跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.54) 您好!臺灣時間:2026/01/11 13:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王培宇
研究生(外文):Wang, Pei-Yu
論文名稱:磊晶穿隧層穿隧電晶體之研究
論文名稱(外文):A Study on Tunnel FET with Epitaxial Tunnel Layer Structure
指導教授:崔秉鉞
指導教授(外文):Tsui, Bing-Yue
口試委員:胡振國連振炘王水進葉文冠趙天生李佩雯簡昭欣崔秉鉞
口試委員(外文):Hwu, Jenn-GwoLien, Chen-HsinWang, Shui-JinnYeh, Wen-KuanChao, Tien-ShengLi, Pei-WenChien, Chao-HsinTsui, Bing-Yue
口試日期:2015-12-04
學位類別:博士
校院名稱:國立交通大學
系所名稱:電子工程學系 電子研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:104
語文別:英文
論文頁數:159
中文關鍵詞:穿隧電晶體能帶間穿隧次臨界擺幅
外文關鍵詞:Tunnel FETBand to Band TunnelingSubthreshold Swing
相關次數:
  • 被引用被引用:0
  • 點閱點閱:430
  • 評分評分:
  • 下載下載:36
  • 收藏至我的研究室書目清單書目收藏:0
在本論文中,吾人針對利用能帶間穿隧效應(band-to-band tunneling)作為操作機制的穿隧電晶體元件進行研究。為了瞭解此新穎元件的基本特性與設計考量,吾人針對源極端接面輪廓與缺陷輔助穿隧效應(trap-assisted tunneling)對於本體穿隧電晶體元件(bulk TFET)的影響進行探討。為更進一步提升穿隧式電晶體元件的性能,吾人提出一種與互補式金屬氧化物半導體(CMOS)製程相容的磊晶穿隧層(epitaxial tunnel layer)穿隧電晶體元件。同時藉由電腦輔助設計模擬軟體(TCAD simulation)深入探討互補式穿隧電晶體(CTFETs)的各項元件參數。吾人同時展示了使用互補式穿隧電晶體架構作為反相器(inverter)的特性,並與使用互補式全耗盡型絕緣層覆矽(Fully depleted siicon-on-insulator) 金屬氧化物半導體電晶體(MOSFETs)反相器做比較。此外,吾人也同時實際製作互補式鍺磊晶穿隧層穿隧電晶體並探討其特性。
吾人首先針對源極端接面輪廓與缺陷輔助穿隧效應對於本體穿隧電晶體元件的影響進行探討。藉由不同的源極端接面輪廓比較,吾人發現靠近閘極介面層的參雜濃度與輪廓對於穿隧電晶體有最大的影響。穿隧效率與穿隧方向同時也會受到源極端接面輪廓的影響。由於缺陷在空乏區對於元件的特性會有最大的影響,因此缺陷在靠近閘極介面與接面邊緣會最劣化穿隧電晶體的特性。
了解穿隧電晶體基本特性與設計考量之後,吾人提出一種與互補式金屬氧化物半導體製程相容的磊晶穿隧層穿隧電晶體元件來提升穿隧電晶體的特性。考量到製程整合與材料特性的因素,吾人採用鍺-矽異質材料系統來驗證磊晶穿隧層穿隧電晶體的概念。藉由結構工程與磊晶穿隧層能帶工程,鍺磊晶穿隧層P型穿隧電晶體可達到優異的元件性能。
為了達成互補式穿隧電晶體的結構,吾人針對鍺磊晶穿隧N型穿隧電晶體進行研究。由於使用具有價帶位移(valence band offset)的鍺-矽異質材料系統,鍺磊晶穿隧層N型穿隧電晶體可應用抑制低電場能帶間穿隧的概念。吾人利用電腦輔助模擬軟體來展示並探討此抑制概念,同時可發現鍺磊晶穿隧層電晶體的次臨界擺幅(Subthreshold swing)特性可得到進一步提升。
吾人也對於互補式穿隧電晶體架構作為反相器的特性進行探討並同時比較使用互補式全耗盡型絕緣層覆矽金屬氧化物半導體電晶體架構作為反相器的性能。在操作電壓小於0.4 V的時候,穿隧電晶體反相器具有較快的速度。然而由於較大的寄生電容效應,穿隧電晶體反相器有較高的功率耗損。根據功率-延遲的分析,穿隧電晶體反相器操作在0.2 V時可有較快的速度同時具有較低的功率損耗。
最後,吾人同時實際製作互補式鍺磊晶穿隧層穿隧電晶體並對其進行探討。鍺磊晶穿隧層P型穿隧電晶體具有高穿隧電流、低漏電流以及良好的平均次臨界擺幅特性(約100 mV / decade 持續到10 nA / μm)。吾人也針對閘極-源極電容進行研究並同時探討其原因以及可能的影響。

In this dissertation, tunnel field-effect-transistor (TFET) utilizing band-to-band tunneling (BTBT) as the operation mechanism is studied. To realize the basic characteristics and the design issues for the novel device, the effects of the source junction profiles and the trap-assisted tunneling (TAT) on the bulk TFET are investigated. To further improve the TFET performance, a CMOS process compatible TFET with epitaxial tunnel layer (ETL) structure is proposed. Various device parameters of complementary ETL TFETs (CTFETs) are studied and discussed in detail by the TCAD simulation. The inverter characteristics based on the proposed CTFETs are also presented and compared with the inverter based on complementary fully depleted silicon-on-insulator MOSFET (CMOSFETs). Moreover, complementary Ge ETL TFETs are also fabricated and discussed.
