|
[1] M. J. Riezenman, “Wanlass’s CMOS circuit,” in IEEE Spectrum, vol. 8, pp.44, 1991. [2] F. M. Wanlass and C. T. Sah, “Nanowatt logic using field effect metal-oxide semiconductor triodes,” in Tech. Dig. IEEE Int. Solid State Circuit Conf., Feb. 20, 1963, pp. 32–33. [3] J. R. Burns, "Switching response of complementary-symmetry MOS transistor logic circuits," RCA Rev., vol. 25, pp. 627–661, 1964. [4] R. W. Ahrons and M. M. Mitchell, "MOS micropower complementary transistor logic," in Tech. Dig. IEEE Int. Solid State Circuit Conf., 1965, pp. 80–81. [5] F. M. Wanlass, “Low stand-by power complementary field effect circuitry,” U.S. Patent 3,356,858, filed June 18, 1963, issued Dec. 5, 1967. [6] O. Minato, T. Masuhara, T. Sasaki, Y. Sakai, M. Kubo, K. Uchibori, and T. Yasui, “A high-speed, low-power hi-CMOS 4K static RAM,” IEEE Trans. Electron Devices, vol. ED-26, pp. 882–885, June 1979. [7] C. T. Sah, “Evolution of the MOS transistor-from conception to VLSI,” Proc. IEEE, vol. 76, pp. 1280–1326, Oct. 1988. [8] G. E. Moore, “Cramming more components onto integrated circuits,” Electronics, vol. 38, no. 8, pp. 114–117, 1965. [9] N. Weste and E. Eshraghian, Principles of CMOS VLSI Design, A System Perspective. Reading, MA, USA: Addison-Wesley, 1985. [10] A. P. Chandrakasan and R.W. Brodersen, “Minimizing power consumption in digital CMOS circuits,” Proc. IEEE, vol. 83, no. 4, pp. 498–523, Apr. 1995. [11] K. Gopalakrishnan, P. B. Griffin, and J. D. Plummer, “I-MOS: A novel semiconductor device with a subthreshold slope lower than kT/q,” in IEDM Tech. Dig., 2002, pp. 289–292. [12] W. Y. Choi, J. D. Lee, and B. G. Park, "Integration process of impact ionization metal-oxide-semiconductor devices with tunneling field-effect transistors and metal-oxide-semiconductor field-effect transistors," Jpn. J. Appl. Phys., vol. 46, no. 1, pp. 122–124, Jan. 2007. [13] A. Padilla, C. W. Yeung, C. Shin, C. Hu, and T. J. King Liu, “Feedback FET: A novel transistor exhibiting steep switching behavior at low bias voltages,” in IEDM Tech. Dig., 2008, pp. 1–4. [14] H. Nathanson, W. Newell, R. Wickstrom, and J. Davis, “The resonant gate transistor,” IEEE Trans. Electron Devices, vol. ED-14, no. 3, pp. 117–133, Mar. 1967. [15] A. Ionescu, V. Pott, R. Fritschi, K. Banerjee, M. Declercq, P. Renaud, C. Hibert, P. Fluckiger, and G. Racine, “Modeling and design of a low voltage SOI suspended-gate MOSFET (SG-MOSFET) with a metal-over-gate architecture,” in Proc. QED, 2002, pp. 496–501. [16] S. Salahuddin and S. Datta, “Use of negative capacitance to provide voltage amplification for low power nanoscale devices,” Nano Letters, vol. 8, no. 2, pp. 405–410, 2008. [17] A. C. Seabaugh and Q. Zhang, “Low-voltage tunnel transistors for beyond CMOS logic,” IEEE Proc., vol. 98, no. 12, pp. 2095–2110, Dec. 2010. [18] O. M. Stuetzer, "Junction fieldistors," Proc. IRE, vol. 40, no. 11, pp. 1377–1381, Nov. 1952. [19] L. Esaki, "New phenomenon in narrow germanium p-n junctions," Phys. Rev., vol. 109, no. 2, pp. 603–604, Jan. 1958. [20] J. Quinn, G. Kawamoto, and B. McCombe, “Subband spectroscopy by surface channel tunneling," Surface Sci., vol. 73, no. 1, pp. 190–196, May 1978. [21] J. P. Leburton, J. Kolodzey, and S. Biggs, "Bipolar tunneling field-effect transistor: A three-terminal negative differential