跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/08 18:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李立偉
研究生(外文):Li-Wei Lee
論文名稱:根據遺傳模擬退火演算法及兩因子高階模糊時間序列以處理預測問題之新方法
論文名稱(外文):New Methods for Handling Forecasting Problems Based on Genetic Simulated Annealing Techniques and Two-Factors High-Order Fuzzy Time Series
指導教授:陳錫明陳錫明引用關係
指導教授(外文):Shyi-Ming Chen
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:資訊工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:英文
論文頁數:71
中文關鍵詞:模糊時間序列兩因子高階模糊時間序列兩因子高階模糊邏輯關係模糊集合遺傳演算法模擬退火演算法遺傳模擬退火演算法
外文關鍵詞:fuzzy time seriestwo-factor high-order fuzzy time seriestwo-factor high-order fuzzy logical relationshipfuzzy setgenetic algorithms
相關次數:
  • 被引用被引用:0
  • 點閱點閱:335
  • 評分評分:
  • 下載下載:49
  • 收藏至我的研究室書目清單書目收藏:0
近幾年來,有許多學者專家提出以模糊時間序列來處理預測問題的方法。很明顯的,一個事件可能會被多項因素所影響。因此,在處理預測問題時,考慮多項因素將會比只考慮一項因素作出更準確的預測。本論文根據遺傳演算法、模擬退火演算法及高階模糊時間序列提出三個處理預測問題之新方法。在本論文的第一個方法中,我們根據兩因子高階模糊時間序列提出一個新方法以做溫度預測及期貨指數預測,並根據歷史資料以建立兩因子高階模糊邏輯關係,以提高預測準確率。在第二個方法中,我們根據遺傳演算法及兩因子高階模糊時間序列提出一個新方法以作溫度預測及期貨指數預測,並利用遺傳演算法來調整論述宇集中各區間之大小來作預測,以提高預測準確率。在第三個方法中,我們將第二個方法作改進,將模擬退火法來處理遺傳演算法中的突變運算,以有效避免落入區域最佳解,以提高預測準確率。本論文所提之方法比目前已存在的方法具有更高的預測準確率。
In recent years, many researchers used fuzzy time series to handle prediction problems. It is obvious that an event may be affected by many factors. For dealing with forecasting problems, if we consider more factors for prediction, then we can get better forecasting results. In this thesis, we present three new methods for dealing with forecasting problems, based on genetic algorithms, simulated annealing algorithms and high-order fuzzy time series. In the first method, we present a new method to predict the temperature and the TAIFEX (Taiwan Futures Exchange), based on the two-factors high-order fuzzy time series. The proposed method constructs two-factors high-order fuzzy logical relationships based on the historical data to increase the forecasting accuracy rate. In the second method, we present a new method for temperature prediction and the TAIFEX forecasting based on genetic algorithms and two-factors high-order fuzzy time series. The proposed method constructs two-factors high-order fuzzy logical relationship based on the historical data and uses genetic algorithms to adjust the length of each interval in the universe of discourse for temperature prediction and the TAIFEX forecasting to increase the forecasting accuracy rate. In the third method, we improve the second method to present a new method for temperature prediction and the TAIFEX forecasting based on genetic simulated annealing techniques and high-order fuzzy time series, where the simulated annealing techniques are used to deal with the mutation operations of genetic algorithms and can avoid falling into the local optimum effectively for increasing the forecasting accuracy rate. The proposed methods get higher forecasting accuracy rates than the existing methods.