The effects of source junction profiles and the TAT on the bulk TFET are firstly investigated. By comparing with different source junction profiles, it indicates that the doping concentrations and profiles near the gate dielectric interface have the largest influence on TFET characteristics. The tunneling efficiency and orientation are also affected by the source junction profiles. Because the defects located within the depletion region have the largest effect on the device characteristics, the defects located near the gate interface and the junction edge degrade the TFET characteristics the most.
After realizing the basic characteristics and design issues of TFET devices, a CMOS process compatible TFET with ETL structure is proposed to improve the TFET performance. Considering the process integration and material properties, Ge/Si hetero-material system is used to demonstrate the concept of the ETL TFET. Excellent device performance of Ge ETL pTFET is achieved by the structural engineering and the ETL band engineering.
To achieve the configuration of complementary TFETs, Ge ETL nTFET is investigated. Because the Ge/Si hetero-material system with the valence band offset is applied, the concept of the suppression of the low electric field BTBT (LE BTBT) can apply on the Ge ETL nTFET. The LE BTBT suppression concept is illustrated and discussed by the TCAD simulation. The S.S. characteristic of Ge ETL nTFET can be further improved.
The TFET-based inverter are also studied and compared with the MOSFET-based inverter. Better speed performance can be achieved as the VDD is below 0.4 V. However, high power consumption on the TFET-based inverter is observed due to the large parasitic capacitance of CTFETs. According to the power-delay analysis, TFET-based inverter exhibits not only better performance but also less power consumption as it is operated at 0.2 V.
Finally, complementary Ge ETL TFETs are fabricated and discussed. The fabricated Ge ETL pTFET exhibits high tunneling current, ultralow OFF-state current, and good average subthreshold swing (S.S. ~100 mV/decade up to 10 nA / μm). The gate-to-source (CGS) capacitance is also investigated. The origin and the possible influence of the CGS are also discussed.

Abstract (Chinese)…………………………………………………….i
Abstract (English)……………...……………………………………iii
Acknowledges……………………………………….……………….vi
Contents………………………………………………………….…viii
List of Tables……………………………………….………………xii
List of Figures…………………………………….…………….…xiii

Chapter 1
Introduction 1
1-1 Power Consumption on CMOS Technology 1
1-2 Steep-Slope Devices 2
1-3 Development of Tunnel FET 4
1-4 Thesis Organization 6

Chapter 2
Source Junction Profile and Defect Effect on Bulk Tunnel Field-Effect Transistor Characteristics 9
2-1 Introduction 9
2-2 Device Fabrication 10
2-3 Simulation Structure and Physical Model 11
2-4 Results and Discussion 13
2-4-1 Fabricated TFET Characteristics 13
2-4-2 Source Doping Profile Effect 14
2-4-3 Defect Position Effect 17
2-5 Conclusions 19
Chapter 3
A Simulation Study of P-channel Germanium Epitaxial Tunnel Layer Tunnel Field-Effect Transistor 38
3-1 Introduction 38
3-2 Device Design Concept 38
3-2-1 Structural Engineering 39
3-2-2 ETL Band Engineering 39
3-3 Simulation Structure and Physical Model 40
3-4 Results and Discussion 41
3-4-1 ETL Structural Engineering Improvement 41
3-4-2 ETL Band Engineering Improvement 41
3-4-3 ETL Thickness Effect 42
3-4-4 ETL Doping Effect 43
3-4-5 Gate-to-source Overlap Length Effect 44
3-4-6 Doping Concentration and Lateral Dopant Diffusion Effect 45
3-4-7 Gate-to-drain Overlap Length Effect 46
3-4-8 Quantum Confinement Effect 46
3-4-9 Summary 48
3-5 Conclusions 49

Chapter 4
A Simulation Study of N-channel Germanium Epitaxial Tunnel Layer Tunnel Field-Effect Transistor 61
4-1 Introduction 61
4-2 Low Electric Field BTBT Suppression Concept 62
4-3 Device Design Discussion 63
4-3-1 ETL Thickness Effect 63
4-3-2 ETL Doping Effect 64
4-3-3 Gate-to-source Overlap Length Effect 65
4-3-4 Doping Concentration and Lateral Dopant Diffusion Effect 66
4-3-5 Gate-to-drain Overlap Length Effect 66
4-3-5 Hetero-material System 67
4-3-6 Quantum Confinement Effect 68
4-3-7 Summary 68
4-4 Conclusions 69

Chapter 5
An Inverter Analysis of Complementary Germanium Epitaxial Tunnel Layer Tunnel Field-Effect Transistors 83
5-1 Introduction 83
5-2 Simulation Process Flow 83
5-3 Simulation Method 85
5-4 Device Characteristics 86
5-5 Inverter Analysis 87
5-5-1 Static Behavior 87
5-5-2 Dynamic Behavior 89
5-6 Summary 91

Chapter 6
Fabrication and Electrical Characteristics of Germanium Epitaxial Tunnel Layer Tunnel Field-Effect Transistors 103
6-1 Introduction 103
6-2 Device Fabrication 104
6-3 Results and Discussion 107
6-3-1 Basic Device Characteristics 107
6-3-2 Low Temperature Measurement Analysis 109
6-3-3 Capacitance Measurement Analysis 111
6-4 Conclusions 114

Chapter 7
Final Discussion and Future Recommendations 134
7-1 Summary 134
7-2 Perspectives of TFET Design 136
7-2 Future Works 138

[1] M. J. Riezenman, “Wanlass’s CMOS circuit,” in IEEE Spectrum, vol. 8, pp.44, 1991.