resistance device for high-speed applications," Appl. Phys. Lett., vol. 52, no. 9, pp. 1608–1620, May 1988. [22] T. Baba, "Proposal for surface tunnel transistors," Jpn. J. Appl. Phys., vol. 31, no. 4B, pp. L455–L457, Feb. 1992. [23] T. Uemura and T. Baba, "First observation of negative differential resistance in surface tunnel transistors," Jpn. J. Appl. Phys., vol. 33, pp. L207–L210, Jan. 1994. [24] H. Kawaura, N. Iguchi, and T. Baba, "Fabrication of silicon surface tunnel transistors," Ext. Abstr. Quantum Funct. Devices, pp. 62, May 1995. [25] Y. Omura, "Negative conductance properties in extremely thin silicon-on-insulator (SOI) insulated-gate pn-junction devices (SOI surface tunnel transistors)," Jpn. J. Appl. Phys., vol. 35, no. 11A, pp. L1401–L1403, Sep. 1996. [26] J. Koga and A. Toriumi, "Negative differential conductance at room temperature in three-terminal silicon surface junction tunnel transistor," Appl. Phys. Lett., vol. 70, no. 16, pp. 2138–2140, Feb. 1997. [27] T. Uemura and T. Baba, "First demonstration of a planar-type surface tunnel transistor (STT): Lateral interband tunnel device," Solid-State Electron., vol. 40, pp. 519–522, 1996. [28] W. M. Reddick and G. A. J. Amartunga, "Silicon surface tunnel transistor," Appl. Phys. Lett., vol. 67, no. 4, pp. 494–496, Jul. 1995. [29] W. Hansch, C. Fink, J. Schulze, and I. Eisele, "A vertical MOS-gated Esaki tunneling transistor in silicon," Thin Solid Films, vol. 369, pp. 387–389, Jul. 2000. [30] C. Aydin, A. Zaslevsky, S. Luryi, S. Cristoloveanu, D. Mariolle, D. Fraboulet, and S. Deleonibus, "Lateral interband tunneling transistor in silicon-on-insulator," Appl. Phys. Lett., vol. 84, no. 10, pp. 1780–1782, Mar. 2004. [31] P. F. Wang, K. Hilsenbeck, T. Nirschl, M. Oswald, C. Stepper, M. Weiss, D. Schmitt-Landsiedel, and W. Hansch, "Complementary tunneling transistor for low power application," Solid-State Electron., vol. 48, no. 12, pp. 2281–2286, Dec. 2004. [32] K. K. Bhuwalka, J. Schulze, and I. Eisele, "Performance enhancement of vertical tunnel field-effect transistor with SiGe in the δp+ layer," Jpn. J. Appl. Phys., vol. 43, pp. 4073–4078, Jul. 2004. [33] J. Appenzeller, Y.-M. Lin, J. Knoch, and P. Avouris, "Band-to-band tunneling in carbon nanotube field-effect transistors," Phys. Rev. Lett., vol. 93, no. 19, pp. 196805-1–196805-4, Nov. 2004. [34] W. Y. Choi, B. G. Park, J. D. Lee, and T. J. K. Liu, "Tunneling field-effect transistors (TFETs) with subthreshold swing (SS) less than 60 mV/dec," IEEE Electron Device Lett., vol. 28, no. 8, pp. 743–745, Aug. 2007. [35] T. Nirschl, P. F. Wang, C. Weber, J. Sedlmeir, R. Heinrich, R. Kakoschke, K. Schrufe, J. Holz, C. Pacha, T. Schulz, M. Ostermayr, A. Olbrich, G. Georgakos, E. Ruderer, W. Hansch, and D. Schmitt-Landsiedell, “The tunneling field-effect transistor (TFET) as an add-on for ultra-low voltage analog and digital processes,” in IEDM Tech. Dig., Dec. 2004, pp. 195–198. [36] Q. Zhang, W. Shao, and A. Seabaugh, “Low-subthreshold-swing tunnel transistors,” IEEE Electron Device Lett., vol. 27, no. 4, pp. 297–300, Apr. 2006. [37] T. Krishnamohan, D. Kim, S. Raghunathan, and K. Saraswat, “Doublegate strained-Ge heterostructure tunneling FET (TFET) with record high drive currents and< 60 mV/dec subthreshold slope,” in IEDM Tech. Dig., 2008, pp. 