跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.213) 您好!臺灣時間:2025/11/08 06:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林馨怡
研究生(外文):Hsin-Yi Lin
論文名稱:計量模型設定的一般化檢定
論文名稱(外文):GENERAL SPECIFICATION TESTS FOR ECONOMETRIC MODELS
指導教授:管中閔管中閔引用關係
指導教授(外文):Chung-Ming Kuan
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:經濟學研究所
學門:社會及行為科學學門
學類:經濟學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:122
中文關鍵詞:模型設定條件動差檢定分量過程不相容檢定涵貍岍邥w隨機準連續分量迴歸指標函數Kiefer 過程sequentially marked empirical processes部份和過程M估計法
外文關鍵詞:Kiefer processquantile regressionconditional moment testmodel specificationsequentially marked empirical processquantile processstochastic equicontinuityM-estimationencompassing testsnon-nested testspartial sum processindicator function
相關次數:
  • 被引用被引用:0
  • 點閱點閱:510
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
In the economic literature, there are many non-nested models and conditional moment restrictions imposed by different economic theories and econometric models. Once these models or restrictions are specified, it is
very important to have specification tests on their validity. This dissertation thus focuses on constructing general model specification tests for non-nested models and conditional moment restrictions. The tests in this dissertation have the following advantages. First, different from the existing literature, the proposed tests are applicable to models with possibly non-smooth moment functions. Second, the tests are consistent and asymptotically pivotal; both characteristics are important issues for specification tests. Therefore, the tests proposed in this dissertation have wide applicability and are easy to implement.


In Chapter 1, we propose a generalized encompassing tests (GET) that extends the existing non-nested tests to models estimated by M-estimation for which the estimating equation may or may not be differentiable. The idea of the GET is to compare the estimating equation with its pseudo-true value, the pseudo-true estimating equation. The limiting distribution of the GET is derived. We present the GET statistics for the models estimated by quantile regression (QR), censored QR, smoothed maximum score, symmetrically trimmed least squares and asymmetrically least squares methods. The asymptotic Cox test (ACT) that extends the Cox tests to M-estimation is also proposed. The ACT and the GET are asymptotically equivalent. The asymptotic variance-covariance matrix of the GET is usually complicated. We also suggest a test based on a centered partial sum process to get an asymptotically pivotal test.


In Chapter 2, we propose a consistent conditional moment test that is applicable regardless of the differentiability of the moment functions. One approach to constructing a consistent conditional moment test is to check infinitely many unconditional moment functions which are necessary and sufficient for the conditional moment restrictions. The test is based on this approach and checks unconditional moment conditions with an indicator weight function indexed by a nuisance parameter. By employing centered sequentially marked empirical processes, the estimation effect of the test is eliminated. The test statistic is thus asymptotically pivotal and converges in distribution to a Kiefer process. The test is applicable to many conditional moment models, such as nonlinear regression models, QR models, likelihood models and conditional parametric models.


It is also known that QR is capable of providing a complete description of the conditional behavior of the dependent variable. The large sample properties of QR estimator have been well studied in the literature. Several efforts have been devoted to the inference of QR for a specific quantile or across quantiles. In addition, the consistent model specification tests for QR for a specific quantile are suggested by some researches. There is no test for the specifications of QR across quantiles. In Chapter 3, a model specification test for QR across quantiles is proposed. By checking infinitely many unconditional moment restrictions that are sufficient and necessary of the the model specifications of QR across quantiles, the proposed test is consistent. The test statistic is asymptotically pivotal and converges in distribution to a Kiefer process. This test does not require estimating the error density function of the model and hence is computationally simpler.
Contents