[2] F. M. Wanlass and C. T. Sah, “Nanowatt logic using field effect metal-oxide semiconductor triodes,” in Tech. Dig. IEEE Int. Solid State Circuit Conf., Feb. 20, 1963, pp. 32–33.
[3] J. R. Burns, "Switching response of complementary-symmetry MOS transistor logic circuits," RCA Rev., vol. 25, pp. 627–661, 1964.
[4] R. W. Ahrons and M. M. Mitchell, "MOS micropower complementary transistor logic," in Tech. Dig. IEEE Int. Solid State Circuit Conf., 1965, pp. 80–81.
[5] F. M. Wanlass, “Low stand-by power complementary field effect circuitry,” U.S. Patent 3,356,858, filed June 18, 1963, issued Dec. 5, 1967.
[6] O. Minato, T. Masuhara, T. Sasaki, Y. Sakai, M. Kubo, K. Uchibori, and T. Yasui, “A high-speed, low-power hi-CMOS 4K static RAM,” IEEE Trans. Electron Devices, vol. ED-26, pp. 882–885, June 1979.
[7] C. T. Sah, “Evolution of the MOS transistor-from conception to VLSI,” Proc. IEEE, vol. 76, pp. 1280–1326, Oct. 1988.
[8] G. E. Moore, “Cramming more components onto integrated circuits,” Electronics, vol. 38, no. 8, pp. 114–117, 1965.
[9] N. Weste and E. Eshraghian, Principles of CMOS VLSI Design, A System Perspective. Reading, MA, USA: Addison-Wesley, 1985.
[10] A. P. Chandrakasan and R.W. Brodersen, “Minimizing power consumption in digital CMOS circuits,” Proc. IEEE, vol. 83, no. 4, pp. 498–523, Apr. 1995.
[11] K. Gopalakrishnan, P. B. Griffin, and J. D. Plummer, “I-MOS: A novel semiconductor device with a subthreshold slope lower than kT/q,” in IEDM Tech. Dig., 2002, pp. 289–292.
[12] W. Y. Choi, J. D. Lee, and B. G. Park, "Integration process of impact ionization metal-oxide-semiconductor devices with tunneling field-effect transistors and metal-oxide-semiconductor field-effect transistors," Jpn. J. Appl. Phys., vol. 46, no. 1, pp. 122–124, Jan. 2007.
[13] A. Padilla, C. W. Yeung, C. Shin, C. Hu, and T. J. King Liu, “Feedback FET: A novel transistor exhibiting steep switching behavior at low bias voltages,” in IEDM Tech. Dig., 2008, pp. 1–4.
[14] H. Nathanson, W. Newell, R. Wickstrom, and J. Davis, “The resonant gate transistor,” IEEE Trans. Electron Devices, vol. ED-14, no. 3, pp. 117–133, Mar. 1967.
[15] A. Ionescu, V. Pott, R. Fritschi, K. Banerjee, M. Declercq, P. Renaud, C. Hibert, P. Fluckiger, and G. Racine, “Modeling and design of a low voltage SOI suspended-gate MOSFET (SG-MOSFET) with a metal-over-gate architecture,” in Proc. QED, 2002, pp. 496–501.
[16] S. Salahuddin and S. Datta, “Use of negative capacitance to provide voltage amplification for low power nanoscale devices,” Nano Letters, vol. 8, no. 2, pp. 405–410, 2008.
[17] A. C. Seabaugh and Q. Zhang, “Low-voltage tunnel transistors for beyond CMOS logic,” IEEE Proc., vol. 98, no. 12, pp. 2095–2110, Dec. 2010.
[18] O. M. Stuetzer, "Junction fieldistors," Proc. IRE, vol. 40, no. 11, pp. 1377–1381, Nov. 1952.
[19] L. Esaki, "New phenomenon in narrow germanium p-n junctions," Phys. Rev., vol. 109, no. 2, pp. 603–604, Jan. 1958.
[20] J. Quinn, G. Kawamoto, and B. McCombe, “Subband spectroscopy by surface channel tunneling," Surface Sci., vol. 73, no. 1, pp. 190–196, May 1978.
[21] J. P. Leburton, J. Kolodzey, and S. Biggs, "Bipolar tunneling field-effect transistor: A three-terminal negative differential resistance device for high-speed applications," Appl. Phys. Lett., vol. 52, no. 9, pp. 1608–1620, May 1988.
[22] T. Baba, "Proposal for surface tunnel transistors," Jpn. J. Appl. Phys., vol. 31, no. 4B, pp. L455–L457, Feb. 1992.
