papandreou, I., et al., HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metabolism, 2006. 3(3): p. 187-197.
76.Bruick, R.K. and S.L. McKnight, A conserved family of prolyl-4-hydroxylases that modify HIF. Science, 2001. 294(5545): p. 1337-1340.
77.Kaelin, W.G., Proline hydroxylation and gene expression. Annual Review of Biochemistry, 2005. 74: p. 115-128.
78.Selak, M.A., et al., Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-alpha prolyl hydroxylase. Cancer Cell, 2005. 7(1): p. 77-85.
79.Koivunen, P., et al., Inhibition of hypoxia-inducible factor (HIF) hydroxylases by citric acid cycle intermediates - Possible links between cell metabolism and stabilization of HIF. Journal of Biological Chemistry, 2007. 282(7): p. 4524-4532.
80.Hewitson, K.S., et al., Structural and mechanistic studies on the inhibition of the hypoxia-inducible transcription factor hydroxylases by tricarboxylic acid cycle intermediates. Journal of Biological Chemistry, 2007. 282(5): p. 3293-3301.
81.Noguchi, T., et al., The L-Type and R-Type Isozymes of Rat Pyruvate-Kinase Are Produced from a Single Gene by Use of Different Promoters. Journal of Biological Chemistry, 1987. 262(29): p. 14366-14371.
82.Noguchi, T., H. Inoue, and T. Tanaka, The M1-Type and M2-Type Isozymes of Rat Pyruvate-Kinase Are Produced from the Same Gene by Alternative Rna Splicing. Journal of Biological Chemistry, 1986. 261(29): p. 3807-3812.
83.Wong, B.W., et al., Emerging novel functions of the oxygen-sensing prolyl hydroxylase domain enzymes. Trends in Biochemical Sciences, 2013. 38(1): p. 3-11.
84.Rabiya Majeed#, A.H., Yasrib Qurishi, Asif Khurshid Qazi, Aashiq Hussain, Mudassier Ahmed, Rauf Ahmad Najar, Javeed Ahmad and S.K.S.a.A.K.S. Bhat, Therapeutic Targeting of Cancer Cell Metabolism: Role of Metabolic Enzymes, Oncogenes and Tumor Suppressor Genes. Journal of Cancer Science &; Therapy, 2012. 4: p. 281-291.
85.Feron, O., Pyruvate into lactate and back: From the Warburg effect to symbiotic energy fuel exchange in cancer cells. Radiotherapy and Oncology, 2009. 92(3): p. 329-333.
86.Matsushime, H., et al., Cloning and Expression of Murine Interleukin-1 Receptor Antagonist in Macrophages Stimulated by Colony-Stimulating Factor-I. Blood, 1991. 78(3): p. 616-623.
87.Matsushime, H., et al., D-Type Cyclin-Dependent Kinase-Activity in Mammalian-Cells. Molecular and Cellular Biology, 1994. 14(3): p. 2066-2076.
88.Malumbres, M. and M. Barbacid, To cycle or not to cycle: A critical decision in cancer. Nature Reviews Cancer, 2001. 1(3): p. 222-231.
89.Harbour, J.W., et al., Cdk phosphorylation triggers sequential intramolecular interactions that progressively block Rb functions as cells move through G1. Cell, 1999. 98(6): p. 859-869.
90.Boutros, R., V. Lobjois, and B. Ducommun, CDC25 phosphatases in cancer cells: key players? Good targets? Nature Reviews Cancer, 2007. 7(7): p. 495-507.
91.Rodriguez-Puebla, M.L., et al., cdk4 deficiency inhibits skin tumor development but does not affect normal keratinocyte proliferation. American Journal of Pathology, 2002. 161(2): p. 405-411.
92.Yu, Q.Y., Y. Geng, and P. Sicinski, Specific protection against breast cancers by cyclin D1 ablation. Nature, 2001. 411(6841): p. 1017-1021.
93.Zacharek, S.J., Y. Xiong, and S.D. Shumway, Negative regulation of TSC1-TSC2 by mammalian D-type cyclins. Cancer Research, 2005. 65(24): p. 11354-11360.
94.Shimura, T., et al., Acquired radioresistance of human tumor cells by DNA-PK/AKT/GSK3 beta-mediated cyclin D1 overexpression. Oncogene, 2010. 29(34): p. 4826-4837.
95.Landis, M.W., et al., Cyclin D1-dependent kinase activity in murine development and mammary tumorigenesis. Cancer Cell, 2006. 9(1): p. 13-22.
96.Kozar, K., et al., Mouse development and cell proliferation in the absence of D-cyclins. Cell, 2004. 118(4): p. 477-491.
97.Jirawatnotai, S., et al., Cdk4 is indispensable for postnatal proliferation of the anterior pituitary. Journal of Biological Chemistry, 2004. 279(49): p. 51100-51106.