Abstract. . . . . . . . . . . . . . . . . . . . . . . . .ii


1 The Generalized Encompassing Tests for Non-Nested Models
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . 2
1.2 Non-Nested Tests . . . . . . . . . . . . . . . . . . .5
1.2.1 Non-Nested Models and Tests . . . . . . . . . . . 5
1.2.2 The Encompassing Tests . . . . . . . . . . . . . 6
1.3 The Generalized Encompassing Test . . . . . . . . .. 11
1.3.1 M-estimation . . . . . . . . . . . . . . . . . . 11
1.3.2 The Proposed tests . . . . . . . . . . . . . . . 14
1.3.3 Non-Differentiable Cases . . . . .. . . . . . . .19
1.3.4 Asymptotic Cox test . . . . . . . . . . . . . . .23
1.4 Applications . . . . . . . . . . . . . . . . . . . . 24
1.5 Partial Sum Processes . . . . . . . . . . . . . . . 30
1.6 Monte Carlo Simulations . . . . . . . . . . . . . . .32
1.7 Conclusion . . . . . . . . . . . . . . . . . . . . . 39
Appendix 1 . . . . . . . . . . . . . . . . . . . . . . . 40
Appendix 2 . . . . . . . . . . . . . . . . . . . . . . . 41
References . . . . . . . . . . . . . . . . . . . . . . . 44


2 A Consistent Conditional Moment Test for Possibly Non-Smooth Moment Conditions. . . . . . . . . . . . . . . . .50

2.1 Introduction . . . . . . . . . . . . . . . . . . . . 51
2.2 Conditional Moment Tests . . . . . . . . . . . . . . 54
2.2.1 Conditional Moment Restrictions . . . . . . . . .54
2.2.2 Conditional Moment Tests . . . . . . . . . . . . 57
2.2.3 Bierens’ Tests . . . . . . . . . . . . . . . . .59
2.2.4 Stute’s tests . . . . . . . . . . . . . . . . .61
2.3 Empirical Processes . . . . . . . . . . . . . . . . .62
2.3.1 Brownian Motion and Kiefer Process . . . . . . . 62
2.3.2 Sequentially Marked Empirical Processes . . . . .64
2.3.3 Sequentially Marked Empirical Processes with
Estimators . . . . . . . . . . . . . . . . . . . 67
2.4 A New Consistent Test . . . . . . . . . . . . . . . .69
2.5 Two Examples and Local Alternatives . . . . . . . . .71
2.5.1 Nonlinear Regression Specification . . . . . . . 72
2.5.2 QR specification . . . . . . . . . . . . . . . .73
2.6 Monte Carlo Simulations . . . . . . . . . . . . . . .74
2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . 76
Appendix . . . . . . . . . . . . . . . . . . . . . . . . 78
References . . . . . . . . . . . . . . . . . . . . . . . 87


3 A Consistent Test for Joint Quantile Regression Specifications . . . . . . . . . . . . . . . . . . . . . 93

3.1 Introduction . . . . . . . . . . . . . . . . . . . . 94
3.2 Quantile Regression . . . . . . . . . . . . . . . . .96
3.2.1 Estimation . . . . . . . . . . . . . . . . . . . 97
3.2.2 Algorithm . . . . . . . . . . . . . . . . . . . .99
3.2.3 Large Sample Properties . . . . . . . . . . . . 100
3.2.4 Inference and Model Specification Tests for QR .103
3.3 A New Test for QR Processes . . . . . . . . . . . . 107
3.3.1 Model Specifications for QR Process . . . . . . 107
3.3.2 A New Test . . . . . . . . . . . . . . . . . . .109
3.4 Monte Carlo Simulations . . . . . . . . . . . . . . 111
3.5 Conclusion . . . . . . . . . . . . . . . . . . . . .112
Appendix . . . . . . . . . . . . . . . . . . . . . . . .113
References . . . . . . . . . . . . . . . . . . . . . . .118
CHAPTER 1.

