跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.213) 您好!臺灣時間:2025/11/11 05:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:許得衛
研究生(外文):De-Wei Hsu
論文名稱:電動機車整合型管理系統之設計
論文名稱(外文):An Integrated Management System Design of Electric Motorcycles
指導教授:傅立成傅立成引用關係
指導教授(外文):Li-Chen Fu
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電機工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:英文
論文頁數:98
中文關鍵詞:電動機車能源管理系統管理系統滑差
外文關鍵詞:Electric MotorcycleEnergy Management SystemManagement SystemSlip Ratio
相關次數:
  • 被引用被引用:6
  • 點閱點閱:672
  • 評分評分:
  • 下載下載:157
  • 收藏至我的研究室書目清單書目收藏:0
在本篇論文中,我們提出一個整合型電動機車「管理系統」;此管理系統包含了省能車速控制器、能源管理以及安全保護子系統。
省能車速控制器兼顧電動機車的強健車速追蹤性能,並透過對滑差控制的智慧型決策機制達到省能的效果;能源管理系統則監管電動機車的能源使用情形,具有殘電量估測與能源回收再利用的功能;最後,安全保護策略則可避免因不當的操作,而造成硬體電路與電池壽命的損毀。
本論文的研究理念著重在「如何有效利用電動機車電池能量」;除了開發一個具有省能機制的車速控制器之外,更針對電池運作的特性與能源回收的概念,建立電池的動態模型與煞車能量回充的機制,達到能源監控與煞車能量回充的目的。電腦模擬結果及部份的實驗結果也證明了此管理系統的正確性、可行性以及省能效果。
最後,為了將此一管理系統運行於實際的電動機車之上,我們建立一套以TI DSP F240晶片為中央處理系統的測試平台,並設計相關的資料傳輸介面電路,使上述管理系統能夠整合於實際的電動機車中,以期達成高效率能量使用的目標。

In view of the need for effective usage of the battery energy of the Electric Motorcycle (EM), we propose an integrated management system which not only accomplishes the objective of robust velocity tracking but also efficiently utilizes the stored energy of the battery.
This powerful management system can be divided into three major subsystems, including the power-saving controller, energy supervisor, and protection subsystem. We apply the concept of intelligent decision such that the redundant energy loss can be avoided. In other words, with this integrated management system, we can perform the robust velocity tracking control with highly efficient energy exploitation, residual capacity estimation, regenerative braking, and hardware protections. As one can see, all of these design concepts are focused on the energy management of the EM.
Furthermore, excessive simulations and some experimental results will be given to demonstrate the feasibility and validity of this system. In this thesis, we establish a reusable TI DSP F240 based experimental platform to implement the robust velocity tracking control, a subsystem of the proposed integrated system. Although the robust velocity tracking is not the overall functionality of the proposed integrated system, the experimental platform, which we establish here, is indeed a fundamental and reusable platform for the next-stage development.

Preface
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Brief Survey 2
1.3 Contribution 3
1.4 Organization of this Thesis 4
Chapter 2 Preliminaries and Modeling 5
2.1 Motoring Mode 5
2.1.1 Modeling of the EM Devices 6
2.1.1.1 Driver and Brushless DC Motor 6
2.1.1.2 Transmission System 12
2.1.1.3 Battery 15
2.1.2 Analysis of Environmental Effects on the EM 20
2.1.2.1 Slip Ratio 20
2.1.2.2 Other Environmental Effects 22
2.1.3 Modeling of the Overall System 25
2.2 Generating Mode 27
2.3 Summary 30
Chapter 3 Management System Design 31
3.1 Power-saving Controller Subsystem 33
3.1.1 Problem Formulation 33
3.1.2 Power-saving Controller Design 33
3.1.2.1 Fuzzy Controller 34
3.1.2.2 Sliding-mode Controller 36
3.2 Energy Management Subsystem 39
3.2.1 Problem Formulation 39
3.2.2 Energy Indicator 39
3.2.3 Regenerative Braking System 42
3.3 Protection Subsystem 43
3.3.1 Problem Formulation 44
3.3.2 Protection Subsystem Design 44
3.4 Summary 45
Chapter 4 Simulation Results 47
4.1 Simulation Parameters 47
4.2 Power-saving Controller Subsystem 48
4.2.1 Controller without Power-Saving Modification 48
4.2.2 Integrated Controller with Power-Saving Modification 53
4.3 Energy Management Subsystem 61
4.4 Protection Subsystem 61
4.5 Summary 63
Chapter 5 Experimental Results 65
5.1 Experiment Setup 65
5.1.1 Prototyping EM 66
5.1.2 Lab-based Experimental Platform 67
5.1.3 Outdoor-based Testbench 68
5.2 DSP Firmware Development 69
5.2.1 Configuration of the DSP EVM Board 69
5.2.2 Firmware Flowchart 70
5.3 Experimental Results 71
5.3.1 Lab-based Experimental Results 71
5.3.2 Outdoor-based Experimental Results 72
5.4 Summary 75
Chapter 6 Conclusions and Future Works 77
Bibliography

[1] Scott Kimbrough, “Stability Enhancement and Traction Control of Road Vehicles”, Int. J. System Sci., Vol. 21, No. 6, 1990, pp. 1105-1119.