947–949. [38] F. Mayer, C. Le Royer, J. F. Damlencourt, K. Romanjek, F. Andrieu, C. Tabone, B. Previtali, and S. Deleonibus, “Impact of SOI, Si1−xGexOI and GeOI substrates on CMOS compatible tunnel FET performance,” in IEDM Tech Dig., 2008, pp. 163–166. [39] D. Kazazis, P. Jannaty, A. Zaslavsky, C. L. Royer, C. Tabone, L. Clavelier, and S. Cristoloveanu, “Tunneling field-effect transistor with epitaxial junction in thin germanium-on-insulator,” Appl. Phys. Lett., vol. 94, no. 26, pp. 263508-1–263508-3, Jun. 2009. [40] S. Mookerjea, D. Mohata, R. Krishnan, J. Singh, A. Vallett, A. Ali, T. Mayer, V. Narayanan, D. Schlom, A. Liu, and S. Datta, “Experimental demonstration of 100 nm channel length In0.53Ga0.47As-based vertical inter-band tunnel field effect transistors (TFETs) for ultra low-power logic and SRAM applications,” in IEDM Tech. Dig., 2009, pp. 949–951. [41] A. C. Ford, C. W. Yeung, S. Chuang, H. S. Kim, E. Plis, S. Krishna, C. Hu, and A. Javey, “Ultrathin body InAs tunneling field-effect transistors on Si substrates,” Appl. Phys. Lett., vol. 98, no. 11, pp. 113105-1–113105-3, Mar. 2011. [42] A. Villalon, C. L. Royer, P. Nguyen, S. Barraud, F. Glowacki, A. Revelan, L. Selmi, S. Cristoloveanu, L. Tosti, C. Vizioz, J. M. Hartmann, N. Bernier, B. Previtali, C. Tabone, F. Allain, S. Martinie, O. Rozeau, and M. Vinet, “First Demonstration of strained SiGe nanowires TFETs with Ion beyond 700μA/μm,” in Proc. Symp. VLSI Technol., pp. 84–85, 2014. [43] O. M. Nayfeh, C. N. Chleirigh, J. Hennessy, L. Gomez, J. L. Hoyt, and D. A. Antoniadis, “Design of tunneling field-effect transistors using strained-silicon/strained-germanium type-II staggered heterojunctions,” IEEE Electron Device Lett., vol. 29, no. 9, pp. 1074–1077, Sep. 2008. [44] S. H. Kim, H. Kam, C. Hu, and T. J. King Liu, “Germanium-source tunnel field effect transistors with record high ION/IOFF,” in VLSI Symp. Tech. Dig., 2009, pp. 178–179. [45] S. H. Kim, Z. A. Jacobson, and T. J. K. Liu, “Impact of body doping and thickness on the performance of Germanium-source TFETs,” IEEE Trans. Electron Devices, vol. 57, no. 7, pp. 1710–1713, Jul. 2010. [46] Q. T. Zhao, J. M. Hartmann, and S. Mantl, “An improved Si tunnel field effect transistor with a buried strained Si1−xGex source,” IEEE Electron Device Lett., vol. 32, no. 11, pp. 1480–1482, Nov. 2011. [47] O. M. Nayfeh, “Heterojunction tunneling transistors using gate controlled tunneling across silicon–germanium/silicon epitaxial thin films,” IEEE Electron Device Lett., vol. 32, no. 7, pp. 844–846, Jul. 2011. [48] K. L. Low, C. Zhan, G. Han, Y. Yang, K. H. Goh, P. Guo, E. H. Toh, and Y. C. Yeo, “Device physics and design of a L-shaped germanium source tunneling transistor,” Jpn. J. Appl. Phys., vol. 51, no. 2, pp. 02BC04-1–02BC04-6, Feb. 2012 [49] H. Riel, K. E. Moselund, C. Bessire, M. T. Björk, A. Schenk, H. Ghoneim, and H. Schmid, “InAs-Si heterojunction nanowire tunnel diodes and tunnel FETs,” in IEDM Tech. Dig., Dec. 2012, pp. 391–394. [50] A. Vandooren, D. Leonelli, R. Rooyackers, A. Hikavyy, K. Devriendt, M. Demand, R. Loo, G. Groeseneken, and C. Huyghebaert, “Analysis of trap-assisted tunneling in vertical Si homo-junction and SiGe hetero-junction Tunnel-FETs,” Solid-State Electron., vol. 83, pp. 50–55, May 2013. [51] R. Rooyackers, A. Vandooren, A. S. Verhulst, A. M. Walke, E. Simoen, K. Devriendt, S. Lo-Corotondo, M. Demand, G. Bryce, R. Loo, A. Hikavyy, T. Vandeweyer, C. Huyghebaert, N. Collaert, and A. V. Y. Thean, “Ge-source vertical tunnel FETs Using a novel replacement-source integration scheme,” IEEE Trans. Electron Devices, vol. 61, no. 12, pp. 4032–4039, Dec. 2014. [52] A. Bowonder, P. Patel, K. Jeon, J. Oh, P. Majhi, H.