[23] T. Uemura and T. Baba, "First observation of negative differential resistance in surface tunnel transistors," Jpn. J. Appl. Phys., vol. 33, pp. L207–L210, Jan. 1994.
[24] H. Kawaura, N. Iguchi, and T. Baba, "Fabrication of silicon surface tunnel transistors," Ext. Abstr. Quantum Funct. Devices, pp. 62, May 1995.
[25] Y. Omura, "Negative conductance properties in extremely thin silicon-on-insulator (SOI) insulated-gate pn-junction devices (SOI surface tunnel transistors)," Jpn. J. Appl. Phys., vol. 35, no. 11A, pp. L1401–L1403, Sep. 1996.
[26] J. Koga and A. Toriumi, "Negative differential conductance at room temperature in three-terminal silicon surface junction tunnel transistor," Appl. Phys. Lett., vol. 70, no. 16, pp. 2138–2140, Feb. 1997.
[27] T. Uemura and T. Baba, "First demonstration of a planar-type surface tunnel transistor (STT): Lateral interband tunnel device," Solid-State Electron., vol. 40, pp. 519–522, 1996.
[28] W. M. Reddick and G. A. J. Amartunga, "Silicon surface tunnel transistor," Appl. Phys. Lett., vol. 67, no. 4, pp. 494–496, Jul. 1995.
[29] W. Hansch, C. Fink, J. Schulze, and I. Eisele, "A vertical MOS-gated Esaki tunneling transistor in silicon," Thin Solid Films, vol. 369, pp. 387–389, Jul. 2000.
[30] C. Aydin, A. Zaslevsky, S. Luryi, S. Cristoloveanu, D. Mariolle, D. Fraboulet, and S. Deleonibus, "Lateral interband tunneling transistor in silicon-on-insulator," Appl. Phys. Lett., vol. 84, no. 10, pp. 1780–1782, Mar. 2004.
[31] P. F. Wang, K. Hilsenbeck, T. Nirschl, M. Oswald, C. Stepper, M. Weiss, D. Schmitt-Landsiedel, and W. Hansch, "Complementary tunneling transistor for low power application," Solid-State Electron., vol. 48, no. 12, pp. 2281–2286, Dec. 2004.
[32] K. K. Bhuwalka, J. Schulze, and I. Eisele, "Performance enhancement of vertical tunnel field-effect transistor with SiGe in the δp+ layer," Jpn. J. Appl. Phys., vol. 43, pp. 4073–4078, Jul. 2004.
[33] J. Appenzeller, Y.-M. Lin, J. Knoch, and P. Avouris, "Band-to-band tunneling in carbon nanotube field-effect transistors," Phys. Rev. Lett., vol. 93, no. 19, pp. 196805-1–196805-4, Nov. 2004.
[34] W. Y. Choi, B. G. Park, J. D. Lee, and T. J. K. Liu, "Tunneling field-effect transistors (TFETs) with subthreshold swing (SS) less than 60 mV/dec," IEEE Electron Device Lett., vol. 28, no. 8, pp. 743–745, Aug. 2007.
[35] T. Nirschl, P. F. Wang, C. Weber, J. Sedlmeir, R. Heinrich, R. Kakoschke, K. Schrufe, J. Holz, C. Pacha, T. Schulz, M. Ostermayr, A. Olbrich, G. Georgakos, E. Ruderer, W. Hansch, and D. Schmitt-Landsiedell, “The tunneling field-effect transistor (TFET) as an add-on for ultra-low voltage analog and digital processes,” in IEDM Tech. Dig., Dec. 2004, pp. 195–198.
[36] Q. Zhang, W. Shao, and A. Seabaugh, “Low-subthreshold-swing tunnel transistors,” IEEE Electron Device Lett., vol. 27, no. 4, pp. 297–300, Apr. 2006.
[37] T. Krishnamohan, D. Kim, S. Raghunathan, and K. Saraswat, “Doublegate strained-Ge heterostructure tunneling FET (TFET) with record high drive currents and< 60 mV/dec subthreshold slope,” in IEDM Tech. Dig., 2008, pp. 947–949.
[38] F. Mayer, C. Le Royer, J. F. Damlencourt, K. Romanjek, F. Andrieu, C. Tabone, B. Previtali, and S. Deleonibus, “Impact of SOI, Si1−xGexOI and GeOI substrates on CMOS compatible tunnel FET performance,” in IEDM Tech Dig., 2008, pp. 163–166.
[39] D. Kazazis, P. Jannaty, A. Zaslavsky, C. L. Royer, C. Tabone, L. Clavelier, and S. Cristoloveanu, “Tunneling field-effect transistor with epitaxial junction in thin germanium-on-insulator,” Appl. Phys. Lett., vol. 94, no. 26, pp. 263508-1–263508-3, Jun. 2009.
[40] S. Mookerjea, D. Mohata, R. Krishnan, J. Singh, A. Vallett, A. Ali, T. Mayer, V. Narayanan, D. Schlom, A. Liu, and S. Datta, “Experimental demonstration of 100 nm channel length In0.53Ga0.47As-based vertical inter-band tunnel field effect transistors (TFETs) for ultra low-power logic and SRAM applications,” in IEDM Tech. Dig., 2009, pp. 949–951.
