跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.34) 您好!臺灣時間:2025/10/31 10:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鄭佳和
研究生(外文):Chia-HoCheng
論文名稱:燃料進氣角度對無閥式微脈衝爆震推進器操作之影響
論文名稱(外文):Influence of Fuel Injection Angle on the Operation of a Small Pulse Detonation Engine
指導教授:吳明勳吳明勳引用關係
指導教授(外文):Ming-Hsung Wu
學位類別:碩士
校院名稱:國立成功大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:147
中文關鍵詞:緩燃焰轉爆震波無閥式脈衝爆震雷射陰影顯影
外文關鍵詞:Pulse DetonationValvelessLaser Shadowgraph
相關次數:
  • 被引用被引用:1
  • 點閱點閱:177
  • 評分評分:
  • 下載下載:23
  • 收藏至我的研究室書目清單書目收藏:0
本研究透過改變燃料供氣歧管角度,探討無閥式脈衝爆震引擎於操
作時爆震波回傳對供氣阻絕及時序之影響。實驗中乙烯/氧氣於化學當量
下點火,除透過高速顯影觀察反應波引燃後於流道中傳遞動態外,也建
構一雷射陰影(Laser Shadowgraph)系統解析過程中爆震波於流道內傳遞
情形。以及透過動態壓力感測器進行壓力波之量化分析。
由實驗結果可知在30 度入口角時下游反應波傳遞模態為一低速爆
震焰,而在60 度與90 度時則為典型爆震焰模態。由氣相層析儀分析可
得於較小角度時混合狀態較為貧油,30 度角時當量比約為0.6。而在上
游進氣端之雷射陰影觀察可知在較小入口角度時,反應波前方有明顯震
波結構於氧氣歧管中傳遞。而在最大入口角90 度時,震波傳遞至交會
處時則強度大幅降低,即於氧氣歧管中已無發現明顯震波傳遞。實驗也
透過於氧氣進氣歧管中安裝一動態壓力感測器量測管內壓力變化。估算
30 度至90 度之供氣阻斷時間分別約為306 us、219 us 與299 us,提高
供氣壓力後則阻斷時間則分別下降到約281 us、266 us 與270 us。而比
較單發操作以及連續操作下之上游進氣端之反應波與震波之顯影,由結
果中可看出於70 Hz 連續操作下反應波往上游傳遞速度較慢。另外實驗
也於岐管上游處設計一空腔幾何,由壓力記錄可得在原設計時岐管中壓
力峰值約為0.45 MPa,而在具空腔設計條件下其峰值壓力可下降至約
0.12 MPa。
Effects of inlet channel angle on the gas feeding dynamics in pulsed
detonation cycle in a micro pulsed detonation engine were investigated in the
study. Stoichiometric of ethylene/oxygen were used and high-speed
cinematography were applied to observe the flame propagation in mixing
section and inlet manifolds upstream of the ignition spot. Laser shadowgraph
was also utilized to analyze the shock propagations in the manifolds.
It can be found that both of 60° and 90° were typical detonation wave, and a
low-speed detonation mode in 30° case. By using a gas chromatography(GC)
to measure the mixing status in different angle cases. The equivalent ratio
decreased with inlet angle increase. It can be seen that with the smaller inlet
angle, there were an intense shock wave propagating back into the inlet
manifolds. With 90° inlet angle, the shock wave could only propagate until
the cross section, and the expansion resulted in the dissipation of the shock. A
dynamic pressure sensor was installed on the oxygen feeding channel to
quantify the pressure evolutions in the inlet manifold. The results showed that
the shut-off duration for the 30° to 90° inlet was about 306, 219 and 299 us
respectively. And reduce to 281, 266 and 270 us by increasing supply
pressure. Comparison of single shot and continuous operating of 70 Hz, there
were the slowest reaction wave velocity in the inlet section. A cavity design
has been apply in the manifold. It can be seen that the shock wave in oxygen
manifold were not obvious in cavity case. And the value of peak pressure
were 0.45 MPa in original design but there were only 0.12 MPa in cavity case.