[2] St. Germann, M. Wűrtenberger and A. Daiβ, “Monitoring of the Friction Coeffici- ent between Tyre and Road Surface”, Proceedings of the 3rd IEEE conference of Control Applications, Vol. 1, 1994, pp. 613-618.
[3] Hideo Sado, Shin-Ichiro Sakai and Yoichi Hori, “Road Condition Estimation for Traction Control in Electric Vehicle”, Industrial Electronics, 1999. ISIE '99. Proc- eedings of the IEEE International Symposium, Vol. 2, 1999, pp. 973-978.
[4] Jung-Shan Lin and Li-Chen Fu, “Model Analysis and Controller Design of Electr- ic Motorcycles”, Proceedings of American Control Conference, San Diego, Cali- fornia, June 1999, pp. 2698-2702.
[5] Jeffrey W. Pavlat and Robert W. Diller, “An Energy Management System to Im- prove Electric Vehicle Range and Performance”, IEEE AES System Magazine, June 1993, pp. 3-5.
[6] Nashat Jalil, Naim A. Kheir and Mutasim Salman, “A Rule-Based Energy Mana- gement Strategy for a Series Hybrid Vehicle”, Proceedings of the American Con- trol Conference, Albuquerque, New Mexico, June 1997, pp. 689-693.
[7] William C. Morchin, “Energy Management in Hybrid Electric Vehicles”, Digital Avionics Systems Conference, Vol. 2, 1998, pp. I41/1-I41/6.
[8] A. A. El-Samahy, M. A. El-Shakawi and S. M. Sharaf, “Adaptive Multi-Layer Self Tuning High Performance Tracking Control for DC brushless Motor”, IEEE Tran- sactions on Energy Conversion, Vol. 9, No.2, June 1994, pp. 311-316.
[9] Adel A. Ghandakly and Michael R. Owed “Design of an Adaptive Speed Control- ler For DC Brushless Motors”, IEEE Industry Applications Conference, 1995. Th- irtieth IAS Annual Meeting, IAS '95., Conference Record of the 1995 IEEE, Vol. 2 , 1995, pp. 1626-1633.
[10] Farhad Aghili, “Self-Tuning Torque Control of Brushless Motors”, Proceedings of the American Control Conference, San Diego, June 1999, pp. 1663-1667.
[11] Pragasen Pillay and Ramu Krishnan, “Modeling, Simulation, and Analysis of Per- manent Magnet Motor Drives, Part Ⅱ: The Brushless DC Motor Drive”, IEEE Tr- ansaction on Industry Applications, Vol. 25, No. 2, March 1989, pp. 274-279.
[12] Thomas M. Jahns, “Torque Production in Permanent-Magnet Synchronous Mo- tor Drives with Rectangular Current Excitation”, IEEE Transaction on Industry Applications, Vol. IA-20, No. 4, July/August 1984, pp. 803-813.
[13] Sharon Liu and Brad Paden, “A Survey of Today’s CVT Controls”, Proceedings of the 36th Conference on Decision & Control, 1997, pp. 4738-4743.
[14] Shinya Sato and Atsuo Kawamura, “A New Estimation Method of State of Char- ge using Terminal Voltage and Internal Resistance for lead Acid Battery”, Proc- eedings of the Power Conversion Conference, Osaka, 2002, Vol. 2, pp. 565-570.
[15] Hawker Inc., “Genesis Application Manual”, fifth edition, 2000.
[16] G. Gim and P. E. Nikravesh, “An Analytical Model of Pneumatictyres for Vehicle Dynamic Simulations. Part 1: Pure Slips”, International Journal of Vehicle Design, Vol. 11, No. 6, 1990, pp. 589-618.
