跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.223) 您好!臺灣時間:2025/10/08 05:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃祥釗
研究生(外文):Shiang-Jau Huang
論文名稱:V頻段平面電路與波導之多層結構轉接設計
論文名稱(外文):Design of Multi-layer Planar Circuits and Substrate Integrated Waveguide Transition for V-band
指導教授:吳瑞北
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電信工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:66
中文關鍵詞:V頻段平面電路波導多層轉接
外文關鍵詞:Multi-layerPlanar CircuitsSIWTransitionV-band
相關次數:
  • 被引用被引用:0
  • 點閱點閱:284
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本篇論文延續前人提出之兩種微帶線至基板合成波導之垂直轉接,以及一種共面波導至共面波導之覆晶垂直轉接,並將這些結構製作在低溫共燒陶瓷(low-temperature co-fired ceramic, LTCC)或RO4003基板上。論文中也同時分析轉接結構的等效電路以方便設計。
第一種轉接結構是利用微帶線末端連接一連通柱(via)至基板合成波導的底部形成短路,利用在這個連通柱上產生的電流激發電磁場至基板合成波導達成轉接。微帶線製作在基板的上層,下層則利用金屬連通柱陣列等效成波導中的垂直金屬壁,來形成基板合成波導(substrate integrated waveguide, SIW)。此結構中心頻率設計在73GHz,比例頻寬約17%,插入損耗約為0.72dB,工作頻段內(71~76GHz)之S11皆低於-15dB,符合計畫中之需求。
第二種轉接結構則是利用在基板合成波導的上板開一槽線,並且利用一終端開路的微帶線饋入,利用槽線等效出的磁流將電磁場耦合(couple)至基板合成波導來形成轉接。微帶線製作在基板的上層,下層則利用金屬連通柱陣列等效成波導中的垂直金屬壁,來形成基板合成波導(substrate integrated waveguide, SIW)。此結構中心頻率設計在73GHz,比例頻寬約38.7%,插入損耗約為1.07dB,工作頻段內(71~76GHz)之S11皆低於-15dB,符合計畫中之需求。另外,吾人將微帶線末端四分之一波長部份改成扇形(radial-shaped),可以有效的增加其頻寬及縮短轉接部份的長度,此種結構之中心頻率設計在60GHz,比例頻寬約53.3%,插入損耗約為0.65dB,工作頻段內(57~66GHz)之S11皆低於-15dB,符合計畫中之需求。
第三種轉接結構係利用覆晶(flip-chip)之方式將兩個共面波導(coplanar waveguide, CPW)連接在一起,利用在共面波導接地端(ground)挖槽的方法做電容與電感的補償,以達到阻抗匹配進而形成轉接。此轉接設計規格從直流至25GHz,頻帶內之S11皆低於-10dB。
以上電路均使用商業軟體Ansoft HFSS來分析,包括轉接結構的反射損耗S11、插入損耗S21、輸入阻抗、以及電磁場的場型,並實際製作、實驗加以驗證。
This thesis continues previous works of two kinds of vertical transitions between microstrip line and substrate integrated waveguide (SIW), and a vertical transition between coplanar waveguides (CPW) utilizing flip-chip method. All these structures are fabricated on low-temperature co-fired ceramic (LTCC) or RO4003 substrate. This thesis also analyzes the equivalent circuits of the transition structures.
The first transition design is realized with a shorted via between the end of the microstrip line and the bottom layer of SIW. A current is induced on the via and energy is coupled to SIW. The microstrip line is on the upper layer, and the SIW is on the lower layers with vertical metal walls realized by closely spaced vias. This structure is designed at 73GHz with a 17% fractional bandwidth (FBW) and a 0.72dB insertion loss.
Another transition structure is realized with a slot on the top wall of SIW, which is fed by a microstrip line ended with a quarter wave length open stub. With the magnetic current induced on the slot, the transition is achieved. The microstrip line is on the upper layer, and the SIW is on the lower layers with vertical metal walls realized by closely spaced vias. This structure is designed at 73GHz with a 38.7% FBW and 1.07dB insertion loss. Another design is also given at 60GHz with a radial stub, a 53.3% FBW and 0.65dB insertion loss can be achieved.
The last transition structure is composed of two CPW sections, and is connected by flip-chip method. By cutting the corner on the ground metals of both CPW sections. The capacitance or inductance in the interconnect region can be compensated to achieve impedance matching. This structure is designed from DC to 25GHz for 10dB in-band return loss.
All of the designs are simulated by Ansoft HFSS and compared with measurements. Good agreements are also obtained.