Aguirre-Torres, V. and R. Gallant (1983). The null and non-null asymptotic distribution of the Cox test for multivariate nonlinear regression: alternatives and a new distribution-free Cox test, Journal of Econometrics, 21, 5–33.
Andrews, D. (1994). Empirical process methods in econometrics, in: R. Engle and D. Mcfadden, eds., Handbook of Econometrics, Vol. 4, Amsterdam: North–Holland.
Anderson, K. and D. Darling (1952). Asymptotic theory of certain ‘goodness of fit’criteria based on stochastic processes, Annals of Mathematical Statistics, 23, 193–212.
Aneuryn-Evans, G. and A. Deaton (1980). Testing linear versus logarithmic regression models, Review of Economic Studies, 47, 275–291.
Atkinson, A. (1970). A method for discriminating between models, Journal of the Royal Statistical Society, Series B, 32, 323–353.
Chen, Y. and C. Kuan (2002). The pseudo-true score encompassing test for non-nested hypotheses, Journal of Econometrics, 106, 271–295.
Cox, D. (1961). Tests of separate families of hypotheses, in Fourth Berkeley Symposium on Mathematical Statistical Association, 1, 105–123.
________ (1962). Further results on tests of separate families of hypotheses, Journal of the Royal Statistical Society: series B, 24, 406–424.
Dastoor, N. (1983). Some aspects of testing non-nested hypotheses, Journal of Econometrics, 21, 213–228.
Davidson, R. and J. MacKinnon (1981). Several tests for model specification in the presence of alternative hypotheses, Econometrica, 49, 781–793.
_______ (1985). Testing linear and loglinear regressions against Box-Cox alternatives, Canadian Journal of Economics, 18, 499–517.
Efron, B. (1982). The Jackknife, the Bootstrap and Other Resampling Plans, Philadelphia: SIAM.
Fisher, G. (1983). Tests for two separate regressions, Journal of Econometrics, 21, 117–132.
Fisher, G. and M. McAleer (1981). Alternative procedures and associated tests of significance for non-nested hypotheses, Journal of Econometrics, 16, 103–119.
Ghysels, E. and A. Hall (1990). Testing nonnested euler conditions with quadraturebased methods of approximation, Journal of Econometrics, 46, 273–308.
Gouri’eroux, C. and A. Monfort (1994). Testing non-nested hypotheses, in: R. Engle and D. Mcfadden, eds., Handbook of Econometrics, Vol. 4, Amsterdam: North–Holland.
_______ (1995). Testing, encompassing, and simulating dynamic econometric models, Econometric Theory, 11, 195–228.
Gouri’eroux, C., A. Monfort and A. Trognon (1983). Testing nested or non-nested hypotheses, Journal of Econometrics, 21, 83–115.
Hendry, D. and J. Richard (1982). On the formulation of empirical models in dynamic econometrics, Journal of Econometrics, 20, 3–33.
Honor’e, B. (1992). Trimmed LAD and least squares estimation of truncated and censored regression models with fixed effects, Econometrica, 60, 533–565.
Horowitz, J. (1992). A smoothed maximum score estimator for the binary response model, Econometrica, 3, 505–531.
Jacomy, D., J. Messines and T. Roncalli (2001). A GAUSS Library for Computing Quantile Regression.
Kapetanios, G. and M. Weeks (2003). Non-nested models and the likelihood ratio statistics: a comparison of simulation and bootstrap based tests, working paper.
Kifer, J. (1959). K-sample analogues of the Kolmogorov-Smirnov and Cram’er-von Mises tests, Annals of Mathematical Statistics, 30, 420–447.
King, M. (1983). Testing for autoregressive against moving average errors in the linear regression model, Journal of Econometrics, 21, 35–51.