[41] A. C. Ford, C. W. Yeung, S. Chuang, H. S. Kim, E. Plis, S. Krishna, C. Hu, and A. Javey, “Ultrathin body InAs tunneling field-effect transistors on Si substrates,” Appl. Phys. Lett., vol. 98, no. 11, pp. 113105-1–113105-3, Mar. 2011.
[42] A. Villalon, C. L. Royer, P. Nguyen, S. Barraud, F. Glowacki, A. Revelan, L. Selmi, S. Cristoloveanu, L. Tosti, C. Vizioz, J. M. Hartmann, N. Bernier, B. Previtali, C. Tabone, F. Allain, S. Martinie, O. Rozeau, and M. Vinet, “First Demonstration of strained SiGe nanowires TFETs with Ion beyond 700μA/μm,” in Proc. Symp. VLSI Technol., pp. 84–85, 2014.
[43] O. M. Nayfeh, C. N. Chleirigh, J. Hennessy, L. Gomez, J. L. Hoyt, and D. A. Antoniadis, “Design of tunneling field-effect transistors using strained-silicon/strained-germanium type-II staggered heterojunctions,” IEEE Electron Device Lett., vol. 29, no. 9, pp. 1074–1077, Sep. 2008.
[44] S. H. Kim, H. Kam, C. Hu, and T. J. King Liu, “Germanium-source tunnel field effect transistors with record high ION/IOFF,” in VLSI Symp. Tech. Dig., 2009, pp. 178–179.
[45] S. H. Kim, Z. A. Jacobson, and T. J. K. Liu, “Impact of body doping and thickness on the performance of Germanium-source TFETs,” IEEE Trans. Electron Devices, vol. 57, no. 7, pp. 1710–1713, Jul. 2010.
[46] Q. T. Zhao, J. M. Hartmann, and S. Mantl, “An improved Si tunnel field effect transistor with a buried strained Si1−xGex source,” IEEE Electron Device Lett., vol. 32, no. 11, pp. 1480–1482, Nov. 2011.
[47] O. M. Nayfeh, “Heterojunction tunneling transistors using gate controlled tunneling across silicon–germanium/silicon epitaxial thin films,” IEEE Electron Device Lett., vol. 32, no. 7, pp. 844–846, Jul. 2011.
[48] K. L. Low, C. Zhan, G. Han, Y. Yang, K. H. Goh, P. Guo, E. H. Toh, and Y. C. Yeo, “Device physics and design of a L-shaped germanium source tunneling transistor,” Jpn. J. Appl. Phys., vol. 51, no. 2, pp. 02BC04-1–02BC04-6, Feb. 2012
[49] H. Riel, K. E. Moselund, C. Bessire, M. T. Björk, A. Schenk, H. Ghoneim, and H. Schmid, “InAs-Si heterojunction nanowire tunnel diodes and tunnel FETs,” in IEDM Tech. Dig., Dec. 2012, pp. 391–394.
[50] A. Vandooren, D. Leonelli, R. Rooyackers, A. Hikavyy, K. Devriendt, M. Demand, R. Loo, G. Groeseneken, and C. Huyghebaert, “Analysis of trap-assisted tunneling in vertical Si homo-junction and SiGe hetero-junction Tunnel-FETs,” Solid-State Electron., vol. 83, pp. 50–55, May 2013.
[51] R. Rooyackers, A. Vandooren, A. S. Verhulst, A. M. Walke, E. Simoen, K. Devriendt, S. Lo-Corotondo, M. Demand, G. Bryce, R. Loo, A. Hikavyy, T. Vandeweyer, C. Huyghebaert, N. Collaert, and A. V. Y. Thean, “Ge-source vertical tunnel FETs Using a novel replacement-source integration scheme,” IEEE Trans. Electron Devices, vol. 61, no. 12, pp. 4032–4039, Dec. 2014.
[52] A. Bowonder, P. Patel, K. Jeon, J. Oh, P. Majhi, H.-H. Tseng, and C. Hu, “Low-voltage green transistor using ultra shallow junction and heterotunneling,” in Proc. Int. Workshop Junction Technol., 2008, pp. 93–96.
[53] V. Nagavarapu, R. Jhaveri, and J. C. S. Woo, “The tunnel source (PNPN) n-MOSFET: A novel high performance transistor,” IEEE Trans. Electron Devices, vol. 55, no. 4, pp. 1013–1019, Apr. 2008.
[54] R. Jhaveri, V. Nagavarapu, and J. C. S. Woo, “Effect of pocket doping and annealing schemes on the source-pocket tunnel field-effect transistor,” IEEE Trans. Electron Devices, vol. 58, no. 1, pp. 80–86, Jan. 2011.
[55] H. Y. Chang, B. Adams, P. Y. Chien, J. Li, and J. C. S. Woo, “Improved subthreshold and output characteristics of source-pocket Si tunnel FET by the application of laser annealing,” IEEE Trans. Electron Devices, vol. 60, no. 1, pp. 92–96, Jan. 2013.
[56] V. Saripalli, A. Mishra, S. Datta, and V. Narayanan, “An energy-efficient heterogeneous CMP based on hybrid TFET-CMOS cores,” in Proc. 48th DAC, San Diego, CA, USA, Jun. 2011, pp. 729–734.