摘要 i
誌謝 xii
目錄 xiii
表目錄 xv
圖目錄 xvi
第一章 緒論 1
1-1 前言 1
1-2 研究目的 2
1-3 文獻回顧 3
1-4 本文架構 8
第二章 實驗設備與方法 10
2-1 微爆震腔設計 10
2-2 微爆震腔測試平台 14
2-3 雷射陰影顯影系統 17
2-4 點火系統 20
2-5 爆震波流場顯影 22
高速連續顯影 22
延遲單張顯影 24
2-6 動態壓力量測 27
2-7 氣相層析儀量測 28
2-8 測試流程 31
第三章 燃料進氣角度對爆震波生成與傳遞之影響 34
3-1 爆震波生成與傳遞 34
反應波動態 34
爆震波動態 43
動態壓力量測 47
燃氣組成 48
3-2 反應波與震波對供氣之影響 52
反應波動態 52
爆震波動態 57
供氣阻斷特性分析 64
3-3 小結 69
第四章 脈衝頻率對爆震波生成與傳遞之影響 71
4-1 各燃料進氣角度下之脈衝反應波傳遞模態 71
30度入口角 71
60度入口角 85
90度入口角 98
4-2 各燃料進氣角度下之脈衝反應波回傳動態 111
4-3 各頻率下之脈衝反應波回傳動態 114
4-4 小結 123
第五章 進氣道空腔對爆震波生成與傳遞之影響 124
5-1 反應波傳遞模態 124
5-2 反應波回傳動態 127
5-3 與無空腔進氣道之比較 127
5-4 小結 132
第六章 結論與未來展望 134
6-1 結論 134
6-2 未來展望 136
參考文獻 137
附錄A 不銹鋼流道板設計工程圖 144
附錄B 不銹鋼PDE治具設計工程圖 146
[1] K. Kailasanath (2003), Recent Developments in the Research on Pulse
Detonation Engines, AIAA Journal 41, 145-159.
[2] G.D. Roy, S.M. Frolov, A.A. Borisov, and D.W. Netzer (2004), Pulse
Detonation Propulsion: Challenges, Current Status, and Future
Perspective, Progress in Energy and Combustion Science 30, 545-672.
[3] W. Fan, C. Yan, X. Huang, Q. Zhang, and L. Zheng (2003),
Experimental Investigation on Two-Phase Pulse Detonation Engine,
Combustion and Flame 133, 441-450.
[4] S.T. Sanders, J.A. Baldwin, T.P. Jenkins, D.S. Baer, and R.K. Hanson
(2000), Diode-Laser Sensor for Monitoring Multiple Combuston
Parameters in Pulse Detonation Engines, Proceedings of the
Combustion Institute 28, 587-594.
[5] J.T. Peace, D.D. Joshi, and F.K. Lu, Experimental Study of High-
Frequency Fluidic Valve Injectors for Detonation Engine Applications,
52nd Aerospace Sciences Meeting, National Harbor, Maryland, USA,
Jan 13-17, 2014.
[6] E.M. Braun, T.S. Balcazar, D.R. Wilson, and F.K. Lu (2012),
Experimental Study of a High-Frequency Fluidic Valve Fuel Injector,
Journal of Propulsion and Power 28, 1121-1125.
[7] F.H. Ma, J.Y. Choi, and V. Yang (2006), Propulsive Performance of
Airbreathing Pulse Detonation Engines, Journal of Propulsion and
Power 22, 1188-1203.
[8] F.H. Ma, J.Y. Choi, and V. Yang (2005), Thrust Chamber Dynamics
and Propulsive Performance of Multitube Pulse Detonation Engines,
Journal of Propulsion and Power 24, 681-691.
138
[9] G.D. Roy, S.M. Frolov, D.W. Netzer and A.A. Borisov, High-speed
Deflagration and Detonation: Fundamentals and Control, Elex-KM
Press, Moscow, 2000.
[10] F. Schauer, J. Stutrud, and R. Bradley, Detonation Initiation Studies
and Performance Results for Pulsed Detonation Engine Applications,
39th AIAA Aerospace Sciences Meeting & Exhibit, Reno, Nevada, USA,
Jan 8-11, 2001.
[11] T.R.A. Bussing, G.L. Lidstone, E. Christofferson, T.A. Kaemming, and
G. Jones, Pulse Detonation Propulsion Proof of Concept Test Article
Development, 38th AIAA/ASME/SAE/ASEE Joint Propulsion
Conference & Exhibit, Indianapolis, Indiana, USA, Jul 7-10, 2002.
[12] W. Bollay, Pulse Detonation Jet Propulsion, United States Patent No.
2942412, 1960.
[13] D.D. Winfree and L.G. Hunter, Pulse Detonation Igniter for Pulse
Detonation Chambers, United States Patent No. 5937635, 1999.
[14] J. Lu, L. Zheng, Z. Wang, C. Peng and X. Chen (2014), Thrust
Measurement Method Verification and Analytical Studies on a Liquid-
Fueled Pulse Detonation Engine, Chinese Journal of Aeronautics, In
Press.
[15] W. Bryan, Rotating Detonation Engines the 'Wave' of the Future?