Abstract in Chinese……………………………………………………………………i
Abstract in English……………………………………………………………………ii
Acknowledgements……………………………………………………………………iii
Contents………………………………………………………………………………..iv
List of Figures and Tables…………………………………………………………….vi
Chapter 1 Introduction………………………………………………………………1
1.1 Motivation………………………………………………………………1
1.2 Related Literature……………………………………………………….2
1.3 Organization of This Thesis……………………………………………..3
Chapter 2 Fuzzy Set Thory and Fuzzy Time Series……………...………………4
2.1 Basic Concepts of Fuzzy Sets………………………………………….4
2.2 Fuzzy Time Series……………………...…...…………………………..9
2.3 Summary…………….……………………………………………….10
Chapter 3 Basic Concepts of Genetic Algorithms and Simulated Annealing Algorithms…………………….………………………………………12
3.1 Genetic Algorithms…………………………………………….…….12
3.2 Simulated Annealing Algorithms…………………………………..13
3.3 Summary………………………………….……………………...…….15
Chapter 4 Handling Forecasting Problems based on Two-Factors High-Order Fuzzy Time Series…………………………………………….…..….16
4.1 A New Method for Handling Forecasting Problems based on Two-Factors High-Order Fuzzy Time Series…………………….16
4.2 Experimental Results……………...…………………………………...31
4.3 Summary…………………………………………………………….…33
Chapter 5 Using Genetic Algorithms and Two-Factors High-Order Fuzzy Time Series for Temperature Prediction and the TAIFEX Forecasting…34
5.1 Using Genetic Algorithms and Two-Factors High-Order Fuzzy Time Series for Temperature Prediction and the TAIFEX Forecasting……34
5.2 Experimental Results……………...…………………………………...48
5.3 Summary………………………………………………………………52
Chapter 6 Handling Forecasting Problems Based on Genetic Simulated Annealing Techniques and High-Order Fuzzy Time Series……53
6.1 Handling Forecasting Problems Based on Genetic Simulated Annealing Techniques and High-Order Fuzzy Time Series………………………53
6.2 Experimental Results……………...…………………………………...60
6.3 Summary………………………………………………………………64
Chapter 7 Conclusions……………………………………………………………...66
7.1 The Contributions of This Thesis………….…………………………..66
7.2 Future Research..………………………….…………………………...67
References……………………………………………………………………..………69
[1] Central Weather Bureau, The Historical Data of the Daily Average Temperature and Daily Cloud Density (from January 1995 to September 1996), Taipei, Taiwan, R. O. C., 1996.
[2] S. M. Chen, “Forecasting enrollments based on fuzzy time series,” Fuzzy Sets and Systems, vol. 81, no. 3, pp. 311-319, 1996.
[3] S. M. Chen and J. R. Hwang, “Temperature prediction using fuzzy time series,” IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics, vol. 30, no. 2, pp. 263-275, 2000.
[4] S. M. Chen, “Forecasting enrollments based on high-order fuzzy time series,” Cybernetics and Systems: An International Journal, vol. 33, no. 1, pp. 1-16, 2002.
[5] M. Gen and R. Cheng, Genetic Algorithms and Engineering Design. NY: John Wiley & Sons, 1997.
[6] D. E. Goldberg, Genetic Algorithm in Search, Optimization, and Machine Learning. MA: Addison-Wesley, 1989.
[7] D. E. Goldberg, B. Korb, and K. Deb, “Messy genetic algorithms: Motivation, analysis, and first results,” Complex Systems, vol. 3, no. 5, pp. 493-530, 1989.
[8] J. H. Holland, Adaptation in Natural and Artificial Systems. Cambridge, MA: MIT Press, 1975.
[9] J. R. Hwang, S. M. Chen, and C. H. Lee, “Handling forecasting problems using fuzzy time series,” Fuzzy Sets and Systems, vol. 100, no. 2, pp. 217-228, 1998.
[10] K. Huarng, “Effective lengths of intervals to improve forecasting in fuzzy time series,” Fuzzy Sets and Systems, vol. 123, no. 3, pp. 387-394, 2001.
[11] K. Huarng, “Heuristic models of fuzzy time series for forecasting,” Fuzzy Sets and Systems, vol. 123, no. 3, pp. 369-386, 2001.
[12] S. Kirkpatrick, C. D. Gelatt, Jr., and M. P. Vecchi, “Optimization by simulated annealing”, Science, vol. 220, no. 4598, pp. 671-680, 1983.
[13] L. W. Lee and S. M. Chen, “Temperature prediction using genetic algorithms and fuzzy time series,” Proceedings of the 2004 International Conference on Information Management, Miaoli, Taiwan, Republic of China, pp. 299-306, 2004.
[14] L. W. Lee, L. H. Wang, S. M. Chen, and Y. H. Leu, “A new method for handling forecasting problems based on two-factors high-order fuzzy time series,” Proceedings of the 2004 Ninth Conference on Artificial Intelligence and Applications, Taipei, Taiwan, Republic of China, 2004.