致謝 I
摘要 III
Abstract V
目錄 VII
圖目錄 X
表目錄 XIII
第1章 緒論 1
1.1 研究動機 1
1.2 相關研究現況 2
1.3 章節內容概述 11
第2章 微帶線至基板合成波導短路結構轉接器 13
2.1 設計結構 13
2.1.1 介質矩形波導的設計 13
2.1.2 微帶線至基板合成波導的設計結構 14
2.2 阻抗匹配設計的參數分析 17
2.2.1 等效電路 17
2.2.2 金屬片與開槽對電容值的影響 18
2.2.3 連通柱上金屬片的大小 20
2.2.4 連通柱與波導金屬壁的距離 22
2.2.5 使用不同層數的基板合成波導 23
2.3 模擬與量測結果 25
2.3.1 設計規格 25
2.3.2 結構與尺寸 25
2.3.3 單端結構模擬結果 26
2.3.4 背對背結構模擬與量測結果 26
第3章 微帶線至基板合成波導開路結構轉接器 29
3.1 微帶線至基板合成波導的設計結構 29
3.2 阻抗匹配設計的參數分析 32
3.2.1 等效電路 32
3.2.2 槽線寬度對輸入阻抗的影響 34
3.2.3 槽線長度對輸入阻抗的影響 36
3.2.4 槽線與波導金屬壁的距離 36
3.3 模擬與量測結果 38
3.3.1 設計規格 38
3.3.2 結構與尺寸 38
3.3.3 單端結構模擬結果 39
3.3.4 背對背結構模擬與量測結果 40
3.4 頻寬增進之設計結構 42
3.4.1 設計原理 42
3.4.2 設計規格 43
3.4.3 結構與尺寸 44
3.4.4 單端結構模擬 44
3.4.5 背對背結構模擬與量測結果 45
第4章 覆晶轉接結構設計 49
4.1 共面波導至面波導的設計結構 49
4.2 阻抗匹配設計的參數分析 52
4.2.1 等效電路 52
4.2.2 開槽大小對阻抗的影響 53
4.2.3 凸塊距離對阻抗的影響 55
4.3 覆晶轉接製做方法與步驟 57
4.3.1 準備工作 57
4.3.2 製做步驟 58
4.4 模擬與量測結果 60
4.4.1 設計規格 60
4.4.2 結構與尺寸 60
4.4.3 模擬與量測結果 61
第5章 結論 63
參考文獻 65
[1]D. Deslandes and K.Wu, “Integrated microstrip and rectangular waveguide in planar form,” IEEE Microwave. Wireless Compon. Lett., vol. 11, no. 2, pp. 68–70, Feb. 2001.
[2]D. Deslandes and K. Wu, “Integrated transition of coplanar to rectangular waveguide,” IEEE MTT-S Int. Microwave Symp. Dig., vol. 2, pp 619-622, May 2001.
[3]S. Lee, S. Jung, and H.-Y. Lee, “Ultra-wideband CPW-to-substrate integrated waveguide transition using an elevated-CPW section,” IEEE Microwave Wireless Compon. Lett., vol. 18, no. 11, pp. 746-748, Nov. 2008.
[4]楊宗勳,微帶線到波導管之Q和V頻段轉接設計,碩士論文,民94年6月。
[5]D.-J. Kim, Y.-M. Moon, S.-H. Park, Y.-E. Kim, and K.-S. Min, “A small monopole antenna with novel impedance matching structure,” 2006 European Microwave Conf. Proc., pp.819-822, Sep. 2006.
[6]S. Harkness, J. Meirhofer, and B.-J. LaMeres, “Controlled impedance chip-to-Chip interconnect using coplanar wire bond structures,” 2008 Electrical Performance of Electronic Packaging Conf. Proc., pp. 267-270, Oct. 2008.
[7]K. Wu, “On the design of coplanar bond wires as transmission lines,” IEEE Microwave Guided Wave Lett., vol. 9, no. 12, pp. 511-513, Dec. 1999.
[8]C.-L. Wang and R.-B. Wu, “Modeling and design for electrical performance of wideband flip-chip transition,” IEEE Trans. Adv. Packaging, vol. 26, no. 4, pp.385-391, Nov. 2003.
[9]W. Heinrich, “The flip-chip approach for millimeter wave packaging,” IEEE Microwave Magazine, vol. 6, no. 3, pp. 36-45, Sept. 2005.
[10]W. Grabherr, B. Huder, and W. Menzel, “Microstrip to waveguide transition compatible with MM-wave integrated circuits,” IEEE Trans. Microwave Theory Tech., vol. 42, pp. 1842-1843, Sept. 1994.
[11]邱其奎,微帶線至基板合成矩型波導之轉接與天線應用,碩士論文,民96年6月。
[12]A. Margomenos, K. J. Herrick, M. I. Herman, S. Valas, and L. P. B. Katehi, “Isolation in three-dimensional integrated circuits,” IEEE Trans. Microwave Theory Tech., vol. 51, no. 1, pp. 25-32, Jan. 2003.
[13]A. Jentzsch and W. Heinrich, “Optimization of flip-chip interconnects for millimeter-wave frequencies,” 1999 IEEE MTT-S Intl. Microwave Symposium Digest, vol. 2, pp. 637-640, June 1999.
[14]A. Jentzsch and W. Heinrich, “Theory and measurements of flip-chip interconnects for frequencies up to 100 GHz,” IEEE Trans. Microwave Theory Tech., vol. 49, no. 5, pp. 871-878, May 2001.
[15]T.-O. Chong, S.-H. Ong, T.-G. Yew, C.-Y. Chung, and R. Sankman, “Low cost flip chip package design concepts for high density I/O,” 2001 Electronic Compon. Tech. Conf. Proc., pp. 1140-1143, May 2001.
[16]R. S. Elliott, Antenna Theory and Design, revised edition, section 3.4.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top