-H. Tseng, and C. Hu, “Low-voltage green transistor using ultra shallow junction and heterotunneling,” in Proc. Int. Workshop Junction Technol., 2008, pp. 93–96. [53] V. Nagavarapu, R. Jhaveri, and J. C. S. Woo, “The tunnel source (PNPN) n-MOSFET: A novel high performance transistor,” IEEE Trans. Electron Devices, vol. 55, no. 4, pp. 1013–1019, Apr. 2008. [54] R. Jhaveri, V. Nagavarapu, and J. C. S. Woo, “Effect of pocket doping and annealing schemes on the source-pocket tunnel field-effect transistor,” IEEE Trans. Electron Devices, vol. 58, no. 1, pp. 80–86, Jan. 2011. [55] H. Y. Chang, B. Adams, P. Y. Chien, J. Li, and J. C. S. Woo, “Improved subthreshold and output characteristics of source-pocket Si tunnel FET by the application of laser annealing,” IEEE Trans. Electron Devices, vol. 60, no. 1, pp. 92–96, Jan. 2013. [56] V. Saripalli, A. Mishra, S. Datta, and V. Narayanan, “An energy-efficient heterogeneous CMP based on hybrid TFET-CMOS cores,” in Proc. 48th DAC, San Diego, CA, USA, Jun. 2011, pp. 729–734. [57] K. Swaminathan, E. Kultursay, V. Saripalli, V. Narayanan, M. Kandemir, and S. Datta, “Improving energy efficiency of multi-threaded applications using heterogeneous CMOS-TFET multicores,” in Proc. 17th IEEE/ACM Int. Symp. Low-Power Electron. Design, 2011, pp. 247–252. [58] Z. Li, J. Tan, and X. Fu, “Hybrid CMOS-TFET based register files for energy efficient GPGPUs,” IEEE Int. Symp. on Quality Electronic Design (ISQED), pp. 112–119, Mar. 2013. [59] S. M. Sze, Physics of Semiconductor Devices, 3rd ed. New York, NY, USA: Wiley, 2007. [60] W. Cao, D. Sarkar, Y. Khatami, J. Kang, and K. Banerjee, “Subthreshold-swing physics of tunnel field-effect transistors,” AIP Advances, vol. 4, no. 6, pp. 067141-1–067141-9, Jun. 2014. [61] Y. Khatami and K. Banerjee, “Steep subthreshold slope n- and p-type tunnel-FET devices for low-power and energy-efficient digital circuits,” IEEE Trans. Electron Devices, vol. 56, no. 11, pp. 2752–2761, Nov. 2009. [62] A. M. Ionescu and H. Riel, “Tunnel field-effect transistors as energy efficient electronic switches,” Nature, vol. 479, no. 7373, pp. 329–337, Nov. 2011. [63] U. E. Avci, R. Rios, K. Kuhn, and I. A. Young, “Comparison of performance, switching energy, and process variations for the TFET and MOSFET in logic,” in Proc. Symp. VLSI Tech., Jun. 2011, pp. 124–125. [64] U. E. Avci, D. H. Morris, and I. A. Young “Tunnel Field-Effect Transistors: Prospects and Challenges,” IEEE J. Electron Dev. Soc., vol. 3, no. 3, pp. 88–95 May 2015. [65] P. F. Wang, T. Nirschl, D. S-Landsiedel, and W. Hansch, “Simulation of the Esaki-tunneling FET,” Solid-State Electron., vol. 47, no. 7, pp. 1187–1193, Jul. 2003. [66] S. Chen, Q. Huang, and R. Huang, “Source doping profile design for Si and Ge tunnel FET,” ECS Trans., vol. 60, no. 1, pp. 91–96, 2014. [67] D. Leonelli, A. Vandooren, R. Rooyackers, S. D. Gendt, M. M. Heyns, and G. Groeseneken, “Drive current