Available:http://bryanwweber.com/writing/articles/2012/01/10/rotating
-detonation-engines-the-wave-of-the-future/, Last Check on May 16,
2012.
[16] F.K. Lu and D.S. Jensen, Potential Viability of a Fast-Acting Micro-
Solenoid Valve for Pulsed Detonation Fuel Injection, 41st Aerospace
Sciences Meeting and Exhibit, Reno, Nevada, USA, Jan 6-9, 2003.
139
[17] P.K. Panicker, The Development and Testing of Pulsed Detonation
Engine Ground Demonstrators, Ph.D. Dissertation, University of Texas
at Arlington, Arlington, 2008.
[18] K. Kailasanath, The Rotating-Detonation-Wave Engine Concept: A
Brief Status Report, 49th AIAA Aerospace Sciences Meeting, Orlando,
Florida, USA, Jan 4-7, 2011.
[19] Q. Zheng, C.S. Weng and Q.D. Bai (2013), Experimental Research on
the Propagation Process of Continuous Rotating Detonation Wave,
Defence Technology 9, 201-207.
[20] Y.H. Wang, J.P. Wang, T.Y. Shi, Y.S. Liu, Y.S. Li and Y. Li (2013),
Discovery of Breathing Phenomena in Continuously Rotating
Detonation, Procedia Engineering 67, 188-196.
[21] C.M. Brophy, L.S. Werner, and J.O. Sinibaldi, Performance
Characterization of a Valveless Pulse Detonation Engine, 41st
Aerospace Sciences Meeting and Exhibit, Reno, Nevada, USA, Jan 6-9,
2003.
[22] C.M. Brophy and R.K. Hanson (2006), Fuel Distribution Effects on
Pulse Detonation Engine Operation and Performance, Journal of
Propulsion and Power 22, 1155-1161.
[23] D. Piton, A. Prigent, L. Serre, and C. Monjaret, Performance of a
Valveless Airbreathing Pulse Detonation Engine, 40th
AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Fort
Lauderdale, Florida, USA, Jul 11-14, 2004.
[24] F.H. Ma, J.Y. Choi, and V. Yang (2006), Internal Flow Dynamics and
Performance of Valveless Airbreathing Pulse Detonation Engine,
Journal of Propulsion and Power 24, 479-490.
[25] D.W. Mattison, J.T.C. Liu, J.B. Jeffries, R.K. Hanson, C.M. Brophy,
and J.O. Sinibaldi, Tunable Diode-Laser Temperature Sensor for
140
Evaluation of a Valveless Pulse Detonation Engine, 43rd AIAA
Aerospace Sciences Meeting and Exhibit, Reno, Nevada, USA, Jan 10-
13, 2005.
[26] Z.W. Wang, X.G. Chen, J.J. Huang, L.X. Zheng and C.G. Peng (2014),
Semi-Free-Jet Simulated Experimental Investigation on a Valveless
Pulse Detonation Engine, Applied Thermal Engineering 62, 407-414.
[27] J.A Nicholls, H.R. Wilkinson, and R.B. Morrison (1957), Intermittent
Detonation as a Thrust-Producing Mechanism, Journal of Jet
Propulsion 27, 534-541.
[28] K. Wang, W. Fan, X.D. Zhu, Y. Yan and Z. Gao (2013), Experimental
Investigations on Effects of Wall-Temperature on Performance of a
Pulse Detonation Rocket Engine, Experimental Thermal and Fluid
Science 48, 230-237.
[29] M. Cooper, J. Jewell, and J. E. Shepherd, The Effect of a Porous Thrust
Surface on Detonation Tube Impulse, 39th AIAA/ASME/SAE/ASEE
Joint Propulsion Conference and Exhibit, Huntsville, Alabama, USA,
Jul 20-23, 2003.
[30] M. Shimo and S.D. Heister (2008), Multicyclic-Detonation-Initiation
Studies in Valveless Pulsed Detonation Combustors, Journal of
Propulsion and Power 24, 336-344.
[31] F. Ma, J.Y. Choi, and V. Yang, Numerical Modeling of Valveless
Airbreathing Pulse Detonation Engine, 43rd AIAA Aerospace Science
Meeting and Exhibit, Reno, Nevada, USA, Jan 10-13, 2005.
[32] Z. Wang, C. Peng, J. Lu, and L. Zheng (2014), Experimental Study of
Pressure Back-Propagation in a Valveless Air-Breathing Pulse
Detonation Engine, Journal of Aerospace Engineering, In Press.
[33] T. Bussing and G. Pappas, An Introduction to Pulse Detonation Engine,
AIAA Paper 94-0263, 1994.