Koenker, R. and G. Bassett (1978). Regression quantile, Econometrica, 46, 33–50.
MacKinnon, J. (1983). Model specification tests against non-nested alternatives, Econometric Reviews, 2, 85–110.
MacKinnon, J., H. White and R. Davidson (1983). tests for model specification in the presence of alternative hypotheses, Journal of Econometrics, 21, 53–70.
Manski, C. (1975). Maximum score estimation of the stochastic utility model of choice, Journal of Econometrics, 3, 205–228.
_______ (1985). Semiparametric analysis of discrete response: Asymptotic properties of the maximum score estimator, Journal of Econometrics, 27, 313–334.
McAleer, M. (1995). The significance of testing empirical non-nested models, Journal of Econometrics, 67, 149–171.
Mizon, G. (1984). The encompassing approach in econometrics, in: D. F. Hendry and K.F. Wallis, eds., Econometrics and Quantitative Economics, Oxford: Basil Blackwell.
Monfardini, C. (1995). Simulation-based encompassing for non-nested models: a Monte Carlo study of alternative simulated Cox test statistics, working paper.
Newey, W. and D. Powell (1987). Asymmetric least squares estimation and testing, Econometrica, 55, 819–847.
Pesaran, B. and M. Pesaran (1995). A non-nested test of level-differenced versus logdifferenced stationary models, Econometric Reviews, 14, 213–227.
Pesaran, M. (1982). Comparison of local power of alternative tests of non-nested regression models, Econometrica, 50, 1287–1305.
Pesaran, M. and B. Pesaran (1993). A simulation approach to the problem of computing Cox’s statistic for testing nonnested models, Journal of Econometrics, 57, 377–392.
Pesaran, M. and M. Weeks (1999). Non-nested hypothesis testing: an overview, Cambridge Working Papers in Economics from Department of Applied Economics, University of Cambridge.
Powell, J. (1984). Least absolute deviations estimation for the censored regression model, Journal of Econometrics, 25, 303–325.
_______ (1986a). Censored regression quantiles, Journal of Econometrics, 32, 143–155.
_______ (1986b). Symmetrically trimmed least squares estimation for Tobit models, Econometrica, 54, 1435–1460.
Ramalho, J. and E. Smith (2002). Generalized empirical likelihood non-nested tests, Journal of Econometrics, 107, 99–125.
Sawa, T. (1978). Information criteria for discriminating among alternative regression models, Econometrica, 46, 1273–1292.
Singleton, K. (1985). Testing specifications of economic agents intertemporal optimum problems in the presence of alternative models, Journal of Econometrics, 30, 391–413.
Smith, M. and G. Maddala (1983). Multiple model testing for non-nested heteroskedastic censored regression models, Journal of Econometrics, 21, 71–81.
Smith, R. (1992). Non-nested tests for competing models estimated by generalized method of moments, Econometrica, 60, 973–980.
Tauchen, G. and R. Hussey (1991). Quadrature-based methods for obtaining approximate solutions to nonlinear asset pricing models, Econometrica, 59, 371–396.
Vuong, Q. (1989). Likelihood ratio tests for model selection and non-nested hypotheses, Econometrica, 57, 307–333.
Walker, A. (1967). Some tests of separate families of hypotheses in time series analysis, Biometrika, 54, 39–68.
White, H. (1982) Maximum likelihood estimation of misspecified models, Econometrica, 50, 1–26.
Wooldridge, J. (1990). An encompassing approach to conditional mean tests with applications to testing nonnested hypotheses, Journal of Econometrics, 45, 331–350.