enhancement in p-tunnel FETs by optimization of the process conditions,” Solid State Electron., vols. 65–66, pp. 28–32, Nov. 2011. [68] A. Vandooren, D. Leonelli, R. Rooyackers, A. Hikavyy, K. Devriendt, R. Loo, M. Demand, G. Groeseneken, and C. Huyghebaert, “Trap-assisted tunneling in vertical Si and SiGe hetero-tunnel-FETs,” in Proc. Int. SiGe Tech. Device Meet., Jun. 2012, pp. 1–2. [69] M. Reiche, M. Kittler, H. Übensee, M. Krause, and E. Pippel, “Trap-assisted tunneling on extended defects in tunnel field-effect transistors,” Jpn. J. Appl. Phys., vol. 53, no. 4S, pp. 04EC03-1–04EC03-6, Feb. 2014. [70] Y. Qiu, R. Wang, Q. Huang, and R. Huang, “A comparative study on the impacts of interface traps on tunneling FET and MOSFET,” IEEE Trans. Electron Devices, vol. 61, no. 5, pp. 1284–1291, May 2014. [71] TCAD Sentaurus Device Manual, Synopsys, Mountain View, CA, USA, Jun. 2014. [72] J. G. Fossum, “Computer-aided numerical analysis of Silicon solar cells,” Solid-State Electronics, vol. 19, pp. 269–277, Apr. 1976. [73] J. G. Fossum and D. S. Lee, “A physical model for the dependence of carrier lifetime on doping density in nondegenerate Silicon,” Solid-State Electronics, vol. 25, no. 8, pp. 741–747, Aug. 1982. [74] J. G. Fossum, R. P. Mertens, D. S. Lee, and J. F. Nijs, “Carrier recombination and lifetime in highly doped Silicon,” Solid-State Electronics, vol. 26, no. 6, pp. 569–576, Jun. 1983. [75] J. Koga and A. Toriumi, “Three-terminal silicon surface junction tunneling device for room temperature operation,” IEEE Electron Device Lett., vol. 20, no. 10, pp. 529–531, Oct. 1999. [76] D. Leonelli, A. Vandooren, R. Rooyackers, A. S. Verhulst, C. Huyghebaert, S. De Gendt, M. M. Heyns, and G. Groeseneken, “Novel architecture to boost the vertical tunneling in tunnel field effect transistors,” in Proc. IEEE Int. SOI Conf., 2011, pp. 1–2. [77] Y. Morita, T. Mori, S. Migita, W. Mizubayashi, A. Tanabe, K. Fukuda, M. Masahara, and H. Ota, “First demonstration of drain current enhancement in SOI tunnel FET with vertical-tunnel-multiplication,” in Proc. IEEE Int. SOI Conf., Oct. 2012, pp. 1–2. [78] A. M. Walke, A. Vandooren, R. Rooyackers, D. Leonelli, A. Hikavyy, R. Loo, A.S. Verhulst, K. H. Kao, C. Huyghebaert, G. Groeseneken, V. R. Rao, K. K. Bhuwalka, M. M. Heyns, N. Collaert, and A. V.-Y. Thean, “Fabrication and Analysis of a Si/Si0.55Ge0.45 Heterojunction Line Tunnel FET”, IEEE Trans. Electron Devices, vol. 61, no. 3, pp. 707–715, Mar. 2014. [79] R. People and J. C. Bean, “Calculation of critical layer thickness versus lattice mismatch for GexSi1−x/Si strained-layer heterostructures,” Appl. Phys. Lett., vol. 47, no. 3, pp. 322–324, Aug. 1985. [80] D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Band-edge electro-absorption in quantum well structures: The quantum confined stark effect,” Phys. Rev. Lett., vol. 53, no. 22, pp. 2173–2177, Nov. 1984. [81] F. Stern, “Self-consistent results for n-type Si inversion layers,” Phys. Rev. B, vol. 5, no. 12, pp. 4891–4899, Jun. 1972. [82] T. Ando, A. B. Fowler, and F. Stern, “Electronic properties of two dimensional systems,” Rev. Mod. Phys., vol. 54, no. 2, pp. 437–672, Apr. 1982. [83] S. H. Lo, D. A. Buchanan, Y. Taur, and W. Wang, “Quantum mechanical modeling of electron tunneling current from the inversion layer