|
1. Tu, K.N., Recent advances on electromigration in very-large-scale-integration of interconnects. Journal of Applied Physics, 2003. 94(9): p. 5451. 2. Chen, K.C., W.W. Wu, C.N. Liao, L.J. Chen, and K.N. Tu, Observation of atomic diffusion at twin-modified grain boundaries in copper. Science, 2008. 321(5892): p. 1066-9. 3. Lu, L., Y. Shen, X. Chen, L. Qian, and K. Lu, Ultrahigh strength and high electrical conductivity in copper. Science, 2004. 304(5669): p. 422-6. 4. Lu, L., X. Chen, X. Huang, and K. Lu, Revealing the Maximum Strength in Nanotwinned Copper. Science, 2009. 323(5914): p. 607-610. 5. Cui, B.Z., K. Han, Y. Xin, D.R. Waryoba, and A.L. Mbaruku, Highly textured and twinned Cu films fabricated by pulsed electrodeposition. Acta Materialia, 2007. 55(13): p. 4429-4438. 6. Riveros, G., H. Gómez, A. Cortes, R.E. Marotti, and E.A. Dalchiele, Crystallographically-oriented single-crystalline copper nanowire arrays electrochemically grown into nanoporous anodic alumina templates. Applied Physics A, 2004. 81(1): p. 17-24. 7. Gao, T., G.W. Meng, J. Zhang, Y.W. Wang, C.H. Liang, J.C. Fan, and L.D. Zhang, Template synthesis of single-crystal Cu nanowire arrays by electrodeposition. Applied Physics A Materials Science &; Processing, 2001. 73(2): p. 251-254. 8. Gao, T., G.W. Meng, Y.W. Wang, S.H. Sun, and L.D. Zhang, Electrochemical synthesis of copper nanowires. Journal of Physics: Condensed Matter, 2002. 14: p. 355-363. 9. Molares, M.E.T., J. Brötz, V. Buschmann, D. Dobrev, R. Neumann, R. Scholz, I.U. Schuchert, C. Trautmann, and J. Vetter, Etched heavy ion tracks in polycarbonate as template for copper nanowires. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2001. 185: p. 192-197. 10. Pang, Y.T., G.W. Meng, Y. Zhang, Q. Fang, and L.D. Zhang, Copper nanowire arrays for infrared polarizer. Applied Physics A: Materials Science &; Processing, 2003. 76(4): p. 533-536. 11. Zhong, S., T. Koch, M. Wang, T. Scherer, S. Walheim, H. Hahn, and T. Schimmel, Nanoscale twinned copper nanowire formation by direct electrodeposition. Small, 2009. 5(20): p. 2265-70. 12. Duan, J., J. Liu, D. Mo, H. Yao, K. Maaz, Y. Chen, Y. Sun, M. Hou, X. Qu, and L. Zhang, Controlled crystallinity and crystallographic orientation of Cu nanowires fabricated in ion-track templates. Nanotechnology, 2010. 21(36): p. 365605. 13. Lai, M. and D.J. Riley, Templated electrosynthesis of nanomaterials and porous structures. J Colloid Interface Sci, 2008. 323(2): p. 203-12. 14. Pan, H., H. Sun, C. Poh, Y. Feng, and J. Lin, Single-crystal growth of metallic nanowires with preferred orientation. Nanotechnology, 2005. 16(9): p. 1559-1564. 15. Tian, M.L., J.G. Wang, J. Kurtz, T.E. Mallouk, and M.H.W. Chan, Electrochemical Growth of Single-Crystal Metal Nanowires via a Two-Dimensional Nucleation and Growth Mechanism. Nano Letters, 2003. 3(7): p. 919-923. 16. Guo, L. and P.C. Searson, On the influence of the nucleation overpotential on island growth in electrodeposition. Electrochimica Acta, 2010. 55(13): p. 4086-4091. 17. Sun, H., Y. Yu, X. Li, W. Li, F. Li, B. Liu, and X. Zhang, Controllable growth of electrodeposited single-crystal nanowire arrays: The examples of metal Ni and semiconductor ZnS. Journal of Crystal Growth, 2007. 307(2): p. 472-476. 18. Kozlov, V.M. and L.P. Bicelli, Texture formation of electrodeposited fcc metals. Materials Chemistry and Physics, 2002. 77: p. 289-293. 19. Zhang, J., Y. Jin, H. Wang, C. Ye, W. Tong, and H. Wang, Growth and magnetic properties of single crystalline Ni nanowire arrays prepared by pulse DC electrodeposition. Science China Physics, Mechanics and Astronomy, 2011. 54(7): p. 1244-1248. 20. Wang, X.W., G.T. Fei, X.J. Xu, Z. Jin, and L.D. Zhang, Size-Dependent Orientation Growth of Large-Area Ordered Ni Nanowire Arrays. Journal of Physical Chemistry B 2005. 109: p. 24326-24330. 21. Xu, D., W.L. Kwan, K. Chen, X. Zhang, V. Ozoliņš, and K.N. Tu, Nanotwin formation in copper thin films by stress/strain relaxation in pulse electrodeposition. Applied Physics Letters, 2007. 91(25): p. 254105. 22. Kelly, J.J., S.H. Goods, A.A. Talin, and J.T. Hachman, Electrodeposition of Ni from Low-Temperature Sulfamate Electrolytes. Journal of The Electrochemical Society, 2006. 153(5): p. C318. 23. Kongstein, O.E., U. Bertocci, and G.R. Stafford, In Situ Stress Measurements during Copper Electrodeposition on (111)-Textured Au. Journal of The Electrochemical Society, 2005. 152(3): p. C116. 24. Grujicic, D. and B. Pesic, Electrodeposition of copper : the nucleation mechanisms. Electrochimica Acta, 2002. 47: p. 2901-2912. 25. Maurer, F., J. Brötz, S. Karim, M.E.T. Molares, C. Trautmann, and H. Fuess, Preferred growth orientation of metallic fcc nanowires under direct and alternating electrodeposition conditions. Nanotechnology, 2007. 18(13): p. 135709. 26. Kim, M.J., S.K. Cho, H.-C. Koo, T. Lim, K.J. Park, and J.J. Kim, Pulse Electrodeposition for Improving Electrical Properties of Cu Thin Film. Journal of The Electrochemical Society, 2010. 157(11): p. D564
|