CHAPTER 2.

Andrews, D. (1994). Empirical process methods in econometrics, in: R. Engle and D. Mcfadden, eds., Handbook of Econometrics, Vol. 4, Amsterdam: North–Holland.
_______ (1997). A conditional Kolmogorov test, Econometrica, 65, 1097–1128.
Bai, J. (1994). Weak convergence of the sequential empirical processes of residuals in ARMA models, Annals of Statistics, 22, 2051–2061.
_______ (2003). Testing parametric conditional distributions of hynamic models, The Reviews of Economics and Statistics, 85, 531–549.
Bierens, H. (1982). Consistent model specification tests, Journal of Econometrics, 20, 105–134.
_______ (1984). Model specification testing of time series regression, Journal of Econometrics, 26, 323–353.
_______ (1990). A consistent conditional moment test of functional form, Econometrica, 58, 1443–1458.
_______ (1994). Topics in Advanced Econometrics, Cambridge, Cambridge University Press.
Bierens, H. and D, Ginther (2001). Integrated conditional moment testing of quantile regression models, Empirical Economics, 26, 307–324.
Bierens, H. and W. Ploberger (1997). Asymptotic theory of integrated conditional moment tests, Econometrica, 65, 1129–1151.
Billingsley, P. (1999). Convergence of Probability Measures, 2nd ed., New York,Wiley & Sons, Inc.
Chen, X and Y. Fan (1999). Consistent hypothesis testing in semiparametric and nonparametric models for econometric time series, Journal of Econometrics, 91, 373–401.
Cs‥org‥o, M. and L. Horv’ath (1997). Limit Theorems in Change-Point Analysis, New York, Wiley.
Cs‥org‥o, M. and P. R’ev’esz (1981). Strong approximations in probability and statistics, New York, Academic Press.
de Jong, R. (1996). The Bierens test under data dependence, Journal of Econometrics, 72, 1–32.
Delgado, M. andM. Dom’?nguez and P. Lavergne (2003). Consistent tests of conditional moment restrictions, working paper.
Diebolt, J. and J. Zuber (1999). Goodness-of-fit tests for nonlinear heteroscedastic regression models, Statistics & Probability Letters, 42, 53–60.
Durbin, J. (1973). Distribution Theory for Tests Based on the Sample Distribution Function, Philadelphia: SIAM.
Escanciano, C., and C. Velasco (2003). Testing the martingale difference hypothesis using integrated regression functions, working paper.
Eubank, R. and C. Spiegelman (1990). Testing the goodness of fit of a linear models via nonparametric regression techniques, Journal of the American Statistical Association, 85, 387–392.
Fan, Y. and Q. Li (1996). Consistent model specification tests: omitted variables and semiparametric functional forms, Econometrica, 64, 865–890.
_______ (2000). Consistent model specification tests, Econometric Theory, 16, 1016–1041.
Hausman, J. (1978). Specification tests in econometrics, Econometrica, 46, 1251–1271.
Hong, Y. and H. White (1995). Consistent specification testing via nonparametric series regression, Econometrica, 63, 1133–1159.
Horowitz, J. and V. Spokoiny (2001). An adaptive, rate–optimal test of a parametric mean–regression model against a nonparametric alternative, Econometrica, 69, 599–631.
_______ (2002). An adaptive rate–optimal test of linearity for median regression models, Journal of the American Statistical Association, 97, 822–835.
Khmaladze, E. (1981). Martingale approach in the theory of goodness-of-fit tests, Theory of Probability and its applications, XXVI, 240–257.
_______ (1988). An innovation approach to goodness-of-fit tests in Rm, Annals of Statistics, 16, 1503–1516.
_______ (1993). Goodness of fit problem and scanning innovation martingales, Annals of Statistics, 21, 798–829.
Koenker, R. and G. Bassett (1978). Regression quantile, Econometrica, 46, 33–50.
Koul, H. and E. Stute (1999). Nonparametric model checks for time series, Annals of Statistics, 27, 204–236.
Lewbel, A. (1995). Consistent nonparametric hypothesis tests with an an application to Slutsky, Journal of Econometrics, 67, 379–401.
Li, Q. (1999). Consistent model specification tests for time series econometric models, Journal of Econometrics, 92, 101–147.
Li, Q. and S. Wang (1998). A simple consistent bootstrap test for a parametric regression function, Journal of Econometrics, 87, 145–165.
Newey, W. (1985). Maximum likelihood specification testing and conditional moment tests, Econometrica, 53, 1047–1070.
Pollard, D. (1984). Convergence of Stochastic Processes, New York, Springer-Verlag.
Shorack, G. and J. Wellner (1986). Empirical processes with applications to statistics, New York, Wiley & Sons, Inc.
Stichcombe, M. and H. White (1998). Consistent specification testing with nuisance parameters present only under the alternative, Econometric theory, 14, 295–325.
Stute, W. (1997). Nonparametric model checks for regression, Annals of Statistics, 25, 613–641.
Stute, W., W. Gonz’alez Manteiga and M. Presedo Quindimil (1998). Bootstrap approximations in model check for regression, Journal of the American Statistical Association, 93, 141–149.
Stute, W., S. Thies, and L. Zhu (1998). Model checks for regression: an innovation process approach, Annals of Statistics, 26, 1916–1934.
Stute, W. and L. Zhu (2002). Model checks for generalized linear models, Scandinavian Journal of Statistics, 29, 535–545.
Tauchen, G. (1985). Diagnostic testing and evaluation of maximum likelihood models, Journal of Econometrics, 30, 415–443.
van der Vaart, W. and J. Wellner (1996). Weak Convergence and Empirical Processes, New York, Springer-Verlag.
Whang, Y. (2000). Consistent bootstrap tests of parametric regression functions, Journal of Econometrics, 98, 27–46.
_______ (2001). Consistent specification testing for conditional moment restrictions, Economics Letters, 71, 299–306.
_______ (2003). Consistent specification testing for quantile regression models, working paper.
White, H. (1982). Maximum likelihood estimation of misspecified models, Econometrica, 50, 1–25.
Wooldridge, J. (1990). A unified approach to robust, regression-based specification tests, econometric Theory, 6, 17–43.
Zheng, J. (1998a). A consistent nonparametric test of parametric regression models under conditional quantile restrictions, Econometric Theory, 14, 123–138.
_______ (1998b). Consistent specification testing for conditional symmetry, Econometric Theory, 14, 139–149.
_______ (2000). A consistent test of conditional parametric distributions, Econometric Theory, 16, 667–691.