[17] G. Gim and P. E. Nikravesh, “An Analytical Model of Pneumatictyres for Vehicle Dynamic Simulations. Part 2: Comprehensive Slips”, International Journal of Ve- hicle Design, Vol. 12, No. 1, 1991, pp. 19-39.
[18] G. Gim and P. E. Nikravesh, “An Analytical Model of Pneumatictyres for Vehicle Dynamic Simulations. Part 3: Validation against Experimental Data”, Internat- ional Journal of Vehicle Design, Vol. 12, No. 2, 1991, pp. 217-228.
[19] Muhammad H. Rashid, “Power Electronics: Circuits, Devices, and Applications”, Prentice Hall, 1993, pp. 320-323.
[20] Roger C. Becerra, Mehrdad Ehsani and Thomas M. Jahns, “Four-Quadrant Bru- shless ECM Drive with Integrated Current Regulation”, IEEE Transactions on In- dustry Applications, Vol. 28, Issue: 4, Jul/Aug 1992, pp. 833-841.
[21] Javier Contreras, Arturo Losi, Mario Russo and Felix F. Wu, “Simulation and E- valuation of Optimization Problem Solutions in Distributed Energy Management Systems”, IEEE Transactions on Power Systems, Vol. 17, Issue: 1, Feb 2002, pp. 57-62.
[22] Wei-Jen Lee and Rasool Kenarangui, “Energy Management for Motors, Systems, and Electrical Equipment”, IEEE Transactions on Industry Applications, Vol. 38, Issue: 2, Mar/Apr 2002, pp. 602-607.
[23] Yehia El-Ibiary, ” An Accurate Low Cost Method for Determining Electric Motors' Efficiency for the Purpose of Plant Energy Management”, Petroleum and Che- mical Industry Conference, Industry Applications Society 49th Annual, 2002, pp. 229-235.
[24] Petros A. Ioannou and Jing Sun, Robust Adaptive Control, Prentice-Hall, 1996.
[25] Ming-Yen Lin and Yee-Peen Yang, “Residual Capacity Estimation of Electric Ve- hicle Batteries”, Master Thesis National Taiwan University Taiwan R.O.C, 2002.
[26] Bimal K. Bose and Paul M. Szczesny, “A Microcomputer-Based Control and Si- mulation of an Advanced IPM Synchronous Machine Drive System for Electric Vehicle Propulsion”, IEEE Transactions on Industrial Electronics, Vol. 35, No. 4, November 1988, pp. 547-558.
[27] D. T. Lee, S. J. Shiah, C. M. Lee and C. H. Wu, "Intelligent Control of Electric Scooters", Proc. IASTED Int’l. Conference on Intelligent Systems and Control, Tsukuba, Japan, October 2002, pp. 63-69.
[28] C.-H. Fang, C.-M. Huang and S.-K. Lin, “Adaptive sliding-mode torque control of a PM synchronous motor”, IEE Proceedings of Electric Power Applications, Vol. 149, Issue: 3, May 2002, pp. 228-236.
[29] Yen-Ming Liu and Lon-Kou Chang, “DSP-based Design and Implementation for Energy Reuse of DC Motor and the Application on Electric Motorcycles”, Master Thesis National Chiao Tung University Taiwan R.O.C, 2001.
[30] T. C. Tsai and M. C. Tsai, "Power Control of a Brushless Permanent Magnet Ele- ctric Machine for Exercise Bikes", IFAC 15th Triennial World Congress, Barce- lona, Spain, 2002.
[31] “DSP Solutions for BLDC Motors”, Literature No. BPRA055, Texas Instruments Europe, March 1997.
[32] “Implementation of a Speed Controlled Brushless DC Driver Using TMS320F24- 0”, Literature No. BPRA064, Texas Instruments Europe, July 1997.
[33] M. Vidyasagar, Nonlinear System Analysis, Prentice-Hall, 1993.
[34] Hassan K. Khalil, Nonlinear Systems, Prentice-Hall, 1996.
[35] Slotine, J. and W. Li, Applied Nonlinear Control, Prentice-Hall, 1991.
[36] Paul C. Krause, Analysis of Electric Machinery, McGraw-Hall, 1987.
[37] P. C. Sen, Principle of Electric Machines and Power Electronics, John Wiley and Sons, 1989.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top