98.Tsutsui, T., et al., Targeted disruption of CDK4 delays cell cycle entry with enhanced p27(Kip1) activity. Molecular and Cellular Biology, 1999. 19(10): p. 7011-7019.
99.Malumbres, M., et al., Mammalian cells cycle without the D-type cyclin-elependent kinases Cdk4 and Cdk6. Cell, 2004. 118(4): p. 493-504.
100.Jiang, W., et al., Overexpression of Cyclin D1 in Rat Fibroblasts Causes Abnormalities in Growth-Control, Cell-Cycle Progression and Gene-Expression. Oncogene, 1993. 8(12): p. 3447-3457.
101.Quelle, D.E., et al., Overexpression of Mouse D-Type Cyclins Accelerates G(1) Phase in Rodent Fibroblasts. Genes &; Development, 1993. 7(8): p. 1559-1571.
102.Frei, C. and B.A. Edgar, Drosophila cyclin D/Cdk4 requires Hif-1 prolyl hydroxylase to drive cell growth. Developmental Cell, 2004. 6(2): p. 241-251.
103.Datar, S.A., et al., The Drosophila cyclin D-cdk4 complex promotes cellular growth. Embo Journal, 2000. 19(17): p. 4543-4554.
104.Datar, S.A., et al., Mammalian cyclin D1/Cdk4 complexes induce cell growth in Drosophila. Cell Cycle, 2006. 5(6): p. 647-652.
105.Meyer, C.A., et al., Drosophila Cdk4 is required for normal growth and is dispensable for cell cycle progression. Embo Journal, 2000. 19(17): p. 4533-4542.
106.Fantl, V., et al., Mice Lacking Cyclin D1 Are Small and Show Defects in Eye and Mammary-Gland Development. Genes &; Development, 1995. 9(19): p. 2364-2372.
107.Rane, S.G., et al., Loss of Cdk4 expression causes insulin-deficient diabetes and Cdk4 activation results in beta-islet cell hyperplasia. Nature Genetics, 1999. 22(1): p. 44-52.
108.Bhattacharya, S., et al., Functional role of p35srj, a novel p300/CBP binding protein, during transactivation by HIF-1. Genes &; Development, 1999. 13(1): p. 64-75.
109.Dames, S.A., et al., Structural basis for Hif-1 alpha/CBP recognition in the cellular hypoxic response. Proceedings of the National Academy of Sciences of the United States of America, 2002. 99(8): p. 5271-5276.
110.Ruas, J.L., L. Poellinger, and T. Pereira, Role of CBP in regulating HIF-1-mediated activation of transcription. Journal of Cell Science, 2005. 118(2): p. 301-311.
111.Soni, R., et al., Inhibition of cyclin-dependent kinase 4 (Cdk4) by fascaplysin, a marine natural product. Biochemical and Biophysical Research Communications, 2000. 275(3): p. 877-884.
112.Lin, J., X.J. Yan, and H.M. Chen, Fascaplysin, a selective CDK4 inhibitor, exhibit anti-angiogenic activity in vitro and in vivo. Cancer Chemotherapy and Pharmacology, 2007. 59(4): p. 439-445.
113.Shafiq, M.I., T. Steinbrecher, and R. Schmid, FASCAPLYSIN as a Specific Inhibitor for CDK4: Insights from Molecular Modelling. Plos One, 2012. 7(8).
114.Epstein, A.C.R., et al., C-elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell, 2001. 107(1): p. 43-54.
115.Cicenas, J. and M. Valius, The CDK inhibitors in cancer research and therapy. Journal of Cancer Research and Clinical Oncology, 2011. 137(10): p. 1409-1418.
116.Meyerson, M. and E. Harlow, Identification of G(1) Kinase-Activity for Cdk6, a Novel Cyclin-D Partner. Molecular and Cellular Biology, 1994. 14(3): p. 2077-2086.
117.Rader, J., et al., Dual CDK4/CDK6 Inhibition Induces Cell-Cycle Arrest and Senescence in Neuroblastoma. Clinical Cancer Research, 2013. 19(22): p. 6173-6182.
118.Williamson, J.R., et al., Hyperglycemic Pseudohypoxia and Diabetic Complications. Diabetes, 1993. 42(6): p. 801-813.
119.Dahia, P.L.M., Pheochromocytoma and paraganglioma pathogenesis: learning from genetic heterogeneity. Nature Reviews Cancer, 2014. 14(2): p. 108-119.
120.Wang, P.J., The regulation mechanism of CDK4-cyclin D complex in cell growth.
121.Yao, W.-S., The nutrient sensing role of mitochondria in cell growth. 2010.
122.Julien, L.A., et al., mTORC1-Activated S6K1 Phosphorylates Rictor on Threonine 1135 and Regulates mTORC2 Signaling. Molecular and Cellular Biology, 2010. 30(4): p. 908-921.



QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top