CHAPTER 3

Bai, J. (1994). Weak convergence of the sequential empirical processes of residuals in ARMA models, Annals of Statistics, 22, 2051–2061.
Barrodale, I. and F. Roberts (1974). Solution of an overdetermined system of equations in the l1 norm, Communications of the ACM, 17, 319–320.
Bierens, H. (1982). Consistent model specification tests, Journal of Econometrics, 20, 105–134.
_______ (1990). A consistent conditional moment test of functional form, Econometrica, 58, 1443–1458.
Bierens, H. and D, Ginther (2001). Integrated conditional moment testing of quantile regression models, Empirical Economics, 26, 307–324.
Bierens, H. and W. Ploberger (1997). Asymptotic theory of integrated conditional moment tests, Econometrica, 65, 1129–1151.
Bloch, D. and J. Gastwirth (1968). On a simple estimate of the reciprocal of the density function, The Annals of Mathematical Statistics, 39, 1083-1085.
Bofinger, E. (1975). Estimation of a density function using order statistics, Australian Journal of Statistics, 17, 1–7.
Buchinsky, M .(1991). The Theory and Practice of Quantile Regression, PhD. Dissertation, Harvard University.
_______ (1994). Changes in the U.S. wage structure 1963–1987: application of quantile regression, Econometrica, 62, 405–458.
_______ (1995). Estimating the asymptotic covariance matrix for quantile regression models: a monte carlo study, Journal of Econometrics, 68, 303–338.
Chernozhukov, V. (2002). Inference on the quantile regression process, an alternative, MIT Working Paper.
Chernozhukov V. and H. Hong (2002). A MCMC approach to classical estimation, MIT working paper.
Fitzenberger, B (1997). The moving block bootstrapping and robust inference for linear least squares and quantile regressions, Journal of Econometrics, 82, 235–287.
Fitzenberger, B., R. Koenker and J. Machado (2001). Introduction, Empirical Economics, 26, 1–5.
Gutenbrunner, C. and J. Jureckova (1992). Regression rank scores and regression quantiles, The Annals of Statistics, 20, 305–330.
Gutenbrunner, C., J. Jureckova, R. Koenker and S. Portnoy (1993). Tests of linear hypotheses based on regression rank scores, Nonparametric Statistics, 2, 307–331.
Hall, P. and S. Sheather (1988). On the Distribution of a studentized quantile, Journal of the Royal Statistic Society, Series B, 50, 381–391.
Horowitz, J. and V, Spokoiny, (2002). An adaptive rate–optimal test of linearity for median regression models, Journal of the American Statistical Association, 97, 822–835.
Huber, P. (1967). The behavior of maximum likelihood estimates under nonstandard conditions, in Fifth Berkeley Symposium on Mathematical Statistical Association,221–233.
Hunter, D. and K. Lange (2000). Quantile regression via an MM Algorithm, Journal of Computational and Graphical Statistics, 9, 60-77.
Karmarkar, N. (1984). A new polynomial–time algorithm for linear programming, Combinatorica, 4, 373–395.
Khmaladze, E. (1981). Martingale approach in the theory of goodness-of-fit tests, Theory of Probability and its applications, XXVI, 240–257.
Koenker, R. and G. Bassett (1978). Regression quantile, Econometrica, 46, 33–50.
_______ (1982a). Robust tests for heteroscedasticity based on regression quantiles, Econometrica, 50, 43–61.
_______ (1982b). Tests of linear hypotheses and l1 estimation, Econometrica, 50, 1577–1583.
Koenker R. and V. d’Orey (1987). Computing regression quantiles, Statistical Algorithms,383–393.