[57] K. Swaminathan, E. Kultursay, V. Saripalli, V. Narayanan, M. Kandemir, and S. Datta, “Improving energy efficiency of multi-threaded applications using heterogeneous CMOS-TFET multicores,” in Proc. 17th IEEE/ACM Int. Symp. Low-Power Electron. Design, 2011, pp. 247–252.
[58] Z. Li, J. Tan, and X. Fu, “Hybrid CMOS-TFET based register files for energy efficient GPGPUs,” IEEE Int. Symp. on Quality Electronic Design (ISQED), pp. 112–119, Mar. 2013.
[59] S. M. Sze, Physics of Semiconductor Devices, 3rd ed. New York, NY, USA: Wiley, 2007.
[60] W. Cao, D. Sarkar, Y. Khatami, J. Kang, and K. Banerjee, “Subthreshold-swing physics of tunnel field-effect transistors,” AIP Advances, vol. 4, no. 6, pp. 067141-1–067141-9, Jun. 2014.
[61] Y. Khatami and K. Banerjee, “Steep subthreshold slope n- and p-type tunnel-FET devices for low-power and energy-efficient digital circuits,” IEEE Trans. Electron Devices, vol. 56, no. 11, pp. 2752–2761, Nov. 2009.
[62] A. M. Ionescu and H. Riel, “Tunnel field-effect transistors as energy efficient electronic switches,” Nature, vol. 479, no. 7373, pp. 329–337, Nov. 2011.
[63] U. E. Avci, R. Rios, K. Kuhn, and I. A. Young, “Comparison of performance, switching energy, and process variations for the TFET and MOSFET in logic,” in Proc. Symp. VLSI Tech., Jun. 2011, pp. 124–125.
[64] U. E. Avci, D. H. Morris, and I. A. Young “Tunnel Field-Effect Transistors: Prospects and Challenges,” IEEE J. Electron Dev. Soc., vol. 3, no. 3, pp. 88–95 May 2015.
[65] P. F. Wang, T. Nirschl, D. S-Landsiedel, and W. Hansch, “Simulation of the Esaki-tunneling FET,” Solid-State Electron., vol. 47, no. 7, pp. 1187–1193, Jul. 2003.
[66] S. Chen, Q. Huang, and R. Huang, “Source doping profile design for Si and Ge tunnel FET,” ECS Trans., vol. 60, no. 1, pp. 91–96, 2014.
[67] D. Leonelli, A. Vandooren, R. Rooyackers, S. D. Gendt, M. M. Heyns, and G. Groeseneken, “Drive current enhancement in p-tunnel FETs by optimization of the process conditions,” Solid State Electron., vols. 65–66, pp. 28–32, Nov. 2011.
[68] A. Vandooren, D. Leonelli, R. Rooyackers, A. Hikavyy, K. Devriendt, R. Loo, M. Demand, G. Groeseneken, and C. Huyghebaert, “Trap-assisted tunneling in vertical Si and SiGe hetero-tunnel-FETs,” in Proc. Int. SiGe Tech. Device Meet., Jun. 2012, pp. 1–2.
[69] M. Reiche, M. Kittler, H. Übensee, M. Krause, and E. Pippel, “Trap-assisted tunneling on extended defects in tunnel field-effect transistors,” Jpn. J. Appl. Phys., vol. 53, no. 4S, pp. 04EC03-1–04EC03-6, Feb. 2014.
[70] Y. Qiu, R. Wang, Q. Huang, and R. Huang, “A comparative study on the impacts of interface traps on tunneling FET and MOSFET,” IEEE Trans. Electron Devices, vol. 61, no. 5, pp. 1284–1291, May 2014.
[71] TCAD Sentaurus Device Manual, Synopsys, Mountain View, CA, USA, Jun. 2014.
[72] J. G. Fossum, “Computer-aided numerical analysis of Silicon solar cells,” Solid-State Electronics, vol. 19, pp. 269–277, Apr. 1976.
[73] J. G. Fossum and D. S. Lee, “A physical model for the dependence of carrier lifetime on doping density in nondegenerate Silicon,” Solid-State Electronics, vol. 25, no. 8, pp. 741–747, Aug. 1982.
[74] J. G. Fossum, R. P. Mertens, D. S. Lee, and J. F. Nijs, “Carrier recombination and lifetime in highly doped Silicon,” Solid-State Electronics, vol. 26, no. 6, pp. 569–576, Jun. 1983.
[75] J. Koga and A. Toriumi, “Three-terminal silicon surface junction tunneling device for room temperature operation,” IEEE Electron Device Lett., vol. 20, no. 10, pp. 529–531, Oct. 1999.
[76] D. Leonelli, A. Vandooren, R. Rooyackers, A. S. Verhulst, C. Huyghebaert, S. De Gendt, M. M. Heyns, and G. Groeseneken, “Novel architecture to boost the vertical tunneling in tunnel field effect transistors,” in Proc. IEEE Int. SOI Conf., 2011, pp. 1–2.
[77] Y. Morita, T. Mori, S. Migita, W. Mizubayashi, A. Tanabe, K. Fukuda, M. Masahara, and H. Ota, “First demonstration of drain current enhancement in SOI tunnel FET with vertical-tunnel-multiplication,” in Proc. IEEE Int. SOI Conf., Oct. 2012, pp. 1–2.