141
[34] E.D. Lynch, R. Eidelman, and S. Palaniswamy, Computational Fluid
Dynamic Analysis of The Pulse Detonation Wave Engine Concept,
32nd Aerospace Sciences Meeting and Exhibit, Reno, Nevada, USA,
Jan 10-13, 1994.
[35] S. Eidelman and W. Grossman, Pulsed Detonation Engine
Experimental and Theoretical Review, 28th Joint Propulsion
Conference and Exhibit, Nashville, Tennessee, USA, Jul 6-8, 1992.
[36] K. Kailasanath, A Review of PDE Research-Performance Estimates,
39th Aerospace Sciences Meeting and Exhibit, Reno, Nevada, USA,
Jan 8-11, 2001.
[37] K.R. McManus and E.R. Furlong, MEMS-Based Pulse Detonation
Engine for Small-Scale Propulsion Applications, AIAA Paper 01-3469,
2001.
[38] S. Kitano, Y. Kimura, H. Sato, and A.K. Hayashi, Micro-Size Pulse
Detonation Engine Performance, 45th AIAA Aerospace Sciences
Meeting and Exhibit, Reno, Nevada, USA, Jan 8-11, 2007.
[39] 王長禹,圓形截面微管內之預混焰傳遞模式解析,國立成功大學
機械工程學系碩士論文,2010。
[40] 王俊凱,預混焰於微管槽內加速機制之研究,國立成功大學機械
工程學系碩士論文,2010。
[41] 邱柏淵,微槽內爆震焰產生過程中震波與反應波之交互作用,國
立成功大學碩士論文,2012。
[42] M.H. Wu and C.Y. Wang (2011), Reaction Propagation Modes in
Millimeter-Scale Tubes for Ethylene/Oxygen Mixtures, Proceedings of
the Combustion Institute 33, 2287-2293.
142
[43] M.H. Wu and W.C. Kuo (2012), Transition to Detonation of an Expand
Flame Ring in a Sub-Millimeter Gap, Combustion and Flame 159,
1366-1368.
[44] M.H. Wu, M.P. Burke, S.F. Son, and R.A. Yetter (2007), Flame
Acceleration and the Transition to Detonation of Stoichiometric
Ethylene/Oxygen in Microscale Tube, Proceedings of the Combustion
Institute 31, 2429-2436.
[45] M.H. Wu and W.C. Kuo (2012), Accelerative Expansion and DDT of
Stoichiometric Ethylene/Oxygen Flame Rings in Micro-Gaps,
Proceedings of the Combustion Institute 34, 2017-2024.
[46] M.H. Wu and W.C. Kuo (2012), Transmission of Near-Limit
Detonation Wave Through a Planar Sudden Expansion in a Narrow
Channel, Combustion and Flame 159, 3414-3422.
[47] Z.E. Chen and M.H. Wu, The Enhancement of DDT in Microchannel
Through Saw-Tooth Shaped Wall, 24th International Colloquium on
the Dynamics of Explosions and Reactive Systems (ICDERS), Taipei,
Taiwan, Jul 28 – Aug 3, 2013.
[48] P.Y. Chiu, C.H. Cheng, Z.E. Chen, and M.H. Wu, Visualization of
Shock and Reaction Fronts During Flame Acceleration and Transition
to Detonation in a Small Channel, 9th Asia-Pacific Conference on
Combustion, Gyeongju, Korea, May 19-22, 2013.
[49] M.H. Wu and T.H. Lu (2012), Development of a Chemical
Microthruster Based on Pulsed Detonation, Journal of Micromechanics
and Microengineering 22, 105040.
[50] 呂宗訓,脈衝爆震微推進器之概念驗證及原型發展,國立成功大
學碩士論文,2012。
143
[51] G.S. Settles, Schlieren and Shadowgraph Techniques: Visualizing
Phenomena in Transparent Media, Springer Berlin Heidelberg,
Germany, 2001.
[52] M. Born, E. Wolf, Principles of Optics 7th (Expanded) Edition,
Cambridge University Press, UK, 1999.
[53] P.J. Marriott (2004), Chapter 8 Gas Chromatography, Journal of
Chromatography Library 69, 319-368.
[54] C.F. Poole, Gas Chromatography, Elsevier, USA, 2012.
[55] V. Bychkov, V. Akkerman, G. Fru, A. Petchenko and L.E. Eriksson
(2007), Flame Acceleration in the Early Stage of Burning in Tubes,
Combustion and Flame 50, 263-276.
[56] 郭維鈞,微槽內爆震焰通過二維突擴之傳遞特性,國立成功大學
機械工程學系碩士論文,2011。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top