跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/06 09:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳宗倫
研究生(外文):Wu, Zong-Lun
論文名稱:醣苷水解酵素活性位點鄰近胺基酸序列與結構特性分析
論文名稱(外文):Characteristic Analysis of Peptide Sequence and Structure around Active Site of Glycoside Hydrolases
指導教授:唐傳義
指導教授(外文):Tang, Chuan Yi
口試委員:林俊淵廖崇碩
口試日期:2011-07-25
學位類別:碩士
校院名稱:國立清華大學
系所名稱:資訊工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:27
中文關鍵詞:配體、活性位點、模板、胺基酸片段
外文關鍵詞:Ligand, Active Site, Template, Segment
相關次數:
  • 被引用被引用:0
  • 點閱點閱:740
  • 評分評分:
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:0
在這篇論文中,主要的目的是從序列及結構分析醣苷水解酵素與配體結合的活性位點鄰近胺基酸特性。目前蛋白質有三級結構資訊的數量約有74,300個,蛋白質的三級結構能表示不同蛋白質的折疊方式或是在空間中小分子化合物與蛋白質結合的位置關係。從蛋白質結構分類資料庫,考慮含有催化區塊結構資訊的蛋白質,我們分別對醣苷水解酵素的第1、9、11、22個家族,建立含有配體與三級結構的蛋白質模板,透過配體與蛋白質結合在活性位點的位置關係,對應到序列上的某些胺基酸片段,以及對這些片段作分析。利用我們提出的這個流程,將此家族共同特性,用於判斷具有相似結構的蛋白質是否也具有醣類催化的功能。
In this research, the objective is to analyze the residues, which are around the active site of Glycoside Hydrolases where the ligands bind, from sequence and structure. Currently, there are about 74,300 structures in Structural Classification of Proteins (SCOP)[1]. The structure of the protein can provide the information of different folds and the position where substrates bind with proteins in space. We consider the catalytic domains of the proteins, and construct the templates library which includes ligands and structures. Through mapping the relative positions, where ligands and proteins bind, to the corresponding sequences, there are some segments of the residues, and analysis of these segments. Utilized the flow chart, the analysis of the GH families is used to determine whether the protein with similar structure has the function of catalyzed glycoside or not.
中文摘要 ............................................................................................................................ iii
ABSTRACT ....................................................................................................................... iv
致謝詞 ................................................................................................................................. v
CONTENTS ....................................................................................................................... vi
Chapter 1 - Introduction ................................................................................................... 1
Chapter 2 - Material and Method .................................................................................... 3
2.1 Material ........................................................................................................... 3
2.2 Flow Chart ...................................................................................................... 3
2.3 Templates Construction ................................................................................. 4
2.4 Data Preprocessing ........................................................................................ 5
2.5 Distance Calculation ...................................................................................... 6
2.6 Segments Selection and Ligands Extraction ................................................ 6
2.7 Sequence Analysis .......................................................................................... 7
2.8 Structure Analysis .......................................................................................... 7
2.9 Properties ........................................................................................................ 8
Chapter 3 – Results and Discussion ................................................................................. 9
3.1 Results ............................................................................................................. 9
3.2 Targets Verification ...................................................................................... 10
3.3 Similar Structure but not in Glycoside Hydrolases Family ..................... 21
3.4 Comparison with GH009 3H3K 2RGK ..................................................... 23
Chapter 4 - Conclusion and Future work ...................................................................... 24
4.1 Conclusion .................................................................................................... 24
4.2 Future work .................................................................................................. 24
REFERENCES ................................................................................................................. 26
1. Murzin, A.G., et al., SCOP: a structural classification of proteins database for the
investigation of sequences and structures. Journal of molecular biology, 1995.
247(4): p. 536-540.
2. Edgar, R.C. and S. Batzoglou, Multiple sequence alignment. Current opinion in
structural biology, 2006. 16(3): p. 368-373.
3. Larkin, M., et al., Clustal W and Clustal X version 2.0. Bioinformatics, 2007. 23(21):
p. 2947.
4. Edgar, R.C., MUSCLE: multiple sequence alignment with high accuracy and high
throughput. Nucleic acids research, 2004. 32(5): p. 1792.
5. Simossis, V. and J. Heringa, PRALINE: a multiple sequence alignment toolbox that
integrates homology-extended and secondary structure information. Nucleic
acids research, 2005. 33(suppl 2): p. W289.
6. McGuffin, L.J., K. Bryson, and D.T. Jones, The PSIPRED protein structure prediction
server. Bioinformatics, 2000. 16(4): p. 404.
7. Active Site. Available from: http://en.wikipedia.org/wiki/Active_site.
8. Cantarel, B.L., et al., The Carbohydrate-Active EnZymes database (CAZy): an
expert resource for glycogenomics. Nucleic acids research, 2009. 37(suppl 1): p.
D233.
9. Berman, H.M., et al., The protein data bank. Nucleic acids research, 2000. 28(1): p.
235.
10. Holm, L. and C. Sander, Protein structure comparison by alignment of distance
matrices. Journal of molecular biology, 1993. 233: p. 123-123.
11. Shatsky, M., R. Nussinov, and H. Wolfson, MultiProt¡Xa multiple protein structural
alignment algorithm. Algorithms in Bioinformatics, 2002: p. 235-250.
12. Henrissat, B., A classification of glycosyl hydrolases based on amino acid
sequence similarities. Biochemical Journal, 1991. 280(Pt 2): p. 309.
13. ViewerLite, W.L., version 4.2. 2000. Molecular Simulations. Inc. San Diego, CA.
14. DeLano, W.L., The PyMOL molecular graphics system. 2002.
15. Roseman, M.A., Hydrophobicity of the peptide C= O ···H---N hydrogen-bonded
group* 1. Journal of molecular biology, 1988. 201(3): p. 621-623.
16. Laskowski, R.A., et al., PDBsum: a Web-based database of summaries and
analyses of all PDB structures. Trends in Biochemical Sciences, 1997. 22: p.
488-490.
17. Itoh, T., et al., Crystal structure of YihS in complex with D-mannose: structural
annotation of Escherichia coli and Salmonella enterica yihS-encoded proteins to
an aldose-ketose isomerase. Journal of molecular biology, 2008. 377(5): p.
27
1443-1459.
18. Rost, B. and C. Sander, Conservation and prediction of solvent accessibility in
protein families. Proteins-Structure Function and Genetics, 1994. 20(3): p.
216-226.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文