[78] A. M. Walke, A. Vandooren, R. Rooyackers, D. Leonelli, A. Hikavyy, R. Loo, A.S. Verhulst, K. H. Kao, C. Huyghebaert, G. Groeseneken, V. R. Rao, K. K. Bhuwalka, M. M. Heyns, N. Collaert, and A. V.-Y. Thean, “Fabrication and Analysis of a Si/Si0.55Ge0.45 Heterojunction Line Tunnel FET”, IEEE Trans. Electron Devices, vol. 61, no. 3, pp. 707–715, Mar. 2014.
[79] R. People and J. C. Bean, “Calculation of critical layer thickness versus lattice mismatch for GexSi1−x/Si strained-layer heterostructures,” Appl. Phys. Lett., vol. 47, no. 3, pp. 322–324, Aug. 1985.
[80] D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Band-edge electro-absorption in quantum well structures: The quantum confined stark effect,” Phys. Rev. Lett., vol. 53, no. 22, pp. 2173–2177, Nov. 1984.
[81] F. Stern, “Self-consistent results for n-type Si inversion layers,” Phys. Rev. B, vol. 5, no. 12, pp. 4891–4899, Jun. 1972.
[82] T. Ando, A. B. Fowler, and F. Stern, “Electronic properties of two dimensional systems,” Rev. Mod. Phys., vol. 54, no. 2, pp. 437–672, Apr. 1982.
[83] S. H. Lo, D. A. Buchanan, Y. Taur, and W. Wang, “Quantum mechanical modeling of electron tunneling current from the inversion layer of ultra-thin-oxide nMOSFET’s,” IEEE Electron Device Lett., vol. 18, no. 5, pp. 209–211, May 1997.
[84] W. G. Vandenberghe, B. Sorée, W. Magnus, G. Groeseneken, and M. V. Fischetti, “Impact of field-induced quantum confinement in tunneling field-effect devices,” Appl. Phys. Lett., vol. 98, no. 14, pp. 143 503-1–143 503-3, Apr. 2011.
[85] W. G. Vandenberghe, B. Sorée, W. Magnus, G. Groeseneken, A. S. Verhulst, and M. V. Fischetti, “Field induced quantum confinement in indirect semiconductors: Quantum mechanical and modified semiclassical model,” in Proc. Simul. Semicond. Process Devices, 2011, pp. 271–274.
[86] J. L. Padilla, F. Gamiz, and A. Godoy, “A simple approach to quantum confinement in tunneling field-effect transistors,” IEEE Electron Device Lett., vol. 33, no. 10, pp. 1342–1444, Oct. 2012.
[87] J. L. Padilla, F. Gamiz, and Andrés Godoy, “Impact of quantum confinement on gate threshold voltage and subthreshold swings in double-gate tunnel FETs,” IEEE Trans. Electron Devices, vol. 59, no. 12, pp. 3205–3211, Oct. 2012.
[88] A. S. Verhulst, W. G. Vandenberghe, K. Maex, S. De Gendt, M. M. Heyns, and G. Groeseneken, “Complementary silicon-based heterostructure tunnel-FETs with high tunnel rates,” IEEE Electron Device Lett., vol. 29, no. 12, pp. 1398–1401, Dec. 2008.
[89] R. Asra, M. Shrivastava, K. V. R. M. Murali, R. K. Pandey, H. Gossner, and V. R. Rao, “A tunnel FET for VDD scaling below 0.6V with a CMOS comparable performance,” IEEE Trans. Electron Devices, vol. 58, no. 7, pp. 1855–1863, Jul. 2011.
[90] L. Lattanzio, L. De Michielis, and A. M. Ionescu, “Complementary germanium electron–hole bilayer tunnel FET for sub-0.5-V operation,” IEEE Electron Device Lett., vol. 33, no. 2, pp. 167–169, Feb. 2012.
[91] L. Knoll, Q. T. Zhao, A. Nichau, S. Trellenkamp, S. Richter, A. Schäfer, D. Esseni, L. Selmi, K. K. Bourdelle, and S. Mantl, “Inverters with strained Si nanowire complementary tunnel field-effect transistors,” IEEE Trans. Electron Devices, vol. 34, no. 6, pp. 813–815, Jun. 2013.
[92] L. Knoll, Q.T. Zhao, A. Nichau, S. Richter, G.V. Luong, S. Trellenkamp, A. Schäfer, L. Selmi, K. K. Bourdelle, S. Mantl, “Demonstration of improved transient response of inverters with steep slope strained Si NW TFETs by reduction of TAT with pulsed I–V and NW scaling,” in IEDM Tech. Dig., Dec. 2013, pp. 4.4.1–4.4.4.
[93] R. Rooyackers, A. Vandooren, A. S. Verhulst, A. Walke, K. Devriendt, S. Locorotondo, M. Demand, G. Bryce, R. Loo, A. Hikavyy, T. Vandeweyer, C. Huyghebaert, N. Collaert, and A. Thean, “A new complementary hetero-junction vertical tunnel-FET integration scheme,” in IEDM Tech. Dig., Dec. 2013, pp. 4.2.1–4.2.4.