of ultra-thin-oxide nMOSFET’s,” IEEE Electron Device Lett., vol. 18, no. 5, pp. 209–211, May 1997. [84] W. G. Vandenberghe, B. Sorée, W. Magnus, G. Groeseneken, and M. V. Fischetti, “Impact of field-induced quantum confinement in tunneling field-effect devices,” Appl. Phys. Lett., vol. 98, no. 14, pp. 143 503-1–143 503-3, Apr. 2011. [85] W. G. Vandenberghe, B. Sorée, W. Magnus, G. Groeseneken, A. S. Verhulst, and M. V. Fischetti, “Field induced quantum confinement in indirect semiconductors: Quantum mechanical and modified semiclassical model,” in Proc. Simul. Semicond. Process Devices, 2011, pp. 271–274. [86] J. L. Padilla, F. Gamiz, and A. Godoy, “A simple approach to quantum confinement in tunneling field-effect transistors,” IEEE Electron Device Lett., vol. 33, no. 10, pp. 1342–1444, Oct. 2012. [87] J. L. Padilla, F. Gamiz, and Andrés Godoy, “Impact of quantum confinement on gate threshold voltage and subthreshold swings in double-gate tunnel FETs,” IEEE Trans. Electron Devices, vol. 59, no. 12, pp. 3205–3211, Oct. 2012. [88] A. S. Verhulst, W. G. Vandenberghe, K. Maex, S. De Gendt, M. M. Heyns, and G. Groeseneken, “Complementary silicon-based heterostructure tunnel-FETs with high tunnel rates,” IEEE Electron Device Lett., vol. 29, no. 12, pp. 1398–1401, Dec. 2008. [89] R. Asra, M. Shrivastava, K. V. R. M. Murali, R. K. Pandey, H. Gossner, and V. R. Rao, “A tunnel FET for VDD scaling below 0.6V with a CMOS comparable performance,” IEEE Trans. Electron Devices, vol. 58, no. 7, pp. 1855–1863, Jul. 2011. [90] L. Lattanzio, L. De Michielis, and A. M. Ionescu, “Complementary germanium electron–hole bilayer tunnel FET for sub-0.5-V operation,” IEEE Electron Device Lett., vol. 33, no. 2, pp. 167–169, Feb. 2012. [91] L. Knoll, Q. T. Zhao, A. Nichau, S. Trellenkamp, S. Richter, A. Schäfer, D. Esseni, L. Selmi, K. K. Bourdelle, and S. Mantl, “Inverters with strained Si nanowire complementary tunnel field-effect transistors,” IEEE Trans. Electron Devices, vol. 34, no. 6, pp. 813–815, Jun. 2013. [92] L. Knoll, Q.T. Zhao, A. Nichau, S. Richter, G.V. Luong, S. Trellenkamp, A. Schäfer, L. Selmi, K. K. Bourdelle, S. Mantl, “Demonstration of improved transient response of inverters with steep slope strained Si NW TFETs by reduction of TAT with pulsed I–V and NW scaling,” in IEDM Tech. Dig., Dec. 2013, pp. 4.4.1–4.4.4. [93] R. Rooyackers, A. Vandooren, A. S. Verhulst, A. Walke, K. Devriendt, S. Locorotondo, M. Demand, G. Bryce, R. Loo, A. Hikavyy, T. Vandeweyer, C. Huyghebaert, N. Collaert, and A. Thean, “A new complementary hetero-junction vertical tunnel-FET integration scheme,” in IEDM Tech. Dig., Dec. 2013, pp. 4.2.1–4.2.4. [94] International Technology Roadmap for Semiconductors, 2013 Edition; http://www.itrs.net [95] D. Kim, Y. Lee, J. Cai, I. Lauer, L. Chang, S. J. Koester, D. Sylvester, and D. Blaauw, “Low power circuit design based on heterojunction tunneling transistors (hetts),” in Proc. ISLPED, 2009, pp. 219–224. [96] V. Saripalli, S. Datta, V. Narayanan, and J. P. Kulkarni, “Variation-tolerant ultra-low-power heterojunction tunnel FET SRAM design,” in Proc. IEEE/ACM Int. Symp. Nanoscale Architectures, Jun. 2011, pp. 45–52. [97] Y. Lee, D. Kim, J. Cai, I. Lauer, L. Chang, S. J. Koester, D. Blaauw, and D. Sylvester, “Low-power circuit analysis and design