Koenker, R. and J. Machado (1999). Goodness of fit and related inference processes for quantile regression, Journal of the American Statistical Association, 94,1296–1310.
Koenker, R. and B. Park (1996). An interior point algorithm for nonlinear quantile regression, Journal of Econometrics, 71, 265–283.
Koenker, R. and Z. Xiao (2002). Inference on the quantile regression process, Econometrica, 70, 1583–1612.
Koul, H. and S. Levental (1989). Weak convergence of the residual empirical process in explosive autoregression, Annals of Statistics, 17, 1784–1794.
Koul H. and M. Ossiander (1994). Weak convergence of randomly weighted dependent residual empiricals with applications to autoregression, Annals of Statistics, 22, 540–562.
Koul H. and A. Saleh (1995). Autoregression quantiles and related rank-scores processes, Annals of Statistics, 23, 670–689.
Koul, H. and E. Stute (1999). Nonparametric model checks for time series, Annals of Statistics, 27, 204–236.
Ling, S. (1998). Weak convergence of the sequential empirical processes of residuals in nonstationary autoregressive models, Annals of Statistics, 26, 741–754.
Ling, S. and M. McAleer (2004). Regression quantile for unstable autoregressive models, Journal of Multivariate Analysis, forthcoming.
Parzen, E. (1979). Nonparametric Statistical data modeling, Journal of the American Statistical Association, 74, 105–121.
Phillips, P. (1991). A shortcut to LAD estimator asymptotics, Econometric Theory, 7, 450–463.
Pollard, D. (1991). Asymptotics for least absolute deviation regression estimators, Econometric Theory, 7, 186–199.
Portnoy, S. and R. Koenker (1997). The Gaussian hare and the Laplacian tortoise: computability of squared–error versus absolute–error estimators, Statistical Science, 12,279–300.
Powell, J. (1984). Least absolute deviations estimation for the censored regression model, Journal of Econometrics, 25, 303–325.
_______ (1986). Censored regression quantiles, Journal of Econometrics, 32, 143–155.
Ruppert, D. and J. Carroll (1980). Trimmed least squares estimation in the linear model, Journal of the American Statistical Association, 75, 828–838.
Sheather, S. and J. Maritz (1983). An estimate of the asymptotic standard error of the sample median, Australian J. of Statistics, 64B, 145–150.
Siddiqui, M. (1960). Distribution of quantiles in samples from a bivariate population, Journal of Research of the National Bureau of Standards, 64 B, 145–150.
Stichcombe, M. and H. White (1998). Consistent specification testing with nuisance parameters present only under the alternative, Econometric theory, 14, 295–325.
Stute, W. (1997). Nonparametric model checks for regression, Annals of Statistics, 25, 613–641.
Stute, W., S. Thies, and L. Zhu (1998). Model checks for regression: an innovation process approach, Annals of Statistics, 26, 1916–1934.
Tukey, J. (1965). Which part of the sample contains the information? Proceedings of the national Academy of Sciences of the United States of America, 53, 127–134.
Whang, Y. (2003). Consistent specification testing for quantile regression models, working paper.
Zheng, J. (1998). A consistent nonparametric test of parametric regression models under conditional quantile restrictions, Econometric Theory, 14, 123–138.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top