[94] International Technology Roadmap for Semiconductors, 2013 Edition; http://www.itrs.net
[95] D. Kim, Y. Lee, J. Cai, I. Lauer, L. Chang, S. J. Koester, D. Sylvester, and D. Blaauw, “Low power circuit design based on heterojunction tunneling transistors (hetts),” in Proc. ISLPED, 2009, pp. 219–224.
[96] V. Saripalli, S. Datta, V. Narayanan, and J. P. Kulkarni, “Variation-tolerant ultra-low-power heterojunction tunnel FET SRAM design,” in Proc. IEEE/ACM Int. Symp. Nanoscale Architectures, Jun. 2011, pp. 45–52.
[97] Y. Lee, D. Kim, J. Cai, I. Lauer, L. Chang, S. J. Koester, D. Blaauw, and D. Sylvester, “Low-power circuit analysis and design based on heterojunction tunneling transistors (HETTs),” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 21, no. 9, pp. 1632–1643, Sep. 2013.
[98] U. E. Avci, D. H. Morris, S. Hasan, R. Kotlyar, R. Kim, R. Rios, D. E. Nikonov, and I. A. Young, “Energy efficiency comparison of nanowire heterojunction TFET and Si MOSFET at Lg=13 nm, including PTFET and variation considerations,” in Proc. IEDM, Dec. 2013, pp. 33.4.1–33.4.4.
[99] A. R. Trivedi, S. Carlo, and S. Mukhopadhyay, “Exploring tunnel-FET for ultra low power analog applications:A CASE study on operational transconductance amplifier,” in Proc. ACM/IEEE Design Automation Conf., 2013, pp. 1–6.
[100] S. Datta, R. Bijesh, H. Liu, D. Mohata, and V. Narayanan, “Tunnel transistors for energy efficient computing,” in Proc. IEEE Int. Rel. Phys. Symp. (IRPS), Apr. 2013, pp. 6A.3.1–6A.3.7.
[101] S. Mookerjea, R. Krishnan, S. Datta, and V. Narayanan, “On enhanced Miller capacitance effect in interband tunnel transistors,” IEEE Electron Device Lett., vol. 30, no. 10, pp. 1102–1104, Oct. 2009.
[102] J. H. Hung, P. Y. Wang, B.Y. Tsui and C. H. Yang, “A Concept of Heterogeneous Circuits with Epitaxial Tunnel Layer Tunnel FETs,” in Proc. Int. Conf. SSDM, 2015, pp. 338–339.
[103] S. Mookerjea, R. Krishnan, S. Datta, and V. Narayanan, “Effective capacitance and drive current for tunnel-FET (TFET) CV / I estimation,” IEEE Trans. Electron Devices, vol. 56, no. 9, pp. 2092–2098, Sep. 2009.
[104] Y. Yang, X. Tong, L. T. Yang, P. F. Guo, L. Fan, and Y. C. Yeo, “Tunneling field-effect transistor: Capacitance components and modeling,” IEEE Electron Device Lett., vol. 31, no. 7, pp. 752–754, Jul. 2010.
[105] B. S. Meyerson, “Low‐temperature silicon epitaxy by ultrahigh vacuum/chemical vapor deposition,” Appl. Phys. Lett., vol. 48, no. 12, pp. 797–799, Mar. 1986.
[106] F. W. Smith and G. Ghidini, “Reaction of oxygen with Si(111) and (100): Critical conditions for the growth of SiO2,” J. Electrochem. Soc., vol. 129, no. 6, pp. 1300–1306, Jun. 1982.
[107] Y. G. Yang and B. Y. Tsui, “Thin effective oxide thickness (∼0.5 nm) and low leakage current gate dielectric for Ge MOS devices by plasma nitrided Al2O3 intermediate layer,” in Proc. VLSI-TSA, Apr. 2015, TR65.
[108] L. D. Michielis, L. Lattanzio, and A. M. Ionescu, “Understanding the superlinear onset of tunnel-FET output characteristic,” IEEE Electron Device Lett., vol. 33, no. 11, pp. 1523–1525, Nov. 2012.
[109] M. H. Lee, S. T. Chang, T. H. Wu, and W. N. Tseng, “Driving current enhancement of strained Ge (110) p-type tunnel FETs and anisotropic effect,” IEEE Electron Device Lett., vol. 32, no. 10, pp. 1355–1357, Oct. 2011.
[110] Y. Yang, S. Su, P. Guo, W. Wang, X. Gong, L. Wang, K. L. Low, G. Zhang, C. Xue, B. Cheng, G. Han, and Y. C. Yeo, “Towards direct band-to-band tunneling in P-channel tunneling field effect transistor (TFET): Technology enablement by germanium-tin (GeSn),” in IEDM Tech. Dig., Dec. 2012, pp. 379–382.
[111] A. Villalon, C. L. Royer, M. Cassé, D. Cooper, B. Prévitali, C. Tabone, J. M. Hartmann, P. Perreau, P. Rivallin, J. F. Damlencourt, F. Allain, F. Andrieu, O. Weber, O. Faynot and T. Poiroux, “Strained tunnel FETs with record ION: First demonstration of ETSOI TFETs with SiGe channel and RSD,” in Proc. Symp. VLSI Technol. (VLSIT), Jun. 2012, pp. 49–50.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