[15] C. H. Lin and S. M. Chen, “A new method for multiple DNA sequence alignment based on genetic simulated annealing algorithms,” Proceedings of the 2004 International Conference on Information Management, Miauli, Taiwan, R. O. C., 2004.
[16] E. Rich and K. Knight, Artificial Intelligence. New York: McGraw-Hill, pp. 70-72, 1991.
[17] Q. Song and B. S. Chissom, “Some properties of defuzzification neural networks,” Fuzzy Sets and Systems, vol. 61, no. 1, pp. 93-89, 1994.
[18] Q. Song and B. S. Chissom, “Fuzzy time series and its models,” Fuzzy Sets and Systems, vol. 54, no. 3, pp. 269-277, 1993.
[19] Q. Song and B. S. Chissom, “Forecasting enrollments with fuzzy time series – Part I,” Fuzzy Sets and Systems, vol. 54, no. 1, pp. 1-9, 1993.
[20] Q. Song and B. S. Chissom, “Forecasting enrollments with fuzzy time series – Part II,” Fuzzy Sets and Systems, vol. 62, no. 1, pp. 1-8, 1994.
[21] Q. Song and R. P. Leland, “Adaptive learning defuzzification techniques and applications,” Fuzzy Sets and Systems, vol. 81, no. 3, pp. 321-329, 1996.
[22] Q. Song, “A note on fuzzy time series model selection with sample autocorrelation functions,” Cybernetics and Systems: An International Journal, vol. 34, no. 2, pp. 93-107, 2003.
[23] J. Sullivan and W. H. Woodall, “A comparison of fuzzy forecasting and Markov modeling,” Fuzzy Sets and Systems, vol. 64, no. 3, pp. 279-293, 1994.
[24] L. A. Zadeh, “Fuzzy sets”, Information and Control, vol. 8, pp. 338-353, 1965.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 27.薛永年:〈揚州八怪對正統藝術的疏離〉,《九州學刊》,第6卷第1期,1993年10月,頁121-130。
2. 31.薛永年:〈從「我在人間」出發--論揚州八怪的藝術成就〉,《炎黃藝術》,第60期 ,1994年8月,頁65-72。
3. 30.薛永年:〈八怪與收藏家們—揚州八怪與鹽商富賈的互動〉,《炎黃藝術》,第80期,1994年8月,頁80-86。
4. 28.沈以正:〈揚州八怪的詩、書、畫(六)談羅聘的繪畫〉,《美育月刊》,第42期,1993年12月,頁1-6。
5. 4.李猷:〈談題畫詩、題跋、題畫既和署款〉,《書畫家》,第9卷第2期,1982年3月,頁2-6。
6. 26.沈以正:〈揚州八怪的詩、書、畫(五)書畫共神韻—談鄭板橋書法與蘭竹〉,《美育月刊》,第38期,1993年8月,頁1-5。
7. 25.沈以正:〈揚州八怪的詩、書、畫(四)黃慎的繪畫〉,《美育月刊》,第37期,1993年7月,頁10-17。
8. 24.鄭正慶:〈中國人物畫筆法之探索〉,《復興崗學報》,第49期,1993年6月,頁365-413。
9. 13.林哲誠:〈書畫同源與引書入畫〉:《臺北師院學報》,第四期,1991年7月,頁719-754。
10. 12.祝君波:〈論中國古代題畫詩〉,《中國美術》,第20期,1991年7月,頁26-35。
11. 11.李漢偉:〈論「詩中有畫」、「畫中有詩」之遠近因及其三種界義(一)〉,《故宮文物月刊》,第7卷第7期,1989年10月,頁73-77。
12. 3.青木正兒著,魏仲佑譯:〈題畫文學及其發展〉,《中國文化月刊》,第9期,1980年7月,頁76-92,譯自《中國文學藝術考》,日本弘文堂書房昭和十七年(1942)出版。
13. 1.饒宗頤:〈詞與畫論藝術的換位問題〉,《故宮季刊》,第8卷第3期,1974年,頁9-20。
14. 44.杜娟:《金農》 (1687-1763),臺北:錦繡出版事業有限公司,1996年5月,《中國巨匠美術週刊》,中國系列089期。
15. 4.包根弟:《論元代題畫詩》,《古典文學》第二集,臺北:台灣學生書局出版,1980年12月。