based on heterojunction tunneling transistors (HETTs),” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 21, no. 9, pp. 1632–1643, Sep. 2013. [98] U. E. Avci, D. H. Morris, S. Hasan, R. Kotlyar, R. Kim, R. Rios, D. E. Nikonov, and I. A. Young, “Energy efficiency comparison of nanowire heterojunction TFET and Si MOSFET at Lg=13 nm, including PTFET and variation considerations,” in Proc. IEDM, Dec. 2013, pp. 33.4.1–33.4.4. [99] A. R. Trivedi, S. Carlo, and S. Mukhopadhyay, “Exploring tunnel-FET for ultra low power analog applications:A CASE study on operational transconductance amplifier,” in Proc. ACM/IEEE Design Automation Conf., 2013, pp. 1–6. [100] S. Datta, R. Bijesh, H. Liu, D. Mohata, and V. Narayanan, “Tunnel transistors for energy efficient computing,” in Proc. IEEE Int. Rel. Phys. Symp. (IRPS), Apr. 2013, pp. 6A.3.1–6A.3.7. [101] S. Mookerjea, R. Krishnan, S. Datta, and V. Narayanan, “On enhanced Miller capacitance effect in interband tunnel transistors,” IEEE Electron Device Lett., vol. 30, no. 10, pp. 1102–1104, Oct. 2009. [102] J. H. Hung, P. Y. Wang, B.Y. Tsui and C. H. Yang, “A Concept of Heterogeneous Circuits with Epitaxial Tunnel Layer Tunnel FETs,” in Proc. Int. Conf. SSDM, 2015, pp. 338–339. [103] S. Mookerjea, R. Krishnan, S. Datta, and V. Narayanan, “Effective capacitance and drive current for tunnel-FET (TFET) CV / I estimation,” IEEE Trans. Electron Devices, vol. 56, no. 9, pp. 2092–2098, Sep. 2009. [104] Y. Yang, X. Tong, L. T. Yang, P. F. Guo, L. Fan, and Y. C. Yeo, “Tunneling field-effect transistor: Capacitance components and modeling,” IEEE Electron Device Lett., vol. 31, no. 7, pp. 752–754, Jul. 2010. [105] B. S. Meyerson, “Low‐temperature silicon epitaxy by ultrahigh vacuum/chemical vapor deposition,” Appl. Phys. Lett., vol. 48, no. 12, pp. 797–799, Mar. 1986. [106] F. W. Smith and G. Ghidini, “Reaction of oxygen with Si(111) and (100): Critical conditions for the growth of SiO2,” J. Electrochem. Soc., vol. 129, no. 6, pp. 1300–1306, Jun. 1982. [107] Y. G. Yang and B. Y. Tsui, “Thin effective oxide thickness (∼0.5 nm) and low leakage current gate dielectric for Ge MOS devices by plasma nitrided Al2O3 intermediate layer,” in Proc. VLSI-TSA, Apr. 2015, TR65. [108] L. D. Michielis, L. Lattanzio, and A. M. Ionescu, “Understanding the superlinear onset of tunnel-FET output characteristic,” IEEE Electron Device Lett., vol. 33, no. 11, pp. 1523–1525, Nov. 2012. [109] M. H. Lee, S. T. Chang, T. H. Wu, and W. N. Tseng, “Driving current enhancement of strained Ge (110) p-type tunnel FETs and anisotropic effect,” IEEE Electron Device Lett., vol. 32, no. 10, pp. 1355–1357, Oct. 2011. [110] Y. Yang, S. Su, P. Guo, W. Wang, X. Gong, L. Wang, K. L. Low, G. Zhang, C. Xue, B. Cheng, G. Han, and Y. C. Yeo, “Towards direct band-to-band tunneling in P-channel tunneling field effect transistor (TFET): Technology enablement by germanium-tin (GeSn),” in IEDM Tech. Dig., Dec. 2012, pp. 379–382. [111] A. Villalon, C. L. Royer, M. Cassé, D. Cooper, B. Prévitali, C. Tabone, J. M. Hartmann, P. Perreau, P. Rivallin, J. F. Damlencourt, F. Allain, F. Andrieu, O. Weber, O. Faynot and T. Poiroux, “Strained tunnel FETs with record ION: First demonstration of ETSOI TFETs with SiGe channel and RSD,” in Proc. Symp. VLSI Technol. (VLSIT), Jun. 2012, pp. 49–50.
|